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ABSTRACT

Most strategies proposed for utilizing chaotic signals for
communications exploit the self-synchronization property
of a class of chaotic systems. Any realistic communication
channel will introduce distortion including time-dependent
fading, dispersion, and modification of the frequency con-
tent due to channel filtering and multipath effects. All of
these distortions will affect the ability of the chaotic receiver
to properly synchronize. This paper develops and illustrates
some specific approaches to channel equalization to com-
pensate for these distortions for self-synchronizing chaotic
systems. The approaches specifically exploit the properties
of chaotic drive signals and the self-synchronization prop-
erties of the receiver.

1. INTRODUCTION

Over the past several years there has been considerable
interest in utilizing chaotic signals for communications.
Most strategies that have been proposed exploit the self-
synchronization property of a class of chaotic systems [1]-[9).
By necessity, synchronization of the receiver requires that
the received drive signal be undistorted or that it first be
appropriately equalized in amplitude, spectral content and
phase. Specifically, it can be anticipated that a realistic
transmission channel will introduce a time varying attenua-
tion due to fading, scattering, etc., will modify the spectral
characteristics of the transmitted signal due to channel fil-
tering and multipath and will introduce additive noise. The
effects of additive noise on synchronization have been dis-
cussed in [10]. In this paper we propose specific techniques
for estimating and compensating for the effects of the chan-
nel on amplitude and spectral content of the synchronizing
drive signal.

An approach to equalizing channels which apply a slowly
time-varying attenuation to the transmitted chaotic drive
signal was considered in [11] and is illustrated in section
3 of this paper. In this paper we build on those ideas by
developing an approach which can be applied to a much
broader range of realistic channels. By using the ratio of
the power spectra for the transmitted and received drive
signals, coarse channel equalization can be obtained. The
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Figure 1. Chaotic communications over non-ideal
channels.

resulting channel equalizer can then be used as a starting
point in the determination of an optimal channel equalizer
that minimizes the receiver’s synchronization error.

2. CHANNEL EQUALIZATION CONCEPTS

In figure 1, we illustrate a scenario in which a chaotic drive
signal, z(t), is transmitted over a non-ideal communication
channel. The deterministic part of the channel is modeled
by an unknown LTI system with transfer function C(s),
while the statistical part of the channel is modeled by an
additive white noise source, v(t). At the receiver, the cor-
rupted drive signal, s(t), is processed with an LTI equalizer
such that (t) =~ z(t). If the equalization is sufficient then
the receiver will approximately synchronize to the transmit-
ter.

In practical applications involving self-synchronizing
chaotic systems, detailed information regarding z(t) and
C(s) would, most likely, not be available at the receiver.
However, while z(t) is not known exactly, it’s power spec-
trum, Ps:(jw), is typically known and can be used for
coarse estimation of the frequency response of the equal-
izer. A channel equalization approach which utilizes the
available power spectra information is briefly described be-
low.

2.1. Coarse Channel Equalization

The power spectrum of the received drive signal, Pss(jw),
is given by

Pu(jw) = Pec(jw)ICGW)* + Po(iw) , (1)

where P,,(jw) denotes the power spectrum of v(t). The
power spectrum of the compensated drive signal is given by

Pis(jw) = Pa(jw)HGw)® . (2

Consequently, an appropriate choice for |H( jw)|? is given
by

Pyo(jw) (3)

|H (jw)|* P jo)
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With this choice, the power spectrum of the compensated
drive signal matches the power spectrum of the transmitted
drive signal.

If the channel is assumed to be minimum phase, then
H(jw) can be constructed from |H(jw)|? using a variety
of techniques such as spectral factorization, the complex
cepstrum, or the Hilbert transform. If the channel is not
minimum phase, however, then this approach may produce
a filter that does not provide adequate channel compensa-
tion. For example, the spectral ratio approach is certain to
fail for all-pass channels. Another drawback of the spectral
ratio approach is that the estimate of |H(jw)|? in equation
(3) becomes highly ill-conditioned due to the gradual de-
crease of Pp;(jw) and Pss(jw) at high frequencies. A mod-
ified approach incorporates the synchronizing properties of
the receiver into the filter design process and is further de-
scribed below.

2.2. Optimal Channel Equalization

In most cases, perfect channel compensation is not possi-
ble. Since our objective is to improve the synchronization
between transmitter and receiver, we choose as our criterion
minimization of synchronization error.

In developing the optimal channel equalizer we assume
that the equalizer is implemented as a discrete-time FIR fil-
ter applied to the sampled signal s(¢). Let An,n=1,..., N
denote the unknown impulse response coeflicients of the
channel equalizer, and sp,n = 1,2,..., M denote the cor-
rupted drive signal, where M is, in general, much greater
than N. The compensated drive signal &,,n = N,... M
is the result of convolving s, with hn. Algebraically, this
operation can be conveniently written as

N S1 S SN hn
EN41 S2 ttc SN+l .
: : : ha
Tm SM—N+1 '+ 8M h1

or, using vector notation, more compactly as
x = Sh. 4)

If the receiver has synchronized to the transmitter with %
as it’s input, then the receiver’s output should be approx-
imately equal to %X. Specifically, synchronization requires
that % ~ r, where the vector r is used to denote the re-
ceiver output, s.e. r = (rn, ...,’I‘M)T‘ Because the receiver
output, r, is a function of the channel equalizer impulse re-
sponse, h, we will use the notation r(h) to clearly indicate
this dependency.

To design the equalizer to minimize the mean-square
synchronization error, we determine h to minimize the
quadratic cost function

J = (Sh-r(h))T(Sh—r(h)). 5)

A straightforward approach is to apply the gradient descent
iteration

vJ
hiy1 = h»——’)’xm- (6)

This approach involves computing the gradient of J at the
i*" iteration of h, say h;, and then updating the estimate

of h by moving it in the direction of steepest descent of J.

The gradient of J is straightforward to calculate and is
given by

VvJ = 2(ST - Vr(h))(Sh; ~r(hy)) , )

where Vr(h;) denotes the Jacobian of r(h) evaluated at h;.
This matrix is easily estimated numerically by perturbing
the various components of h; and measuring the resulting
change in the receiver output.

There are two additional and important issues to con-
sider when applying the proposed gradient descent algo-
rithm. First, it is important to determine an appropriate
step size, ;, at each iteration. We employed the “golden
section search” algorithm to efficiently determine the step
size which produces the largest possible change in J at each
iteration. The second issue involves determining a good ini-
tial estimate of h. One approach for obtaining a good initial
estimate is to employ the coarse estimation procedure de-
scribed in Section 2.1. Below, we illustrate this approach
with a simple numerical experiment.

3. NUMERICAL EXPERIMENTS

For illustration we use for the chaotic system components in
figure 1, the “scaled” Lorenz transmitter equations [2, 12]

= o(y—-uw)
y = rc—y—20zz
z = bry—bz ,

and synchronizing receiver equations

i = oly —o)
Ur = 18(t) — y» — 20s(t)2,
Z = b5s(t)yr — bz .

With s(t) = «(t), the receiver will rapidly synchronize to
the transmitter from any set of initial conditions.

3.1. Channel Gain Compensation

In this experiment, the Lorenz equations were numerically
integrated using a fourth-order Runge-Kutta method with
a fixed step size of .005. The corresponding sampling period
on the received signal is T' = .005. «

We first assume that the channel imposes only a constant
or time-varying gain on the transmitted drive signal z(t),
i.e. C(s) in Fig. 1 is a gain G. If G differs from ‘unity, then
synchronization deteriorates, as illustrated Fig. 2. Specifi-
cally, Fig. 2 shows the synchronization error power P, with
no channel compensation, i.e. with H(s) = 1, and for con-
stant channel gain or attenuation for a range of channel gain
variation. As we expect, the synchronization error power is
essentially zero for G = 1 and rapidly increases as the chan-
nel introduces non-unity gain or attenuation.

From Fig. 2 we see that the synchronization error power
is unimodal for a range of gains around unity. As discussed
in [11] a compensating gain can be obtained by minimizing
P.. This assumes that an initial estimate of the gain is
within the range in Fig. 2 which is unimodal and includes
G = 1 and for which the slope of the curve is sufficiently
high to permit a reasonable gradient search for the gain.

A reasonable initial estimate of the gain can be obtained
by utilizing the fact that P,, the power in the chaotic drive
signal at the input to the channel, can be expected to be in-
dependent of the specific sample path. Empirical measure-
ment of P; over a range of initial conditions in the Lorenz
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Figure 2. Synchronization error power vs. gain.

system with 500 independent trials and a time window of
800 sec resulted in an average value of 1.5978, a variance of
1.8 x 107, a maximum of 1.6016 and a minimum of 1.5945.
Based on this, a reasonable initial estimate of G is then

taken as
\/— V 1. 5978 ()

A rectangular sliding window of duration A is used to
estimate P;, i.e.

t+4
Pa(t) % / Sy ©)
-4

In Fig. 3 we show a representative example of compensa-
tion for a constant gain G = 3. In this figure we show the
synchronization error when the compensating gain is the re-
ciprocal of the initial gain estimate in Eq. (8). We also show
on the same graph the synchronization error when for each
time window, a gradient search is applied to minimize Pe,
starting with the initial estimate in Eq. (8). A 20-second
sliding window was used to estimate P;. In Fig. 3(a) the ini-
tial error represents the error transient prior to synchroniza-
tion. In Fig. 3(b) we show the error on an expanded scale for
a 10-second interval after the initial transient. Clearly the
gradient search following the initial gain estimate results in
significant reduction in synchronization error.

3.2. Channel Frequency Response Compensation

In this experiment, the Lorenz equations were numerically
integrated using a fourth-order Runge-Kutta method with
a fixed step size of 0.01. The corresponding sampling period
on the received signal is T = 0.01.

In figure 4, we show the averaged power spectrum of the
transmitted chaotic signal samples, z,. If the channel is
nearly ideal, then s, = z,. In this case, s, can be used
to synchronize the receiver system. If the channel is far
from ideal, however, the receiver will, most likely, not syn-
chronize with s, as it’s input. To demonstrate this effect,
we modeled the deterministic part of the channel by a low-
order lowpass filter; additive white Gaussian channel noise,
at a chaos-to-noise ratio level of 30 dB, was used to model
the random channel components. The transfer function of
the lowpass channel filter is given by

—0.5+271
1 .82-1

Fxgure 5 shows the spectral magnitude and group delay of
C(z). From these plots, we see that C(z) will alter the

amplitude, bandwidth, and group delay of the chaotic drive
signal. When the uncompensated received signal, s, is used

Cz) =

Error for

ge power nc

0 4 6 8 10 12 14 16 18 20

time (sec)
Expanded scale
0.04 T T T T T T
0.02
5 0
& i
-0.02
-0.041
~0.06 1 H H H H L i . H
10 1" 12 13 14 15 16 17 18 19 20
time (sec)

Figure 3. Receiver’s synchronization error for av-
erage power normalization and adaptive error min-
imization.
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Figure 4. Power spectrum of the chaotic drive signal
Zn.

as the input to the receiver, the chaos to error ratio is only
2 dB.

To apply the spectral ratio equalization approach, de-
scribed in Section 2.1, we computed an averaged power
spectrum of s, using a 50-sec data window and then ap-
plied equation (3) to estimate the magnitude response of
the spectral ratio channel equalizer. The filter transfer
function or, equivalently, the impulse response was then
estimated via spectral factorization methods. The result-
ing channel equalizer was implemented as an eight-point
finite-impulse-response (FIR) filter; it’s coefficients are ap-
proximately given by

h,, = [19,.13,.09,.05,.01,-.01, —.02, —.02]

We then determined the corresponding MSE equalizer
coefficients. This was done by using h,, as a starting point
in the iterative optimization algorithm discussed in Section
2.2. After several iterations (15), the algorithm converged
to

[.24,.17,.12,.07,.01, —.03, --.07, —.10]

hmse =

There are significant differences between the spectral ratio
and MSE equalizers from the viewpoint of accurate channel
equalization. To see this, consider figure 6 which shows the
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Figure 5. Spectral magnitude and group delay of a
non-ideal channel.
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Figure 6.
sponse.

Compensated channel frequency re-

spectral magnitude and group delay of C(z)H,-(2) (dashed
line) and C(z)Hmse(z) (solid line). The MSE equalizer
clearly does a much better job of equalizing the channel
over the passband of the chaotic drive signal — the com-
pensated channel has approximately unity gain and nearly
constant group delay over the range of normalized frequen-
cies from 0 to 0.2. Note also that both equalizers tend to
attenuate high-frequency channel noise.

In figure 7, we compare the synchronization error result-
ing from application of the spectral ratio (dashed) and MSE
(solid) equalizers. While the spectral ratio equalizer has
improved the receiver’s synchronization considerably, the
chaos-to-error ratio is only 16 dB - not enough for some ap-
plications involving self-synchronizing chaotic systems. The
performance of the MSE equalizer is significantly better; the
resulting chaos-to-error ratio is about 33 dB. This perfor-
mance can be improved upon further by using more coeffi-
cients in the equalizer, or by using a longer data window to
estimate the coefficients.

SYNCHRONIZATION ERROR

2
| Spectral Ratio Equalizer B
| MSE Equalizer Y

-2
0 5 TIME (sec) 10 15

Figure 7. Synchronization error using: (a) spectral
ratio equalizer; and (b) MSE equalizer.
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