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ABSTRACT

Language recognition with support vector machines andeshif
delta cepstral features has been an excellent performed$i-N
sponsored language evaluation for many years. A novel imepro
ment of this method has been the introduction of hybrid SVMNG

systems. These systems use GMM supervectors as an SVM
pansion for classification. In prior work, methods for sogri

SVM/GMM systems have been introduced based upon either sta

dard SVM scoring or GMM scoring with jpushed model. Although
prior work showed experimentally that GMM scoring yieldesttbr
results, no framework was available to explain the conoactie-

tween SVM scoring and GMM scoring. In this paper, we show thatS

there are interesting connections between SVM scoring aitG

scoring. We provide a framework both theoretically and expe

mentally that connects the two scoring techniques. Thisiection
should provide the basis for further research in SVM disirative
training for GMM models.

In a prior paper, a technique for model pushing was givencase
upon heuristic considerations [5]. Other model pushintnepies
are possible, see [4]. In this paper, we show that the teabriig[5]
can be justified as an approximation to an exact techniquehi¥o
end, we give a theoretical correspondence between the S6M sc

eLg_g and GMM scoring. Then, with Monte Carlo simulations and
corresponding approximations, we demonstrate the wlifitthe
I[]nethods.

The outline of the paper is as follows. In Section 2, we discus
prior work on language recognition based on SVMs and GMM su-
pervectors. The covariance kernel discussed in prior wajrks[pre-
sented. Section 3 discusses the model pushing technigue[$jo
ection 4 gives a theoretical justification for model pughifinally,
Section 5 details experiments on the proposed framewonigkita
from the NIST 2007 LRE.

2. LANGUAGE RECOGNITION WITH SVMS
For language recognition, the goal is to determine the lagglof

Index Terms— language recognition, support vector machines an utterance from a set of known languages. Since the SVM is a

1. INTRODUCTION

Automatic language techniques with shifted-delta cepstoeffi-
cients (SDCCs) have become an attractive method for effien
guage recognition [1]. These methods take input speechjedon
to SDCCs, and then perform classification directly on theltig)
sequence of feature vectors. Standard techniques useld$sifica-
tion are support vector machines (SVMs) [2] and Gaussiaruréx
models (GMMs) [1].

Several discriminative methods for GMMs and SVMs have bee

introduced in the literature. Discriminative techniques $DCCs
using SVMs with a polynomial kernel were introduced in theSNI
2003 language recognition evaluation (LRE) [2]. Maximumtual

information (MMI) training of GMMs was used in the NIST 2005
NIST LRE [3]. Finally, methods with GMM supervectors and SVM

training were introduced in the NIST 2007 LRE [4, 5].

We focus on the method in [5] which is based upon three main

two-class classifier, we handle language recognition asification
problem. That is, we useane vs. rest strategy. For language recog-
nition, we train a target model for each language; the sethofv
non-targets are used as the remaining class.

The standard form of an SVM;(x), is

N
fx) = ZaiK(x,xi) +d, )
i=1

where theK (-, -) is a kernel function an@f\rzl a; = 0anda; # 0.
"rhe support vectorg; andd are obtained by optimization.

A straightforward method of performing language recogniti
with SVMs is to use kernels that compare sequences of feature
tors [2]. One technique for comparing sequences is to ad&pt-a
guage independent GMM per utterance and then calculat¢ésandés
between the distributions [5]. Assuming this strategy,page we
have a Gaussian mixture model UBM,

components. The first component is the use of a feature domain
subspace method, fNAP, which is an extension of the NAP tech-
nique [6, 7]. The second component is a mean and covariamee ke
nel for comparing GMM supervectors. The use of both paramete . . . . e
types is critical for good performance in language recogmiappli- where\; are the mixture weights\'() is a Gaussian dlstrlbL_mon, _
cations. The final component, which we explore in detailrans- apd 1L andX; are the mean and covariance of the Gaussians dis-
ferring the SVM model parameters back to a GMM model and ther{fiPutions, respectively. Also, assume we have two uteanand

using that model for scoring. We call this processel pushing. we train GMMS’g“ andg, as in (2), on the .tWO utterances, respec-
tively, using MAP adaptation. A natural distance betweenttho
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Unfortunately, the KL divergence does not satisfy the Mecomdi-
tion usually assumed for SVM training.

In prior work, instead of using the divergence directly, ssaV
approximations were made to obtain a kernel-induced dist5.
The first approximation involved the log-sum inequality,

N
De(gallgs) < > NiDs (W (s mai, S i) IV (5 i, B.0)) (4)
i=1

where we have represented tfth mixture component means of
the adapted supervectors hy,,; andm,_; and the adapted covari-
ances are similarly denoted. Note that we have switcheceteytn-
metrized form of the KL divergence)().

3. MODEL PUSHING

Instead of using standard SVM scoring (1), several reseasdiave
explored the possibility of transferring the SVM parameteack to
a GMM model and using standard log likelihood ratio scorimgd].
The challenge in this paradigm is to understand the exaetafdhe
SVM parameters in GMM scoring.

The approach presented in [5] was heuristically motivaleuk
starting point is to observe that the standard kernel sgamifl) can
be split as follows,

f(x) > wKxx)- Y aK(xx)+d (10)

{i]a; >0} {i]a; <0}

A closed-form formula for the symmetric divergence betweenThe two terms on the right hand side resemble a log likelihatio

Gaussian distributions is given by
D (N (55ma,i, 36) N (5 m 6, 3)) =
0.5tr(2, ; Ba,i) +0.5tr(2, [ Bai) — n
mb,i)t (E;% + E;Ll) (mg,; —

©)

+0.5(mq,; — my;);
wheretr(-) is the trace, ana is the dimension of the feature space.

At this point, it is tempting to attempt to use (4) with (5) in
an SVM framework. The difficulty is that the combination istno
a kernel-induced distance. Therefore, in prior work, twditodnal
approximations were performed. We assume Mgt andX, ; are
diagonal. The first additional approximation was to expdradittace
terms in a Taylor expansion,

Ds(N(5ma s, Z0) IV (5 myp e, 30)) &~

0.5tr(Bai — 26.0)8; 2(Bai — X)) (6)
+ (Mg, —my;)" (0.5, +0.5%, 1) (ma,; — my;).
A second additional approximation was,
0.5%,; +055,; ~ 3, @

between an in-class and out-of-class model. Since we arkingor
with a symmetric linear kernel, we can write (10) as

f(x) = cK(%p,%x) — cK(Xm, %) + d. (11)
where
Xp = 1 X Xm = 1 z X (12)
p — c 1Rg, m — c [P, ¢
{ila; >0} {ila; <0}
and
c= z Q;. (13)

{i|e; >0}

For the kernel (9), the vectoss,, x., etc., will be supervectors of
stacked means and covariances.

A natural observation is to view the vectoxs, andx,, as rep-
resentations of in-class and out-of-class data and incatpdhem
into GMM models. Since the process in (12) is a convex combina
tion of supervectors, it produces a valid GMM parameteransg;
i.e., the covariances are positive. Thus, we can trarsfés a GMM
model,g,(y). A similar process yields a negative modgh (y).

Intuitively, the combination fok,, in (12) is on the hyperplane
boundary that supports the in-class data. A similar statéman

whereX:; is the covariance from the UBM, see (2). Performing thisbe made forx,.. Thus, the resulting pushed GMMs are modeling

operation resulted in the distance,
Ds(gallgs) ~d*(xa,%s)
N
= Z)\i [(Mma,i —my;)' S " (Mg, —my ;)
i=1

+05tr((Bayi — Zp,0)E; % (Basi — Zpi)) — 1]
8

and the corresponding covariance kernel in [5],

N N
K(Xa,xp) =Y Aimg ;37 my i + ) ’\7 tr (B35 2 %,) -
i=1 i=1
C)

wherex, is the supervector of means and covariancegfor

To summarize, applying SVMs to language recognition ingslv
several steps. To train language models, the mean and aowvarnpa-
rameters of a UBM are MAP adapted to each utterance in thércai
corpus. Then, an SVM is trained per language using the kéenel
For standard SVM scoring, the input test utterance is usedapt a
UBM to obtain mean and covariance parameters and thesepare in
to the scoring equation (1).

the location of the positive and negative boundaries of thsses.
Another interesting observation is that this method weigtta
unequally—this contrasts to a standard EM technique thatldvo
weight these statistics equally.

Scoring with these GMM models is straightforward. For an in-
put set of vectors{y; }, we produce a log likelihood ratio,

score = Z log (gp(y:)) — Zlog (gm(y4)) - (14)

4. RELATING MODEL PUSHING TO GMM SCORING
We define the cross-entropy between two distributions as

Hpa) = - [ o) log a(a)da. (15)
We also denote the entropy pfx) by H (p). Note that
D(pllg) = H(p,q) — H(p). (16)

Suppose we have a test utterance with feature vectors,
Yi,---,ym and we adapt a GMM UBM to this utterance to produce



a GMM, gy (y). We can rewrite the standard SVM scoring equa-
tion (1) in terms of distances. That is,dfx,,x.) is the distance
in (8), then
d2(xp7xy) - dQ(XWu Xy)
= K(xp,Xp) — 2K (xp, Xy) + K (xy, Xy)
- K(XTTH X’m) + QK(XTTH Xy) - K(va Xy)
—2(K(xp,%y) — K(Xm,%y)) + du.

17

Now combining the SVM scoring equation (11) and (17) yields,

f(xy) = Cl(d2(xpvxy) -

Note that the constank, does not depend afy,. Also, in the sepa-
rable class case; = —c/2 anddz = 0 wherec is given in (13).
Now, we can use the fact that

4 (X, Xy)) + da. (18)

d* (xy, %2) = Ds(gyllg2) (19)
and the SVM distance score (18) to give
f(xy) = c1(Ds(gyllgn) — Ds(gyllgm)) + do (20)

The distance interpretation of SVM scoring in (18) and (288 h
a compelling geometric interpretation. For a given tedridigtion,
gy, We find the distance to thg distribution which is on the positive
class boundary and the distance to ghe distribution which is on
the negative class boundary. The SVM score is based on wiiich o
these distance is smaller; i.e., which distributignor g.,,, is closer

togy .

5. EXPERIMENTS

Experiments were performed on development and evaluagts s
from the NIST 2007 LRE 14 language closed-set evaluatida[&]s
Target languages include Arabic, Bengali, Chinese, Enghkarsi,
German, Hindustani, Japanese, Korean, Russian, Sparasti|, T
Thai, and Vietnamese.

Training data was primarily from Callfriend and Callhomé; a
though, for languages such as Arabic, data was also used-isirar
and Mixer. Our development set, LREO7 DEV, included approxi
mately 6000 utterances per duration for durations3f10, and30
seconds. The development set included all trials from NIREL
2005. Additional data was supplied by LDC for Arabic, Bengal
Thai, and Chinese dialects. The criterion for evaluatioadus
pooled EER; we used the priors of languages in the test sétaso t

The next connection that we make is that cross-entropy can b@ach language had an equal contribution to the EER.

approximated using the law of large numbers. That is,

if yi ~ gy(y), then

Jim —Zlo < y_)> (22)

where~ indicates “distributed as.” That is, likelihood scoringle
same as cross-entropy.
Also, note that

(21)

H(gyagp) - H(gyagm =

D(gy; 9p) — D(gy,9m) = H(gy, 9») — H(gy,9m)  (23)
S0
D(gy,9p) = D(gy, gm) = lim — Zlog ( ) (24)
We additionally assume that
Ds(gy, 9p) — Ds(gy, gm) = D(gy, gp) — D(gy, gm)- (25)

Putting (20), (24), and (25) together gives us our proposéation
between SVM scoring and GMM scoring,
) +d2

xyNMZ (

for large M. The approximation (25) is difficult to demonstrate an-
alytically, and we will show through experiments in the ngacttion
the validity of the method.

As an alternate approximation, we also derived anothetioala
based on (20),

flxy) = ei(H. Hy(gyllgm)) + ds

whereds does not depend upag. This approximation (27) is com-
pelling, but to use GMM scoring to approximate this quantite
would have to perform standard scoring (26) as well as perifuy
Monte-Carlo generation of points and GMM scoring usipgand
gm. We leave exploration of this method to future work.

(26)

s(gyllgp) — (27)

For feature extraction, SDCC features were used with a 7-1-3
7 parameterization [1]. We also included cepstral coefiitsidor
a total of 56 features per frame dt00 frames per second. Addi-
tional processing included RASTA, 0/1 feature normal@atiand
VTLN. Finally, fNAP features [6] were produced with a corarig,

a mixture order o256, and variation from the target language as the
nuisance variable.

For a language and gender independent GMM UBM, we trained
a512 mixture GMM using all of the training data withiterations of
EM adapting all parameters—means, mixture weights, argbdial
covariances. We implemented SVMs with the mean plus cavegia
kernel given in (9). We also pushed these models back to GMM
models for scoring as described in Section 3.

The resulting system is used for exploring the approxinmatio
presented in Section 3. The basic performance of the systems
given in Table 1. In the table, scores were processed scagss w
processed using a “max” log likelihood ratio,

(28)

s; =S — 1“{17?;( Sj.
Also, a backend (BE) was used [8] for calibration. BE transi®
scores using linear discriminant analysis and models theltieg
vector using a tied covariance Gaussian per language. Mate t
GMM scoring performs better for both the max transformaton
BE. This resulting system is very competitive with other RIZ07
LRE systems.

Our first set of experiments was to explore the approxima-
tions (6), (7) to the KL divergence for a single Gaussian. \&edu
random Gaussian mixture components from our LID data and cal
culated actual values versus approximated values. The ofdaae

Table 1. Performance for the base system on the NIST 2007 LRE
30 second closed set task for 14 languages.

System LREO7 EER t)
SVM, Max 3.25
SVM, GMM score, Max 2.54
SVM, BE 2.53
SVM, GMM score, BE 1.70




Table 2. Performance of various KL approximations on NIST LRE
data for a single Gaussian mixture component

Approximation | Mean of the Relative Errof()
KL Approx 1 (6) 0.08
KL Approx 2 (7) 0.14
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Fig. 1. MC D, and approximation on NIST LRE data

relative error,|Jactual — approx|/|actual| between the actual and
approximate values is shown in Table 2. The table shows timat o
KL approximations have about— 2 digits of accuracy. The table
shows that the covariance by the UBM in (6) degrades accuracy

In our next set of experiments, we performed a comparison
of the full approximation to the KL divergence (8) to a Monte-
Carlo (MC) approximation of the exact symmetric KL divergen

Ds(gyllg-). For the distances, we used mixture models adapte(ij:ig

from the UBM on our LID experimental data. For these expernitag
approximatelyl00 samples per mixture component were used in th
MC runs. This number of samples was found to produce reatmnab
accuracy. A scatter plot of the approximation and the cpoeding

MC Dy is shown in Figure 1. Note from the figure that the generalm
trend is well established and reasonable between the twesal

In the next set of experiments, we explored the approximatio
between symmetric and non-symmetric KL divergence diffees,
see (25) and Figure 2. We used LID data again with the same MC
setup. The figure justifies our approximation.

As a final set of experiments, we performed both GMM scoring[3]
and SVM scoring on LID data. A plot of the GMM score for various
trials for a fixed model is shown in Figure 3. The figure showes th
relation between the two methods and illustrates our finpt@g-
mation (26).

(4]

. 3. Comparison of GMM
emodel. A linear fitis included to show the trend.
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