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ABSTRACT

Language recognition with support vector machines and shifted-
delta cepstral features has been an excellent performer in NIST-
sponsored language evaluation for many years. A novel improve-
ment of this method has been the introduction of hybrid SVM/GMM
systems. These systems use GMM supervectors as an SVM ex-
pansion for classification. In prior work, methods for scoring
SVM/GMM systems have been introduced based upon either stan-
dard SVM scoring or GMM scoring with apushed model. Although
prior work showed experimentally that GMM scoring yielded better
results, no framework was available to explain the connection be-
tween SVM scoring and GMM scoring. In this paper, we show that
there are interesting connections between SVM scoring and GMM
scoring. We provide a framework both theoretically and experi-
mentally that connects the two scoring techniques. This connection
should provide the basis for further research in SVM discriminative
training for GMM models.

Index Terms— language recognition, support vector machines

1. INTRODUCTION
Automatic language techniques with shifted-delta cepstral coeffi-
cients (SDCCs) have become an attractive method for efficient lan-
guage recognition [1]. These methods take input speech, convert
to SDCCs, and then perform classification directly on the resulting
sequence of feature vectors. Standard techniques used for classifica-
tion are support vector machines (SVMs) [2] and Gaussian mixture
models (GMMs) [1].

Several discriminative methods for GMMs and SVMs have been
introduced in the literature. Discriminative techniques for SDCCs
using SVMs with a polynomial kernel were introduced in the NIST
2003 language recognition evaluation (LRE) [2]. Maximum mutual
information (MMI) training of GMMs was used in the NIST 2005
NIST LRE [3]. Finally, methods with GMM supervectors and SVM
training were introduced in the NIST 2007 LRE [4, 5].

We focus on the method in [5] which is based upon three main
components. The first component is the use of a feature domain
subspace method, fNAP, which is an extension of the NAP tech-
nique [6, 7]. The second component is a mean and covariance ker-
nel for comparing GMM supervectors. The use of both parameter
types is critical for good performance in language recognition appli-
cations. The final component, which we explore in detail, is trans-
ferring the SVM model parameters back to a GMM model and then
using that model for scoring. We call this processmodel pushing.
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In a prior paper, a technique for model pushing was given based
upon heuristic considerations [5]. Other model pushing techniques
are possible, see [4]. In this paper, we show that the technique in [5]
can be justified as an approximation to an exact technique. Tothis
end, we give a theoretical correspondence between the SVM scor-
ing and GMM scoring. Then, with Monte Carlo simulations and
corresponding approximations, we demonstrate the validity of the
methods.

The outline of the paper is as follows. In Section 2, we discuss
prior work on language recognition based on SVMs and GMM su-
pervectors. The covariance kernel discussed in prior work [5] is pre-
sented. Section 3 discusses the model pushing technique from [5].
Section 4 gives a theoretical justification for model pushing. Finally,
Section 5 details experiments on the proposed framework using data
from the NIST 2007 LRE.

2. LANGUAGE RECOGNITION WITH SVMS
For language recognition, the goal is to determine the language of
an utterance from a set of known languages. Since the SVM is a
two-class classifier, we handle language recognition as a verification
problem. That is, we use aone vs. rest strategy. For language recog-
nition, we train a target model for each language; the set of known
non-targets are used as the remaining class.

The standard form of an SVM,f(x), is

f(x) =
N

X

i=1

αiK(x,xi) + d, (1)

where theK(·, ·) is a kernel function and
PN

i=1
αi = 0 andαi 6= 0.

The support vectorsxi andd are obtained by optimization.
A straightforward method of performing language recognition

with SVMs is to use kernels that compare sequences of featurevec-
tors [2]. One technique for comparing sequences is to adapt alan-
guage independent GMM per utterance and then calculate a distance
between the distributions [5]. Assuming this strategy, suppose we
have a Gaussian mixture model UBM,

g(y) =

N
X

i=1

λiN (y;mi,Σi), (2)

whereλi are the mixture weights,N () is a Gaussian distribution,
andmi andΣi are the mean and covariance of the Gaussians dis-
tributions, respectively. Also, assume we have two utterances, and
we train GMMs,ga andgb as in (2), on the two utterances, respec-
tively, using MAP adaptation. A natural distance between the two
utterances is the KL divergence,

D(ga‖gb) =

Z

Rn

ga(y) log

„

ga(y)

gb(y)

«

dy (3)



Unfortunately, the KL divergence does not satisfy the Mercer condi-
tion usually assumed for SVM training.

In prior work, instead of using the divergence directly, several
approximations were made to obtain a kernel-induced distance [5].
The first approximation involved the log-sum inequality,

Ds(ga‖gb) ≤
N

X

i=1

λiDs (N (·;ma,i,Σa,i)‖N (·;mb,i,Σb,i)) (4)

where we have represented theith mixture component means of
the adapted supervectors byma,i andmb,i and the adapted covari-
ances are similarly denoted. Note that we have switched to the sym-
metrized form of the KL divergence,Ds().

A closed-form formula for the symmetric divergence between
Gaussian distributions is given by

Ds(N (·;ma,i,Σi)‖N (·;mb,i,Σi)) =

0.5 tr(Σ−1

b,i Σa,i) + 0.5 tr(Σ−1

b,i Σa,i) − n

+ 0.5(ma,i − mb,i)
t

`

Σ
−1

a,i + Σ
−1

b,i

´

(ma,i − mb,i);

(5)

wheretr(·) is the trace, andn is the dimension of the feature space.
At this point, it is tempting to attempt to use (4) with (5) in

an SVM framework. The difficulty is that the combination is not
a kernel-induced distance. Therefore, in prior work, two additional
approximations were performed. We assume thatΣa,i andΣb,i are
diagonal. The first additional approximation was to expand the trace
terms in a Taylor expansion,

Ds(N (·;ma,i, Σi)‖N (·;mb,i,Σi)) ≈

0.5 tr((Σa,i − Σb,i)Σ
−2

i (Σa,i − Σb,i))

+ (ma,i − mb,i)
t

`

0.5Σ−1

a,i + 0.5Σ−1

b,i

´

(ma,i − mb,i).

(6)

A second additional approximation was,

0.5Σ−1

a,i + 0.5Σ−1

b,i ≈ Σ
−1

i (7)

whereΣi is the covariance from the UBM, see (2). Performing this
operation resulted in the distance,

Ds(ga‖gb) ≈d2(xa,xb)

=

N
X

i=1

λi

ˆ

(ma,i − mb,i)
t
Σ

−1

i (ma,i −mb,i)

+ 0.5 tr((Σa,i − Σb,i)Σ
−2

i (Σa,i −Σb,i)) − n
˜

(8)

and the corresponding covariance kernel in [5],

K(xa, xb) =

N
X

i=1

λim
t
a,iΣ

−1

i mb,i +

N
X

i=1

λi

2
tr

`

Σa,iΣ
−2

i Σb,i

´

.

(9)

wherexa is the supervector of means and covariances forga.
To summarize, applying SVMs to language recognition involves

several steps. To train language models, the mean and covariance pa-
rameters of a UBM are MAP adapted to each utterance in the training
corpus. Then, an SVM is trained per language using the kernel(9).
For standard SVM scoring, the input test utterance is used toadapt a
UBM to obtain mean and covariance parameters and these are input
to the scoring equation (1).

3. MODEL PUSHING

Instead of using standard SVM scoring (1), several researchers have
explored the possibility of transferring the SVM parameters back to
a GMM model and using standard log likelihood ratio scoring [5, 4].
The challenge in this paradigm is to understand the exact role of the
SVM parameters in GMM scoring.

The approach presented in [5] was heuristically motivated.The
starting point is to observe that the standard kernel scoring in (1) can
be split as follows,

f(x) =
X

{i|αi>0}

αiK(x,xi) −
X

{i|αi<0}

αiK(x,xi) + d. (10)

The two terms on the right hand side resemble a log likelihoodratio
between an in-class and out-of-class model. Since we are working
with a symmetric linear kernel, we can write (10) as

f(x) = cK(xp,x) − cK(xm,x) + d. (11)

where

xp =
1

c

X

{i|αi>0}

αixi, xm = −
1

c

X

{i|αi<0}

αixi (12)

and
c =

X

{i|αi>0}

αi. (13)

For the kernel (9), the vectorsxp, xm, etc., will be supervectors of
stacked means and covariances.

A natural observation is to view the vectors,xp andxm, as rep-
resentations of in-class and out-of-class data and incorporate them
into GMM models. Since the process in (12) is a convex combina-
tion of supervectors, it produces a valid GMM parameter instance;
i.e., the covariances are positive. Thus, we can transferxp to a GMM
model,gp(y). A similar process yields a negative model,gm(y).

Intuitively, the combination forxp in (12) is on the hyperplane
boundary that supports the in-class data. A similar statement can
be made forxm. Thus, the resulting pushed GMMs are modeling
the location of the positive and negative boundaries of the classes.
Another interesting observation is that this method weights data
unequally—this contrasts to a standard EM technique that would
weight these statistics equally.

Scoring with these GMM models is straightforward. For an in-
put set of vectors,{yi}, we produce a log likelihood ratio,

score =
X

i

log (gp(yi)) −
X

i

log (gm(yi)) . (14)

4. RELATING MODEL PUSHING TO GMM SCORING

We define the cross-entropy between two distributions as

H(p, q) = −

Z

p(x) log q(x)dx. (15)

We also denote the entropy ofp(x) by H(p). Note that

D(p‖q) = H(p, q) − H(p). (16)

Suppose we have a test utterance with feature vectors,
y1, . . . ,ym and we adapt a GMM UBM to this utterance to produce



a GMM, gy(y). We can rewrite the standard SVM scoring equa-
tion (1) in terms of distances. That is, ifd(xy,xz) is the distance
in (8), then

d2(xp,xy) − d2(xm,xy)

= K(xp,xp) − 2K(xp, xy) + K(xy ,xy)

− K(xm,xm) + 2K(xm,xy) − K(xy, xy)

= −2 (K(xp,xy) − K(xm,xy)) + d1.

(17)

Now combining the SVM scoring equation (11) and (17) yields,

f(xy) = c1(d
2(xp,xy) − d2(xm, xy)) + d2. (18)

Note that the constantd2 does not depend ongy. Also, in the sepa-
rable class case,c1 = −c/2 andd2 = 0 wherec is given in (13).

Now, we can use the fact that

d2(xy, xz) ≈ Ds(gy‖gz) (19)

and the SVM distance score (18) to give

f(xy) ≈ c1(Ds(gy‖gp) − Ds(gy‖gm)) + d2 (20)

The next connection that we make is that cross-entropy can be
approximated using the law of large numbers. That is,

if yi ∼ gy(y), then (21)

H(gy, gp) − H(gy, gm) = lim
M→∞

−1

M

M
X

i=1

log

„

gp(yi)

gm(yi)

«

(22)

where∼ indicates “distributed as.” That is, likelihood scoring isthe
same as cross-entropy.

Also, note that

D(gy , gp) − D(gy , gm) = H(gy, gp) − H(gy, gm) (23)

so

D(gy, gp) − D(gy, gm) = lim
M→∞

−1

M

M
X

i=1

log

„

gp(yi)

gm(yi)

«

. (24)

We additionally assume that

Ds(gy, gp) − Ds(gy, gm) ≈ D(gy, gp) − D(gy, gm). (25)

Putting (20), (24), and (25) together gives us our proposed relation
between SVM scoring and GMM scoring,

f(xy) ≈
−c1

M

M
X

i=1

log

„

gp(yi)

gm(yi)

«

+ d2 (26)

for largeM . The approximation (25) is difficult to demonstrate an-
alytically, and we will show through experiments in the nextsection
the validity of the method.

As an alternate approximation, we also derived another relation
based on (20),

f(xy) ≈ c1(Hs(gy‖gp) − Hs(gy‖gm)) + d3 (27)

whered3 does not depend upongy. This approximation (27) is com-
pelling, but to use GMM scoring to approximate this quantity, we
would have to perform standard scoring (26) as well as performing
Monte-Carlo generation of points and GMM scoring usinggp and
gm. We leave exploration of this method to future work.

The distance interpretation of SVM scoring in (18) and (20) has
a compelling geometric interpretation. For a given test distribution,
gy, we find the distance to thegp distribution which is on the positive
class boundary and the distance to thegm distribution which is on
the negative class boundary. The SVM score is based on which of
these distance is smaller; i.e., which distribution,gp or gm, is closer
to gy .

5. EXPERIMENTS
Experiments were performed on development and evaluation sets
from the NIST 2007 LRE 14 language closed-set evaluation task [6].
Target languages include Arabic, Bengali, Chinese, English, Farsi,
German, Hindustani, Japanese, Korean, Russian, Spanish, Tamil,
Thai, and Vietnamese.

Training data was primarily from Callfriend and Callhome; al-
though, for languages such as Arabic, data was also used fromFisher
and Mixer. Our development set, LRE07 DEV, included approxi-
mately6000 utterances per duration for durations of3, 10, and30
seconds. The development set included all trials from NIST LRE
2005. Additional data was supplied by LDC for Arabic, Bengali,
Thai, and Chinese dialects. The criterion for evaluation used is
pooled EER; we used the priors of languages in the test set so that
each language had an equal contribution to the EER.

For feature extraction, SDCC features were used with a 7-1-3-
7 parameterization [1]. We also included cepstral coefficients for
a total of56 features per frame at100 frames per second. Addi-
tional processing included RASTA, 0/1 feature normalization, and
VTLN. Finally, fNAP features [6] were produced with a corank128,
a mixture order of256, and variation from the target language as the
nuisance variable.

For a language and gender independent GMM UBM, we trained
a512 mixture GMM using all of the training data with5 iterations of
EM adapting all parameters—means, mixture weights, and diagonal
covariances. We implemented SVMs with the mean plus covariance
kernel given in (9). We also pushed these models back to GMM
models for scoring as described in Section 3.

The resulting system is used for exploring the approximations
presented in Section 3. The basic performance of the systemsis
given in Table 1. In the table, scores were processed scores were
processed using a “max” log likelihood ratio,

s′j = sj − max
i6=j

sj . (28)

Also, a backend (BE) was used [8] for calibration. BE transforms
scores using linear discriminant analysis and models the resulting
vector using a tied covariance Gaussian per language. Note that
GMM scoring performs better for both the max transformationand
BE. This resulting system is very competitive with other NIST 2007
LRE systems.

Our first set of experiments was to explore the approxima-
tions (6), (7) to the KL divergence for a single Gaussian. We used
random Gaussian mixture components from our LID data and cal-
culated actual values versus approximated values. The meanof the

Table 1. Performance for the base system on the NIST 2007 LRE
30 second closed set task for 14 languages.

System LRE07 EER (%)
SVM, Max 3.25

SVM, GMM score, Max 2.54
SVM, BE 2.53

SVM, GMM score, BE 1.70



Table 2. Performance of various KL approximations on NIST LRE
data for a single Gaussian mixture component

Approximation Mean of the Relative Error (%)
KL Approx 1 (6) 0.08
KL Approx 2 (7) 0.14
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Fig. 1. MC Ds and approximation on NIST LRE data

relative error,|actual − approx|/|actual| between the actual and
approximate values is shown in Table 2. The table shows that our
KL approximations have about1 − 2 digits of accuracy. The table
shows that the covariance by the UBM in (6) degrades accuracy.

In our next set of experiments, we performed a comparison
of the full approximation to the KL divergence (8) to a Monte-
Carlo (MC) approximation of the exact symmetric KL divergence
Ds(gy‖gz). For the distances, we used mixture models adapted
from the UBM on our LID experimental data. For these experiments,
approximately100 samples per mixture component were used in the
MC runs. This number of samples was found to produce reasonable
accuracy. A scatter plot of the approximation and the corresponding
MC Ds is shown in Figure 1. Note from the figure that the general
trend is well established and reasonable between the two values.

In the next set of experiments, we explored the approximation
between symmetric and non-symmetric KL divergence differences,
see (25) and Figure 2. We used LID data again with the same MC
setup. The figure justifies our approximation.

As a final set of experiments, we performed both GMM scoring
and SVM scoring on LID data. A plot of the GMM score for various
trials for a fixed model is shown in Figure 3. The figure shows the
relation between the two methods and illustrates our final approxi-
mation (26).

6. CONCLUSIONS

We have demonstrated in this paper a framework for understand-
ing the relation between KL-based SVM systems and log-likelihood
ratio GMM scoring. Our paper justified prior model pushing tech-
niques for transferring SVM parameters to a GMM. Through various
MC simulations were able to demonstrate that the approximations
were reasonable and justified the theoretical development.Further
work is necessary to understand the source of degradations in the
approximations. This work could potentially explain why GMM
scoring and SVM scoring have different language recognition per-
formance.

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

6

D(g
x
 , g

p
) − D(g

x
 , g

m
)

D
s(g

x ||
 g

p) 
−

 D
s(g

x ||
 g

m
)

Fig. 2. Comparison of MCDs(gy‖gp) − Ds(gy‖p) versus MC
D(gy‖gp) − D(gy‖gp), see (25)

−0.1 −0.05 0 0.05 0.1
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

GMM Score

S
V

M
 S

co
re

Fig. 3. Comparison of GMM score and SVM score for Arabic target
model. A linear fit is included to show the trend.

7. REFERENCES

[1] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J.Greene, D. A.
Reynolds, and J. R. Deller, Jr., “Approaches to language identification
using Gaussian mixture models and shifted delta cepstral features,” in
Proc. ICSLP, 2002, pp. 89–92.

[2] W. M. Campbell, P. A. Torres-Carrasquillo, and D. A. Reynolds, “Lan-
guage recognition with support vector machines,” inProc. of Odyssey
04, 2004, pp. 285–288.

[3] Lukas Burget, Pavel Matejka, and Jan Cernocky, “Discriminative train-
ing techniques for acoustic language identification,” inProceedings of
ICASSP, 2006, pp. 209–212.

[4] Fabio Castaldo, Daniele Colibro, Emanuele Dalmasso, Pietro Laface,
and Claudio Vair, “Acoustic language identification using fast discrimi-
native training,” inProc. Interspeech, 2007.

[5] W. M. Campbell, “A covariance kernel for SVM language recognition,”
in Proceedings of ICASSP, 2008, pp. 4141–4144.

[6] W. M. Campbell, D. E. Sturim, P. Torres-Carrasquillo, and D. A.
Reynolds, “A comparison of subspace feature-domain methods for lan-
guage recognition,” inProc. Interspeech, 2008.

[7] C. Vair, D. Colibro, F. Castaldo, E. Dalmasso, and P. Laface, “Channel
factors compensation in model and feature domain for speaker recogni-
tion,” in Proc. IEEE Odyssey, 2006.

[8] W. M. Campbell, T. Gleason, J. Navratil, D. Reynolds, W. Shen,
E. Singer, and P. Torres-Carrasquillo, “Advanced languagerecogni-
tion using cepstra and phonotactics: MITLL system performance on the
NIST 2005 language recognition evaluation,” inProc. IEEE Odyssey,
2006.


