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Abstract

A fault-tolerant system tolerates internal failures while preserving desirable overall behavior.
Fault tolerance is necessary in life-critical or inaccessible applications, and also enables
the design of reliable systems out of uunreliable, less expensive components. This thesis
discusses fault tolerance in dynamic systems, such as finite-state controllers or computer
simulations, whose internal state influences their future behavior. Modular redundancy
(system replication) and other traditional techniques for fault tolerance are expensive, and
rely heavily — particularly in the case of dynamic systems operating over extended time
horizons — on the assumption that the error-correcting mecharism (e.g., voting) is fault-
free.

The thesis develops a systematic methodology for adding structured redundancy to a
dynamic system and introducing associated fault tolerance. Our approach exposes a wide
range of possibilities between no redundancy and full replication. Assuming that the error-
correcting mechanism is fault-free, we parameterize the different possibilities in various
settings, including algebraic machines, linear dynamic systems and Petri nets. By adopting
specific error models and, in some cases, by making explicit connections with hardware
implementations, we demonstrate how the redundant systems can be designed to allow
detection /correction of a fixed number of failures. We do not explicitly address optimization
criteria that could be used in choosing among different redundant implementations, but our
examples illustrate how such criteria can be investigated in future work.

The last part of the thesis relaxes the traditional assumption that error-correction be
fault-free. We use unreliable system replicas and unreliable voters to construct redundant
dynamic systems that evolve in time with low probability of failure. Our approach general-
izes modular redundancy by using distributed voting schemes. Combining these techniques
with low-complexity error-correcting coding, we are able to efficiently protect identical un-
reliable linear finite-state machines that operate in parallel on distinct input sequences. The
approach requires only a constant amount of redundant hardware per machine to achieve a
probability of failure that remains below any pre-specified bound over any given finite time
interval.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering
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Chapter 1

Introduction and Background

1.1 Definitions and Motivation

A fault-tolerant system tolerates internal failures and prevents them from unacceptably
corrupting its overall behavior, output or final result. Fault tolerance is motivated primarily
by applications that require high reliability (such as life-critical medical equipment, defense
systems and aircraft controllers), or by systems that operate in remote locations where
monitoring and repair may be difficult or even impossible (as in the case of space missions
and remote sensors), [5, 85]. In addition, fault tolerance is desirable because it relaxes
design/manufacturing specifications (leading for example to yield enhancement in integrated
circuits, [59, 63, 80]), and also because it enables new technologies and the construction
of reliable systems out of unreliable (possibly fast and inexpensive) components. As the
complexity of computational and signal processing systems increases, their vulnerability to
failures becomes higher, making fault tolerance necessary rather than simply desirable, [90];
the current trends towards higher clock speed and lower power consumption aggravate this

problem even more.

Fault tolerance has been addressed in a variety of settings. The most systematic treat-
ment has been for the case of reliable digital transmission through unreliable communication
links and has resulted in error-correcting coding techniques that efficiently protect against

channel noise, [95, 96, 38, 81, 11, 111]. Fault tolerance has also been used to protect com-
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putational circuits against hardware failures. These failures! can be either permanent or
transient: permanent failures could be due to manufacturing defects, irreversible physical
damage, or stuck-at faults, whereas transient? failures could be due to noise, absorption of
alpha particles or other radiation, electromagnetic interference, or environmental factors.
Techniques for fault tolerance have also been applied at a higher level to protect special-
purpose systems against a fixed number of “functional” failures, which could be hardware,
software or other; these ideas were introduced within the context of algorithm-based fault
tolerance techniques (see [50, 93]).

In this thesis we explore fault tolerance in dynamic systems:

Definition 1.1 A dynamic (or state-space) system is a system that evolves in time accord-
ing to some internal state. More specifically, the state of the system at time step t, denoted
by q[t], together with the input at time step t, denoted by z[t], completely deiermine the

system’s nezt state according to a state evolution equation

qlt + 1] = 5(q[t], z[2]) -

The output y[t] of the system at time step t is based on the corresponding state and input,

and is captured by the output equation

Examples of dynamic systems include finite-state machines, digital filters, convolutional
encoders, decoders, and algorithms or simulations running on a computer architecture over
several time steps. This thesis will focus on failures that cause an unreliable dynamic
system to take a transition to an incorrect state3. Depending on the underlying system
and its actual implementation, these failures can be permanent or transient, and hardware
or software. Due to the nature of dynamic systems, the effects of a state transition failure

may last over several time steps; state corruption at a particular time step generally leads

For more details on hardware failures see [31, 109] and references therein.

2A transient or temporal failure is a failure whose cause (but aot necessarily the effect) appears only
temporarily.

3A study of this error model in the context of sequential VLSI circuits appears in [24].
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to the corruption of the overall behavior and output at future time steps.

To understand the severity of the problem, consider the following situation: assume
that an unreliable dynamic system (such as a finite-state machine that is constructed out of
failure-prone gates) is subject to transient failures with a probability of making an incorrect
transition (on any input at any given time step) that is fixed at p;. If failures at different
time steps are independent, then the probability that the system follows the correct state
trajectory for L consecutive time steps is (1 — ps)” and goes to zero exponentially with L.
In general, the probability that we are in the correct state after L steps is also low?. This
means that the output of the system at time step L will be erroneous with high probability
(because it is calculated based on an erroneous state). Therefore, our first priority (and the
topic of this thesis work) is to ensure that the system follows the correct state trajectory.

Before we discuss our approach for constructing fault-tolerant dynamic systems, we de-
scribe in more detail previous work on fault-tolerant computational circuits. The distinction
between dynamic systems and computational circuits is that the former evolve in time ac-
cording to their internal state (memory), whereas the latter have no internal state and no

evolution with respect to time.

1.2 Background: Fault Tolerance in Computatioral Systems

A necessary condition for a computational system te be fault-tolerant is that it exhibit
redundancy. “Structured redundancy” (that is, redundancy that has been intentionaily in-
troduced in some systematic way) allows a computational system to distinguish between
valid and invalid results and, if possible, perform the necessary error-correction procedures.
Structured redundancy can also be used to guarantee acceptably degraded performance de-
spite failures. A well-designed fault-tolerant system makes efficient use of resources by
adding redundancy in those parts of the system that are more liable to failures than others,
and adding the redundancy in ways that are adapted to the operation of the system.

The traditional way of designing fault-tolerant computational systems that cope with

4The probability that we are in the correct state after L steps depends on the structure of the particular
finite-state machine, on the error model and on whether multiple failures may lead to a correct state. The
argument can be made more precise if we choose a particular structure for our machine (consider for example
a linear feedback shifi register with failures that cause each bit in its state vector to flip with probability p).
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hardware failures is to use N-modular hardware redundancy, [107]. By replicating the
original system N times, we compute the desired function multiple times in parallel. The
outputs of all replicas are compared and the final result is chosen based on what the ma-
jority of them agrees upon. Modular redundancy has been the primary methodology for
fault-tolerant system design because it is universally applicable® and because it effectively
decouples system design from fault tolerance design. Modular redundancy, however, is
inherently expensive and inefficient due to system replication.

Research in communications has extensively explored alternative, more efficient ways
of utilizing redundancy for achieving reliable digital transmission through an imperfect
(“noisy”) channel. In his seminal work [95, 96], Shannon showed that, contrary to the
common perception of the time, one can send multiple bits encoded in a way that achieves
arbitrarily low probability of error per bit with a constant amount of redundancy (per
bit). This result generated a variety of subsequent work in information and coding theory,
[38, 81, 11, 111].

In more complex systems that involve nct only simple transmission of the data but also
some simple processing on the data (e.g., boolean circuits or signal processing systems with
no evolution over time) the application of such coding ideas becomes more challenging. In
addition, as pointed out in [5, 83], there have traditionally been two different philosophies

in terms of dealing with failures in computational systems:

¢ One school of thought designs systems in a way that allows detection and/or correc-
tion of a fized number of failures. For example, numerous systems have been designed
with the capability to detect/correct single failures assuming that the error detect-
ing/correcting mechanisms are fault-free. (Triple modular redundancy, which protects
against a single failure in any one subsystem but not in the voter, is perhaps the
most common case.) These approaches are based on the premise that failures are rare
(therefore, protecting against a fixed number of failures is good enough®) and that the
error-correcting mechanism is much simpler than the actual system implementation.

This approach has resulted in a lot of practical fault-tolerant systems, particularly for

5 A number of commercial and other systems have used modular redundancy techniques, [6, 45]; & com-
prehensive list can be found in [8].

SFor example, if failures are independent and happen with probability p << 1, then the probability of
two simultaneous failures is of the order of p?, which is very small compared to p.
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special-purpose tasks, where the structure of the underlying algorithm and/or hard-
ware configuration can be exploited in order to minimize the hardware overhead, or
the complexity of the redundant system and the corresponding correcting mechanism.
Such ideas have been explored in sorting networks [25, 102, 64], 2-D systolic arrays
for parallel matrix multiplication [50, 56], other matrix operations [1, 23], convolution
using the fast Fourier transform [10], and many others. Similar principles prevail in
the design of self-checking systems, [88, 84]. In these systems we are interested in
ensuring that any combination of a fixed number of failures (including failures in the

error-detecting mechanism) will be detected.

e The second approach to fault tolerance focuses on building reliable systems out of
unreliable components. As we add redundancy into a fault-tolerant system, the prob-
ability of failure per component remains constant. Thus, the larger the system, the
more failures it has to tolerate, but the more flexibility we have in using the added
redundancy /functionality to ensure that, with high probability, the redundant system
will have the desirable behavior. Work in this direction started with von Neumann
[107], and has been continued by many others [112, 106], mostly in the context of

fault-tolerant boolean circuits (see [83] for a comprehensive list).

The idea of adding a minimal amount of redundancy in order to detect/correct a (pre-
specified) number of failures (i.e., the first of the two approaches described above) has
been quite successful in cases where one can exploit structural features of a computation
or an algorithm and introduce “analytical redundancy” in a way that offers more efficient
fault coverage than modular redundancy (at the cost of narrower applicability and harder
design). Work in this direction includes arithmetic codes, algorithm-based fault tolerance

and algebraic techniques. We describe these ideas in more detail below:

Arithmetic Codes: Arithmetic codes are error-correcting codes with properties that re-
main invariant ander the arithmetic operations of interest, [87, 88]. They are typically
used as shown in Figure 1-1 (which is drawn for the case of two operands, but more
operands are handled in the same way). We first add “analytical redundancy” into
the representation of the data by using suitable encodings, denoted by the mappings

¢1 and ¢ in the figure. The desired original computation r = g; o g, is then replaced
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g1 Encoder h1=(g1)

¢ Computatlonal Unit
r
a —_— G —
g2 Encoder
. Error Decoder
2 h2=¢(g2) Detector/

Faults Corrector

Figure 1-1: Fault tolerance using ar arithmetic coding scheme.

by the modified computation ¢ on the encoded data. Under fault-free conditions, this
modified operation produces p = ¢1(¢1) © ¢2(g2), which resuits in r when decoded
through the mapping o (i.e., r = o(p)). However, due to the possible presence of
failures, the result of the redundant computation could be faulty, ps instead of p.
The redundancy in py is subsequently used to perform error detection and correction,
denoted in the figure by the mapping «. Note that the detector/corrector a has no
knowledge of the inputs and bases its decision solely on py. The output p of the
error detector and corrector is decoded through the use of the decoding mapping o.
Under fault-free conditions or with correctable failures, p equals p, and the final result
7 equals r. A common assumption in the model of Figure 1-1 is that the error de-
tector/corrector is fault-free. This assumption is reasonable if the implementation of
the decoder/corrector is simpler than the implementation of the computational unit
(or if correcting occurs rarely). Another inherent assumption is that no failure takes
place in the decoder unit; this assumption is in some sense inevitable: no matter how
much redundancy we add, the output of a system will be faulty if the device that is
supposed to provide the output fails (i.e., if there is a failure in the very last stage of
the computational circuit/system). One way to avoid this problem is to assume that
the output is provided to the user in an encoded form which can be correctly decoded
by a fault-free final stage. In the modular redundancy case, for example, the output
could be considered correct if the majority of the systems agree on the correct output

(since a fault-free majority voter is then guaranteed to provide the correct output).
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Algorithm-Based Fault Tolerance: More sophisticated coding techniques, known as
Algorithm-Based Fault Tolerance (ABFT), were introduced by Abraham and cowork-
ers [50, 56, 57, 74], starting in 1984. These schemes usually deal with arrays of
real/complex data in concurrent multiprocessor systems. The classic example of
ABFT is in the protection of M xM matrix multiplication on a 2-D systolic array,
[50]. A variety of computationally intensive algorithms, such as other matrix compu-
tations [50, 56], FFT computational networks [57], and digital convolution [10], have

since been adapted? to the requirements of ABFT.

As described in [56], there are three critical steps involved in ABFT schemes: (i)
encoding the input data for the algorithm (just as for arithmetic coding), (ii) re-
formulating the original algorithm so that it can operate on the encoded data and
produce decodable results, and (iii) distributing the computational tasks among the
different subsystems of the failure-prone system so that any failures occurring within
these subsystems can be detected and, hopefully, corrected. The above three steps
are evident in the ABFT scheme for matrix multiplication that was presented in [50].
The encoding step involves adding an extra “checksum” row/column to the original
M x M matrices. The redundant operaticn involves multiplication of an (M +1) x M
matrix by an M X (M +1) matrix. When using a 2-D systolic array to perform matrix
multiplication, we manage to distribute both the computational tasks and the possible

failures in a way that allows efficient failure detection, location and correction.

Algebraic Approaches: The most important cliallenge in both arithmetic coding and
ABFT implementations is the recognition of structure in an algorithm that is amenable
to the introduction of redundancy. A step towards providing a systematic approach
for recognition and exploitation of such special structure was made for the case of com-
putations that occur in a group or in a semigroup, [8, 9, 43, 44]. The key observation
is that the desired analytical redundancy can be introduced by homomorphic embed-

ding into a larger algebraic structure (group or semigroup). The approach extends

7 As mentioned earlier, this approach attempts to protect against a pre-specified maximum number of
failures assuming fault-free error-correction. Some researchers have actually analyzed the performance of
these schemes when the probability of failure in each component remains constant, [12, 103]. As expected,
the scheme performs well if the probakbility of failure per component is very small.

21



to semirings, rings, fields, modules and vector spaces (i.e., algebraic structures that
have the underlying characteristics of a semigroup or a group). A relatively extensive
set of computational tasks can therefore be modeled using this framework. We give a

brief overview of this approach in the beginning of Chapter 2.

The above mentioned approaches were mostly tailored for computational systems (sys-
tems without internal state) and assumed that error-correction is fault-free. As mentioned
earlier, this assumption may be tolerable if the complexity of the correcting mechanism
is considerably less than the complexity of the state evolution mechanism. Also, a fault-
free output stage is in some sense inevitable: if all components may fail then, no matter
how much redundancy we add, the output of a system will be faulty if the device that is
supposed to provide the output fails (i.e., if there is a failure in the very last stage of the
computation /circuit).

A significant aspect of any work on fault tolerance is the development of an appropriate
error model. The error model describes the effect of failures on the output of a computational
system, effectively allowing the mathematical study of fault tolerance. The error model
does not have to mimic the actual fault mechanism; for example, we can model the error
due to a failure in a multiplier as additive, or the error due to a failure in an adder as
multiplicative®. Efficient error models need to be close to reality, yet general enough to
allow algebraic or algorithmic manipulation. If a single hardware failure manifests itself as
an unmanageable number of errors in the analytical representation, then the performance

of our error detection/correction scheme will be unnecessarily complicated.

1.3 Fault Tolerance in Dynamic Systems

Traditionally, fault tolerance in dynamic systems has used modular redundancy. The tech-
nique is based on having replicas of the unreliable dynamic system, each initialized at the
same state and supplied with the same inputs. Each system goes through the same sequence

of states unless failures in the state transition mechanism cause deviations from this correct

8 The faulty result r; of a real-rumber multiplier can always be modeled in an additive error fashion as
r§ = r -+ e where r is the correct result and e is the additive error that has taken place. Similarly for the
multiplicative representation of a failure in an adder (if r # 0).
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behavior. If we ensure that failures in the different system replicas are independent (e.g., by
requiring that they are hardware- and/or software-independent), then the majority of the
replicas at a certain time step will be in the correct state with high probability; an external
voting mechanism can then decide what the correct state is using a majority voting rule.

If we revisit the toy example of the unreliable dynamic system that makes a transition
to an incorrect next state with probability ps (independently at different time steps), we see
that the use of majority voting at the end of L time steps may be highly unsuccessful: after
a system replica operates (without error-correction) for L time steps, the probability that
it has followed the correct sequence of states is (1 — ps)L; in fact, at time step L, a system
replica may be in an incorrect state with a prohibitively high probability® (for example, if an
incorrect state is more likely to be reached than the correct one, then a voting mechanism
will be unable to decide what the correct state/result is, regardless of how many times we
replicate the system). One solution could be to correct the state of our systems at the end
of each time step!®. This is shown in Figure 1-2: at the end of ¢ach time step, the voter
decides what the correct state is, based on a majority voting rule; this “corrected” state is
then fed back to all systems.

Another possibility could be to let the systems evolve for several time steps and then
perform error-correction using a mechanism that is more complicated than a simple voter.
For example, one could look at the overall state evolution (not just the final states) of all
system replicas and then make an educated decision on what the correct state sequence is.
A possible concern about this approach is that, by allowing the system to evolve incorrectly
for several time steps, we may compromise system performance in the intervals between
error-correction. We do not explore such alternatives in this thesis, mainly because we
eventually allow failures in the error-correcting mechanism apd and this is a rich issue even
within the simpler setting.

The approach in Figure 1-2, more generally known as concurrent error-correction, has

two major drawbacks:

9Given an initial state and a length-L input sequence, one can in principle calculate the probability of
being in a certain state after L steps; the overall probability distribution will depend on the structure of
the particular dynamic system, on the error model and on whether multiple failures may lead to the correct
state.

1%We do not necessarily have to feed back the correct state at the end of each time step; if we feed it back
after 7 steps, however, we need to ensure that (1 — ps)” does not become too small.
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Figure 1-2: Triple modular redundancy with correcting feedback.

1. System replication may be unnecessarily expensive. In fact, this was the original
motivation for arithmetic coding and ABFT schemes (namely the development of
fault-tolerant computational systems that make better use of redundancy by taking

into consideration the algorithmic structure of a given computational task).

2. The scheme relies heavily on the assumption that the voter is fault-free. If the voter
also fails independently between time steps (e.g., with probability p, a voter outputs a
state that is different from the state at which the majority of the systems agree), then
we face a problem: after L time steps the probability that the modular redundancy
scheme performs correctly is at best (1 — p,)¥ (ignoring the probability that a failure
in the voter may accidentally result in feeding back the correct state in cases where
most systems are in an incorrect state). Similarly, the probabililty that the majority
of the replicas is in the correct state after L time steps is also very low. Clearly, given
unreliable voters there appears to be a limit on the number of time steps for which
we can guarantee reliable evolution using a simple replication scheme. Moreover, in
a dynamic system setting, failures in the voting mechanism become more significant
as we increase the number of time steps for which the fault-tolerant system operates.
Therefore, even if p, is significantly smaller than p, (e.g., because the system is more
complex than the voter), the probability that the modular redundancy scheme per-

forms correctly is bounded above by (1—p,)r and will eventually become unacceptably
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small for large enough L.

In this thesis we deal with both of the above problems. We initially aim to protect against
a pre-specified number of failures using a fault-free correcting mechanism. To achieve this
while avoiding replication and while using the least amount of redundancy, we introduce the
concept of a redundant implementation, that is, a version of the dynamic system which is
redundant and follows a restricted state evolution. Redundant implementations range from
no redundancy to full replication and give us a way of characterizing and parameterizing
constructions that are appropriate for fault tolerance. The thesis demonstrates and exploits
certain flexibilities that exist when constructing redundant implementations. We make no
systematic attempt to choose from among these different redundant implementations ones
that are optimal according to a particular criterion; our examples, however, illustrate how
such questions may be posed in future work.

We also address the case when failures in each component happen with corstant proba-
bility, independently between different components and independently between time steps.
This problem is much harder, as we can no longer guarantee that the fault-tolerant sys-
tem will be in the right state at the end of each time step. We introduce techniques that
deal with transient failures in the error-correcting mechanism by developing and analyz-
ing the performance of a distributed voting scheme. Qur approach uses redundancy in a
way that ensures that, with high probability, the fault-tolerant system will be within a set
of states that represent (and can be decoded to) the actual state; the goal then becomes
to make eflicient use of redundancy while achieving any given probability of failure. For
example, by increasing redundancy we can increase the probability that a fault-tolerant
system follows the correct state trajectory for a certain time interval. Our analysis is very
general and provides a better understanding of the tradeoffs that are invelved when design-
ing fault-tolerant systems out of unreliable components. These include constraints on the
probabilities of failure in the system/corrector, the length of operation and the required

amount of redundancy.

1.3.1 Redundant Implementation

In order to avoid replication when constructing fault-tolerant dynamic systems, we replace

the original system with a larger, redundant system that preserves the state, evolution and
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properties of the original system — perhaps in some encoded form. We impose restrictions
on the set of states that are allowed in the larger dynamic system, so that an external mech-
anism can perform error detection and correction by identifying and analyzing violations of
these restrictions. The larger dynamic system is called a redundant implementation and is
part of the overall fault-tolerant structure shown in Figure 1-3: the input to the redundant
implementation at time step t, denoted by e(z;[t]), is an encoded version of the input z[t]
to the original system; furthermore, at any given time step t, the state g [t] of the original
dynamic system can be recovered from the corresponding state g [t] of the redundant sys-
tem through a decoding mapping £ (i.e., ¢s[t] = £(gn[t])). Note that we require the error
detection/correction procedure to be input-independent, so that we ensure the next-state

function is not evaluated in the error-correcting circuit.

The following deiinition formalizes the notion of a redundant implementation for a dy-

namic system:

Definition 1.2 Let S be a dynamic system with staie set Qs, input set Xgs, initial siate

¢s[0] and state evolution

qs[t + 1] = JS(QS[t]') :Es[t]) g

where gs[-] € Qs, =5[] € Xs and b5 is the next-state function. A dynamic system H with
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state set Qy, input set Xy, initial state gx[0] and state evolution equation

gult + 1] = S (qn[t], e(z,[t]))

(where e : Xg — Xy is an injective input encoding mapping) i¢s a redundant implemen-
tation for S if it concurrently simulates S in the following sense: there exists one-to-one

state decoding mapping £ : Q% — Qs such that

£(83 (€7 (gs[t]), e(=[t])) = ds (gs[t], a[t])

Jor all ¢s[] € Qs, 5[] € Xs. The set Q) = £71(Qs) C Qu is called the subset of valid

states in H.

If we initialize the redundant implementation # to state g,[0] = £71(g,[0]) and encode
the input z,[7] using the encoding mapping e, the state of S at all discrete-time steps
T > 0 can be recovered from the state of H through the decoding mapping £ (under fault-
free conditions at least); this can be proved easily by induction. Knowledge of the subset
of valid states allows an external error detecting/correcting mechanism to handle failures.
Any failures that cause transitions to invalid states (i.e., states outside the subset Q% =
{1 =0"1(gs[']) | V ¢5[] € Qs}) will be detected and perhaps corrected.

During each time step, the redundant implementation H evolves to a (possibly cor-
rupved) next state. We then perform error detection/correction by checking whether the
resulting state is in the subset of valid states @, and by making appropriate corrections
when necessary. When we apply this general approach to specific dynamic systems, we
manage to parameterize different redundant implementations, develop appropriate error
models, make connections with hardware and systematically devise schemes capable of de-
tecting/correcting a fixed number of failures.

Note that our definition of a redundant implementation does not specify next-state
transitions when the redundant system is in a state outside the set of valid states!!. Due
to this flexibility, there are multiple different redundant implementaticns for a given error

detecting/correcting scheme. In many cases we will be able to systematically characterize

11 This issue becomes very important when the error detector/corrector is not fault-free.
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and exploit this flexibility to our advantage (e.g., to minimize hardware or to perform error

detection/correction periodically).

1.3.2 Error-Correction

In Chapter 6 we describe how to handle transient failures!? in both the redundant imple-
mentation and the error-correcting mechanism. We assume that components in our systems
can suffer transient failures (more specifically, we assume that they can fail independently
between components and between time steps) and describe implementations that operate
with an arbitrarily small probability of failure for a specified (finite) number of steps. In par-
ticular, given an unreliable dynamic system (e.g., one that takes an incorrect state transition
with probability p, at any given time step) and unreliabie voters (that fail with probability
Pv), we describe ways to guarantee that the state evolution of a redundant fault-tolerant
implementation will be correct with high probability for any specified (finite) number of
steps. Our scheme is a variation of modular redundancy and is based on usirg a distributed
set of voters. We show that, under this very general approach, there is a logarithmic trade-
off between the number of time steps and the amount of redundancy. In cther words, if we
warnt to maintain 2 given prebability of failure while doubling the number of time steps for
which our system operates, we need to increase the amount of redundancy by a constant
amount. For the case of linear finite-state machines, we show that there are efficient ways
of protecting many identical machines that operate in parallel on distinct input sequences.
In this special setting, our approach can achieve a low probability of failure for any finite
time interval using only a constant amount of redundancy per machine.

Our techniques relate well to existing techniques that have been used in the context of
“reliable computational circuits” or “stable memories”. As in these cases, our approach
can provide fault tolerance to 2 dynamic system (that is, low probability of failure over any
pre-specified finite time interval) at the expense of system replication. More specifically,

given a certain time interval, we can achieve a low probability of failure by increasing the

12Permanent failures can be handled more efficiently using reconfiguration techniques rather than concur-
rent error detection and correction. in some sense, permanent failures are easier to deal with than transient
failures. For example, if we are testing for permanent failures in an integrated circuit, it may be reasonable
to assume that our testing mechanism (error-detecting mechanism) has been verified to be fault-free. Since
such verification only needs to take place once, we can devote large amounts of resources and time in order
to ensure the absence of permanent failures in this testing/correcting mechanism.
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amount of redundancy; alternatively, for a given probability of failure, we can increase
operation time (i.e., the length of time for which the fault-tolerant system needs to operate
reliably for) by increasing the amount of redundancy. Our method ensures that, with high
probability, our fault-tclerant system will go through a sequence of states that correctly
represent the fault-free state sequence. More specifically, at each time step, the state of the
redundant system is within a set of states that can be decoded to the state in which the
fault-free system would be in. Note that this is the best we can do since all components at

our disposal can fail.

1.4 Scope and Major Contributions of the Thesis

Fault tolerance in dynamic systems has traditionally been addressed using techniques devel-
oped for fault tolerance in computational circuits. This thesis generalizes these techniques,
studies the impiications that the dynamic nature of systems has on fault tolerance and de-
velops a framework that encompasses most previous schemes for concurrent error detection
and correction in dynamic systems.

Adopting the traditional assumption that the error detecting/correcting mechanism is
fault-free, we describe fault-tolerant schemes that protect against a specified, constant num-
ber of failures. Our approach is systematic and our goal (in each of the cases we study)
is two-fold: (i) develop appropriate error models and techniques that satisfy the error de-
tecting/correcting requirements, and (ii) parameterize redundant implementations for use
in conjunction with a given error detecting/correcting mechanism. We study a variety of
different dynamic systems, specifically those listed below, and in some cases we are able
to make explicit connections with redundant hardware implementations, hardware failure
modes, and error detecting/correcting techniques. We do not specifically address the issue
of choosing an optimal redundant implementation (e.g., one that minimizes the hardware

cr cost involved), but we point out related questions in our examples.

Algebraic Machines: We develep appropriate (algebraic) encoding and decoding map-
pings for group/semigroup machines and demonstrate that each encoding/decoding
pair has a number of possible redundant implementations, which may offer vary-

ing fault coverage. Our approach in this setting is purely algebraic and hardware-
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independent. We do not make connections with actual hardware implementations
and hardware failure modes, but use algebraic technigues to illustrate how different
(algebraic) machine decompositions may capture different sets of errors/failures. In
particular, we shcw that certain decompositions are undesirable because the failures
of interest are always undetectable. We also extend these results to redundant imple-
mentations of finite semiautomata. The virtue of our approach is that it focuses on
the desired functionality of a redundant implementation and not on the specifics of a
particular hardware construction; this aliows the development of novel fauit-tolerant

hardware constructions.

Linear Dynamic Systems: We study redundant implementations for lirear time-invariant
dynamic systems and linear finite-state machines, obtaining in each case a character-
ization of all redundant implementations with states that are linearly constrained
(encoded according to a linear code). We show that within this class of redundant
implementations each pair of encoding and decoding mappings permits a variety of
state evolution mechanisms. Thus, there is some fiexibility in terms of choosing the
redundant implementation which was not considered in previous work. A variant of
our core result has been known in the control community (for continuous-time lin-
ear dynamic systems) but was not developed in the context of fault tolerance. Our
approach results in a systematic way of constructing redundant implementations and
allows us to make explicit connections with hardware constructions and hardware
failure modes. In addition, using this flexibility we demonstrate examples of imple-
mentations that require less hardware than traditional ones, and new schemes for fault

tolerance (including parity check schemes with memory).

Petri Nets: Following a similar approach, we systematically develop embeddings of Petri
net models of discrete event systems (DES). The idea is based on enforcing constraints
on the state (marking) of a given Petri net in way that retains its properties and over-
all functionality while allowing easy detection and identification of failures that may
occur in the underlying DES. This leads to monitoring schemes for DES of interest,
such as network protocols or manufacturing systems. The approach is general and can

handle a variety of error models. We focus primarily on separate embeddings in which
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the functionality of the original Petri net is retained in its exact form. Using these
embeddings we construct monitors that operate concurrently with the original system
and allow us to detect and identify different types of failures by performing consis-
tency checks between the state of the original Petri net and that of the monitor. The
methods that we propose are attractive because the resulting monitors are robust to
failures, they may not require explicit acknowledgments from each activity and their
construction is systematic and easily adaptable to restrictions in the available infor-
mation. We also discuss briefly how to construct non-separate Petri net embeddings.
There are a number of interesting directions that emanate from this work, particularly
in terms of optimizing our embeddings (e.g., to minimize communication cost or other
quantities of interest). We do not explicitly address such optimization questions but
rather focus on establishing this new approach, highlighting its potential advantages,

and describing the different parameters of the problem.

Unlike the situation in static (computational) circuits, fault tolerance in dynamic sys-
tems requires considerations about error propagation, and forces us to consider the possi-
bility of failures in the error detecting/correcting mechanism. The problem is that a failure
causing a transition to an incorrect next state at a particular time step will not only affect
the output at a particular time step (which may be an unavoidable possibility, given that
we use failure-prone elements), but will also affect the state (and therefore the output) of
the system at later times. In addition, the problem of error propagation intensifies as we
increase the number of time steps for which the dynamic system operates. On the contrary,
failures in the implementation of static circuits only affect the output at a particular time
step but have no aftereffects on the future performance of the systems (they do not intensify

as we increase the number of time steps for which the systems operate).

The thesis addresses the problem of failures in the error detecting/correcting mechanism
and shows that our two-stage approach to fault tolerance can be used successfully (and, in
some cases that we illustrate, efficiently) to construct reliable systems out of unreliable
components. First, we develop a distributed voting scheme and show how it can be used to
construct redundant systems that evolve reliably for any given finite number of time steps.

Our approach is novel, but related techniques can be found in computational circuits and
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stable memories. By combining this distributed voting scheme with low-complexity error-
correcting codes, we construct interconnections of identical linear finite-state machines that
operate in parallel on distinct inputs and use a constant amount of hardware per machine
in order to achieve a desired low probability of failure for any finite number of time steps.
We also make comparisons and connections with related work, and point out interesting

future directions and possible improvements to our construction.

1.5 Outline of the Thesis

This thesis is organized as follows:

Chapters 2 through 5 systematically explore the concurrent error detection/correction
approach of Figure 1-3 for different dynamic systems under the assumption that the error-
correcting mechanism is fault-free. In Chapter 2 we focus on algebraic machines (group and
semigroup machines, and finite semiautomata); in Chapters 3 and 4 we study redundant
implementations for linear time-invariant dynamic systems and linear finite-state machines;
in Chapter 5 we use similar ideas to construct Petri net embeddings and obtain robust
monitoring schemes for discrete event systems.

In Chapter 6 we develop ways to handle failures in the error-correcting mechanism, both
for the general case and also for the special case of linear finite-state machines.

We conclude in Chapter 7 with a summary of our results and future research directions.
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Chapter 2

Redundant Implementations of

Algebraic Machines

2.1 Introduction

In this chapter we develop a general, hardware-independent characterization of fault-tolerant
schemes for group/semigroup machines and for finite semiautomata. More specifically, we
use homomorphic embeddings to construct redundant implementations for algebraic ma-
chines, describe the corresponding error detection/correction techniques, and demonstrate
that for a particular encoding/decoding scheme there exist many possible redundant imple-
mentations, each offering potentially different fault coverage.

Throughout our development, we assume that the error detecting/correcting mechanism
is fault-free’ and focus on algebraically characterizing redundant implementations. We as-
sume a hardware-independent error model in which failures cause incorrect state transitions
in the redundant machine. In later chapters of the thesis the fruits of our abstract approach
become clearer, as we make explicit connections to hardware implementations and hard-
ware failures. For example, in Chapters 3 and 4 we outline such extensions for linear

time-invariant dynamic systems (implemented using adder, gain and memory elements)

! As mentioned in the Introduction, the assumption that the error detecting/correcting mechanism is fault-
free appears in most concurrent error detection and correction schemes. It is 2 reasonable assumption in
many cases, particularly if the error checking mechanism is much simpler than the state evolution mechanism.
In Chapter 6 we extend our approach to handle failures in the error detecting/correcting mechanism.
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and linear finite-state machines {(implemented using XOR gates and flip-flops).

This chapter is organized as follows. In Section 2.2 we provide background on the
use of group/semigroup homomorphisms in constructing fault-tolerant computational sys-
tems, [43, 44, 8, 9]. Then, in Section 2.3, we develop redundant implementations for group
and semigroup machines (in Sections 2.3.1 and 2.3.2 respectively). Our approach results
in an algebraic characterization of the different redundant implementations under a given
encoding/decoding scheme and also leads to discussions about the role of machine decom-
position. In Section 2.4 we make connections with redundant implementations for finite
semiautomata. Finally, in Section 2.5 we summarize the theoretical approach of this chap-

ter and the key insights that it has provided.

2.2 Background: Fault-Tolerant Computation

in Groups and Semigroups

Before we discuss fault tolerance in algebraic machines, we present some previous results
on fault-tolerant computation in systems with algebraic structure.
2.2.1 Fault Tolerance in Abelian Group Computations

A group (G,o0) i¢ a set of elements G together with a binary operation o such that the

following are satisfied:
o Forall g1, 2,93 € G, 91092 € G (closure) and g;0(g2093) = (g1092)0g3 (associativity).

o There is an eiement 1,, called the identity element such that for all g € G, go 1, =

l,0g=g.

log=gog™ =1,.

e For every g € G, there is an inverse element g~! € G such that g~
An abelian group also satisfies commutativity:

e Forall g1,9: € G, g1092 = g20 1.

A computation that takes p:ace in an abelian group is protected in [8] by a coding scheme

like the one shows in Figure 1-1. Redundancy is added to the operands by the encoding
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mappings ¢ and ¢2, which map operands in the abelian group (G, o) (e.g., g1 and g2 in the
figure) to elements in a larger abelian group (H,¢) (these elements are denoted by h; and
hy in the figure). The original group operation o in G is replaced by the redundant group
operation o in H. ldeally, under no failures, the result r = g, o g can be obtained via the
decoding mapping o from the result p = h;y o by in the redundant group (i.e., r = a(p)).
The subset of valid results in H is given by the set G’ = {¢1(g1) o #2(92) | 91,92 € G}.
The objective is to utilize the redundancy that exists in H tc provide fault tolerance for
the computation in G. By imposing the requirement that under fault-free conditions the
decoding mapping ¢ : G’ — G be one-to-one, it can be shown that the encoding mappings
#, and ¢, need to be the same mapping, which we denote by ¢, and that 0~! = ¢. Moreover,

¢ is shown to be a group homomorphism: for all g1, g2 € G, we have ¢(g1)0d(g2) = ¢(g1092).

Under the homomorphic mapping @, the subset of valid results G’ forms a subgroup of
H that is isomorphic to G. If we assume that failures in the computation keep us in H
(i.e., failures do not cause the computation to hang or behave in some unpredictable way,
but simply result in an incorrect group element), then any result that falls outside of G’
is invalid and is detected as erroneous (which is the case for result py in Figure 2-1). In
particular, if we model? p; as ¢(g1) o §(g2) o€ = poe (where e is an element in the error set
E = {1,,€1,€2,...}), then error detection and correction are based on the structure of the
cosets of G’ in H (i.e., on the factor or quotient group H/G', [49]). In the absence of failures
results lie in the zero coset (that is, in G’ itself). Every detectable error ¢4 € E forces the
result of the computation into a non-zero coset (i.e., G' ¢ e5 # G’), while every correctable
error e, € E forces the result into a coset that is uniquely associated with that particular
error (i.e., G’ o e. # G’ o ¢; for every e, e; in E such that e; # e;). In Figure 2-1,if eis a
correctable error, then p = p and # = .

One of the most important results in [8] (also presented in [9]) is obtained for the special
case of separate codes. These are codes in which redundancy is added through a separate
“parity” computational sysiem. In this case, the redundant group H is the cartesian product

G x T, where T is the group of parity symbols. Finding a suitable encoding homomorphism

2Since H is a group, we can always model the result of & computation as ps = p 0 e where e = ol ops.
Therefore, given ail possible hardware failures, we can generate the set of errors E. Tke identity 1, is
included in E so that we can handle the fault-free case.
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Figure 2-1: Fault tolerance in a group computation using a homomorphic mapping.

reduces to finding a homomorpbism 7 such that [g,7(g)] is the element of H = G x T
corresponding to the operand g. If we impose the requirement that 7 be surjective (onto),
the problem of finding all possible parity codings reduces to that of finding all surjective
homomorphisms (epimorphisms) from G onto T' (unlike ¢, mapping 7 maps G onto a smaller
group T'). This is a reasonable requirement because if # was not onto, then T would contain
elements that are never used by the parity computation (and can therefore be eliminated).
By an important homomorphism theorem from group theory [49], these epimorphisms are
isomorphic to the canonical epimorphisms, namely those that map G to its quotient groups
G /N, where N denotes a (normal®) subgroup of G. Hence the problem of finding all possible
parity codings reduces to that of finding all possible subgroups of G.

By simply exploiting the abelian group structure, the above results were exiended in
[8, 9] to higher algebraic systems with an embedded group structure, such as rings, fields
and vector spaces. The framework thereby embraces a large variety of arithmetic codes
and Algorithm-Based Fault Tolerance schemes already developed in some other way. In the
following example we discuss how aM and parity check codes can be analyzed within the

abelian group framework; additional examples can be found in [8].

3 A subgroup N of a group (G, o) is called normal if for all g € G, the set of elements go N o g~' is

contained in N. In the abelian group case considered in [8], any subgroup is trivially normal (go Nog™ =
-1
gog~'oN =N).
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Example 2.1 aM-codes provide fault tolerance to modulo-M addition (which takes place
in Zp, the cyclic group of order M) by multiplying each of the operands by an integer
a and performing modulo-aM addition, [87]. Such codes can be placed into the abelian
group iramework by using the injective homomorphism ¢ : G = Zpy — H = Z,p such
that for g € Zps, ¢(g9) = ag. Naturally, the specifics of the errors that can be detected or
corrected depend very much on the actual hardware implementation and on the particular
values of M and «. For instance, with M = 5 and a = 11, this arithmetic code can detect
all failures that result in single-bit errors in a digitally implemented binary adder, [87].
In these implementations the operands and the result have a binary representation (i.e., 0
maps to 00000, 1 maps to 00001, etc.) and failures flip a “0” to a “1” and vice-versa.

An alternative way of providing fault tolerance to modulo-M addition is by performing
a parity check using a separate (parity) adder alongside the original one. Using the alge-
braic framework we are able to enumerate and identify all appropriate parity computations
(additions) that can be performed. More specifically, we know that each parity computation
needs to lie in a group T that is isomorphic to a quotient group Zas/N for a normal subgroup
N of Zp. Using standard results on cyclic groups [55], we conclude that all such groups
T are isomorphic to Zp where P is a divisor of M. Therefore, all parity computations for

modulo-M addition are given by modulo-P addition (where P is a divisor of M). o

2.2.2 Fault Tolerance in Semigroup Computations

The results for the abelian group case were extended to computations occurring in a semi-
group in [43, 44]. A semigroup (S, o) is a set of elements S that is closed under an associative
binary operation (denoted by o). Clearly, every group is a semigroup; familiar examples of
semigroups that are not groups are the set of integers under the operation of multiplication,
the set of nonnegative integers under addition and the set of polynomials with real-number
coefficients under the operation of polynomial multiplication. All of the above examples are
abelian semigroups in which the underiying operation o is commutative (for all s;,s2 € S,
S1 0 83 = Sp ©81). Examples of non-abelian semigroups are the set of polynomials under
polynomial substitution and the set of M x M matrices under matrix multiplication. Other
semigroups, as well as theoretical analysis, can be found in [65, 66].

A semigroup S is called a menoid when it possesses an identity element. The identity
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element, denoted by 1., is the unique element that satisfies so 1, = 1, 0s = s for all
s € S. We can focus on monoids without loss of generality because an identity element can
always be adjoined to a semigroup that does not initially posses one. (The construction is
straightforward: let S' = SU {1,} and define so 1, = 1,05 = s for all 5 € S!; ali other

products in S! are defined just as in 5. By definition, element 1, is the identity of S'.)

In order to protect a computation in a monoid (S, o), we follow the model of Figure 1-1.
To intreduce the redundancy needed for fault tolerance, we map the computation s; o s in
(S,0) to a computation ¢;(s;) ¢ ¢2(s2) in a lerger monoid (H, ). The encoding mappings
¢1 and ¢, are used to encode the first and second cperands respectively (the results can
be generalized to more than two operands). After performing the redundant computation
#1(51) © ¢2(s2) in H, we obtain a {possibly faulty) result ps, which we assume still lies
in H. Again, we perform error-ccerrection through a mapping o and decoding through a
one-io-one mapping o : S’ — S (where S’ = {$1(s1) ¢ P2(s2) | 51,52 € S} is the subset of

valid results in H).

Under fault-free conditions, the decoding mapping o satisfies:

c{p1(s1) o P2(s2)) = s1 052

for all 5;,s; € S. Since we have assumed that o is one-to-one, the inverse mapping o~! :
S — S’ is well-defined and satisfies 071 (s; 0 83) = ¢;(51) © P2(s2). If we assume further
that both ¢, and ¢, map the identity of S to the identity of H, then by setting so = 1,, we
get 071(s1) = ¢1(sy) for all 5; € S (because ¢2{1.) = 1,). Similarly, c~1(s2) = ¢2(s2) for
all s; € S, and we conclude that 0! = ¢; = ¢ = ¢. Note that (i) ¢(s1052) = B(s1) 0 9(s2),
and (ii) ¢(1,) = 1,. Condition (i) is the defining property of a semigroup homomorphism,
[66, 65]. A monoid homomorphism is additicnally required to satisfy condition (ii), [55, 42].
Mapping ¢ is thus an injective monoid homomorphism, which maps the vriginal computation

in S into a larger moncid that contains an isomorphic copy of S.

The generalization of the framework of [8] to monoids allows non-abelian computa-
tions, for which inverses might not exist, to be treated algebraically. The generalization
to monoids, however, comes at a cost since error detection and correction can no longer

be based on coset constructions. The problem is two-fold: first, in a semigroup setting we
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may be unable to model the possibly faulty result ps as ¢(s1) o ¢(s2) o e {or some element
e in H (because inverses do not necessarily exist in / and because the semigroup may be
non-abelian); second, unlike the subgroup G’ of valid results, the subsemigroup S’ does not
necessarily induce a natural partitioning® on the semigroup H. (For instance, it is possible
that the set S’ oh is a strict subset of S’ for all h € H.) Conditions for sing'e-error detection

and correction are discussed in Appendix A.

If the redundant monoid H is a cartesian product of the form SxT, where (S,0) is
the original monoid and (7, @) is the “parity” mocnoid, then the corresponding encoding
mapping ¢ can be expressed as ¢(s) = [s, 7(s)] for all s € S and an appropriate mapping =.
In such case, the set of valid results is given by {[s, 7(s)] | s € S} and error-detection simply

verifies that the result is of this particular form.

Using the fact that the mapping ¢ is a homomorphism, we can easily show that the
parity mapping = is a homomorphism as well. As in the case of abelian groups, if we
restrict this parity mapping to be surjective, we can obtain a characterization of all possible
parity mappings and, thus, of all separate codes. However, the role that was played in the
abelian group framework by the (normal) subgroups N of the group G is now played by
the so-called congruence relations in S. Just as a normal subgroup induces a partitioning
of a group (into the normal subgroup and the corresponding set of cosets), a congruence
relation induces a partitioning of a monoid. Unlike the group case, however, the number
of elements in each partition is not necessarily the same. In order that a given partitioning
{F;} correspond to a congruence relation, the partitions need to be preserved by the monoid
operation: when an element of partition P; is composed with an element of partition F,
the result must be confined to a singie partition P, (i.e., for all s; € P; and all s; € P
the products s; o s lie in partition F;). Note that this is also true for the partitioning of
a group iuto cosets. More formally, an equivalence relation ~ on the elements of a monoid
S is called a congruence relation if, for all a,a’,b,0' € S, a ~ a’,b ~ b’ = aob ~ a’ob’. The

partitions are referenced to as congruence classes.

An example of a partitioning into congruence classes is shown in Figure 2-2 for the

semigroup (N, X) of positive integers under multiplication. Congruence class A contains

*A partitioning of a set S is a collection of disjoint subsets {P;}, the union of which forms the set S.
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Figure 2-2: Partitioning of semigroup (N, X) into congruence classes.

multiples of 2 and 3 (i.e., multiples of 6); congruence class B contains multiples of 2 but
not 3; congruence class C contains multiples of 3 but not 2; and congruence class I contains
all the remaining positive integers (i.e., integers that are neither multiples of 2 nor 3). One

easily checks that the partitioning is preserved under the semigroup operation.

Let S/~ denote the set of equivalence classes of S under congruence relation ~. For two
congruence classes [a], [b] (where [a] denotes the congruence class containing a), we define
a binary operation ® by [a] ® [b] = [a o 5] (note that ® is weli-defined if ~ is a congraence
relation). With this definition, (S/~,®) is a monoid, referred to as the factor or quotient

monoid of ~ in S and congruence class [1,] functions as its identity element.

If we apply a homomorphism theorem from semigroup theory [66, 65], which is the nat-
ural generalization of the theorem used earlier in the group case, we get that: surjective
homomorphisms from S onto T are isomorphic to the canonical surjective homomorphisms,
namely those that map S to its quotient semigroups S/~, where ~ denotes a congruence
relation in S. The semigroup (7, ®) is isomorphic to (S/~,®) for a suitable congruence

relation ~. Thus, for each congruence relation ~, there is a corresponding surjective ho-
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momorphism and, for each surjective homomorphism, there is a corresponding congruence
relation. Effectively, the problem of finding all possible parity codes reduces to that of
finding all possible congruence relations in S.

When comparing these results with the abelian group case in [8], we find one major
difference: in the abelian group case, finding a subgroup N of the group G completely
specifies the parity homomorphism 7 because the inverse images of the elements of the
parity group T are exactly the cosets of G with respect to the subgroup N (this is simply
saying that T = G/N). In the more general setting of a monoid, however, specifying a
normal subsemigroup for S does not completely specify the homomorphism 7 (and therefore
does not determine the structure of the parity monoid 7'). In order to define the surjective
homomorphism 7 : S —— T (or, equivalently, in order to define a congruence relation ~ on

S), we may need to specify all congruence classes®.

2.3 Redundant Implementations of Algebraic Machines

In this section we construct redundant implementations of dynamic systems with algebraic
structure, such as group and semigroup machines, using the preceding approach for fault
tolerance in computational systems. We systematicaily develop separate and non-separate
encodings that can be used by our two-stage concurrent error detection/correction scheme.
Our approach is purely algebraic and aims at gaining insight for redundant implementations,
error detection/correction techniques and appropriate error models. We show that algebraic
homomorphisms can facilitate the design of fault-tolerant machines and the analysis of error
detection and correction algorithms. We do not make connections to particular hardware
constructions and hardware failure modes; when we couple our results with techniques
for machine decomposition, however, we obtain interesting insight regarding the use of
redundancy in non-separate implementations and regarding the functionality of separate
monitors.

We start with group machines {(in Section 2.3.1) and then generalize our approach to

semigroup machines (Section 2.3.2) and finite semiautomata (Section 2.4). A finite-state

5This makes the search for encodings in a monoid setting more complicated than the search for such
encodings in an abelian group setting. As the examples in [43] showed, however, we have a larger variety to
choose from.
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machire (FSM) has a finite set of states ), a finite set of inputs X and a finite set of
outputs Y. The next-state function is given by § : @ x X —— @Q and specifies the next
state based on the current state and the current input. The output furction, given by the
mapping A : @ X X — Y, specifies the current output based on the current state and input.
(Functions  and A need not be defined for all pairs in @ X X.) A finite semiautomaton is an
FSM without outputs (or, equivalently, one whose state is its output). A semigroup machine
is a finite semiautomaton whose states and inputs are drawn from a finite semigroup (5, o),
[2, 3]. The next-state function is given by &(s1, s2) = s; 0 s2, where the current state s; and
input sy are elements of (S,0). In the special case when (S,0) is a group (not necessarily
abelian), the machine is known as a group or permutation machine, [2, 3, 40].

Our analysis of redundant implementations for these aigebraic machines will be hardware-
independent; for discussion purposes, however, we will make reference to digital implemnen-
tations, i.e., implementations of FSM’s that are based on digital circuits. Thus, states
are encoded as binary vectors and stored into arrays of single-bit memeory registers {ilip-
flops); the next-state function and the output function (when applicable) are implemented
by combinational logic. When a hardware failure occurs, the desired transition to a state
g (¢; € Q) with binary encoding (q1,, ¢2,, ---» ,) is replaced by a trarsition to an incorrect
state ¢; with encoding (q1,,42,, ---, g,). We will say that a single-bit error occurs when the

encoding of g; differs from the encoding of g; in exactly one bit-position®.

2.3.1 Redundant Implementations of Group Machines

The next-state function of a group machine is given by 4(g;,92) = ¢1 © g2, where both
the current state g; and input g are elements of a group (G, o). Examples of group ma-
chines include additive accumulators, multi-input linear shift registers, counters and cyclic
avtonomous machines; group machines also play an important role as essential components
of arbitrary state machines.

Irn order to construct redundant implementations of a group machine (G, o) {with state

¢1 € G, input go € G and next-state function 8(g1,92) = ¢1 © gz), Wwe embed it into a

8There are many other error models, such as the stuck-at failure model or the delay failure model, [31].
Note that, depending on the hardware implementation, a single hardware failure can cause multiple-bit
errors.
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Figure 2-3: Error detection and correction in a redundant implementation of a group ma-
chine.

larger group machine (H,o) (with state hy € H, input hy € H and next-state function
8p(h1, h2) = ki1 © hy). As shown in Figure 2-3, machine H receives as input hy = £(g2)
(which is an encoded version of the input g2 that machine G would receive) and concurrently
simulates G, so that, under fault-free operation, the state g; of the original group machine
G can be recovered from the corresponding state h; of the redundant machine H through
a one-to-one decoding mapping £ (i.e., g1 = £(%1) at all time steps). The mapping £ is
only defined for the subset of valid states in 7, denoted by G’ = ¢"1(G) C H. Erroneous
operations cause transitions to invalid states in H; these errors will be detected and, if
possible, corrected by the detector/corrector « at the end of the corresponding time step
(for now, we assume that all mappings in Figure 2-3 are fault-free).

More formally we have the following definition for redundant implementations of group

machines:

Definition 2.1 A redundant implementation for a group machine (G,0) is a group ma-
chine (H, o) that concurrently simulates G in the following sense: there erist a ane-to-one
mapping £ : G' — G (where G' = £71(G) C H is the subset of valid states) and an ap-
propriate input encoding mapping § : G — H (from G into H ) such that the following
condition holds for all g1,g2 € G:

L (g1) 0&(92) = g1 092 - 2.1)
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Note that when H is properly initialized and fault-free, there is a one-to-one corre-
spondence between the state h; of H and the corresponding state g, of Gj; specifically,
g1 = £(hy) or hy = £71(g;) for all time steps. At the beginning of each time step, input
g2 € G is supplied to machine H encoded via £&. The next state of H is then given by
h' = hyo&(g2) = £71(g1) ©&(g2); since / is one-to-one, it follows easily from eq. (2.1) that h’
has to satisfy b’ = £~1(gy 0 g2) = £~} (g’), where g’ = g1 0 g2 is the next state of machine G.
Note that A’ belongs to the subset of valid states G’ = £71(G) C H. At the end of the time
step, the error detector verifies that the newly reached state k' is in G’; when an error is
detected, necessary correction procedures are initiated and completed before the next input
is supplied.

The concurrent simulation condition of eq. (2.1) is an instance of the coding scheme of
Figure 1-1 (where we had o(¢;1(g1) 0¢2(92)) = g1092): the decoding mapping £ plays the role
of o, whereas £ corresponds to mapping ¢2. (The situation described in eq. (2.1) is actually
slightly more restrictive than the one in Figure 1-1, because ¢, is restricted to be £71.)
Therefore, the results of Section 2.2.2 apply and we can design redundant implementations
for group machines by homomorphically embedding them into larger group machines. More
specifically, by choosing £ = £~! to be an injective group homomorphism from G into H,

we automatically satisfy (2.1):

e (g1) 0&(g2)) = L€ (1) o2 (g2))
£(£7 (g1 0 g2))

= 019092.

Just as we did for the group/semigroup’ cases in Sections 2.2.1 and 2.2.2, we will use the
notation ¢ in place of £~ and &, and o in place of £. With this in mind, the condition in

eq. (2.1) simplifies to

o(#(g1) o p(g2)) = g1 0 92 (2.2)

for all states g; and all inputs g; in G.

"Remember that this is not necessarily an abelian group.
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Figure 2-4: Monitoring scheme for a group machine.

When the redundant group machine is of the form H = G x T, we recover the results
obtained in Sections 2.2.1 and 2.2.2 for the separate case: the encoding homomorphism
¢ : G~ H (where ¢(g) = £(g) = £71(g)) is of the form ¢(g) = [g, 7(g)] for an appropriate
mapping 7. If we assume that 7 is surjective, then the redundant machine H consists of the
original machine G and an independent parity machine T as shown in Figure 2-4. Machine
T is smalier than G and we will refer to it as a (separate) monitor or a monitoring machine
(the latter term has been used in finite semiautomata {54, 78, 77], and in other settings).
Mapping 7 : G — T produces the encoded input t; = mw(g2) of the separate monitor T’

(where g, is the input for G) and is easily shown to be a homomorphism, i.e., it satisfies

7(91) © w(g2) = 7 (g1 0 g2)

for all g1, 92 € G. It can be easily shown that, if machines G and T are properly initialized
and fault-free, then the state ¢ of the monitor at any time step will be given by t = n(g),
where g is the corresponding state of the original machine G. Error-detection checks if
this condition is satisfied. Depending on the actual hardware implementation and the error
model, we may be able to detect and corract certain errors in the original machine and/or

in the separate monitor.

Next, we use the approach outlined in egs. (2.1) and (2.2) to discuss examples of separate
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monitors for group machines.

Separate Monitors for Group Machines

In the previous section we concluded that the problem of designing a separate monitor
T for a group machine G can be solved algebraically: using the results of Sections 2.2.1
and 2.2.2, and retaining the assumption that the mapping 7 : G — T (which maps states
and inputs in machine G to states and inputs in machine T') is surjective, we concluded
that group machine (7', ®) can monitor group machine (G, o) if and only if T is a surjective
homomorphic image of G or, equivalently, if and only if there exists a normal subgroup N

of G such that T = G/N.

Example 2.2 Consider the group machine G = Zg = {0,1,2,3,4,5} (i.e., a modulo-6
acder). The non-trivial® (normal) subgroups of G are N = {0,3} = Z; and N’ = {0,2,4} =
Z3, resulting in quotient groups G/N 2 Z; and G/N’ = Z3 respectively.

If we decide to use Z; as a separate monitor, we need to partition the elements of Zg
in two partitions as {po = {0,2,4},p1 = {1,3,5}}. If the original machine is digitally
implemented (i.e., using three bits to encode each of its states) and if the operation of
the monitor is fault-free®, then in order to detect failures that result in single-bit errors
in the digital implementation of Zg we need the binary encodings of states within the
same partition to have Hamming distance!® greater than 1. If we consider the partitioning
{po = {000,011, 110}, p; = {111, 100, 001}} (which corresponds to a digital implementation
in which 0 is encoded to 000, 1 to 111, 2 to 011, 4 to 110, and so on), we see that an
error is detected whenever the state encoding does not lie in the partition specified by the
presumably fault-free monitor or when the result is an invalid codeword. For example, if the
monitor is in partition pg and if the current state is 111 or 010, a single-bit errcr has been

detected. We see that, under the assumption that the monitor is fault-free, this particular

8The group {1o} (where 1, denotes the identity element) is a trivial normal subgroup of any group.

9This assumption is realistic if the hardware implementation of the monitor is considerably simpler than
the implementation of the actual machine.

1The Hamming distance between two binary vectors z = (z1,%2,...,Zn) and y = (y1,¥2, ...,Yn) is the
number of positions at which = and y differ, [87]. The minimum Hamming distance dmin between the
codewords of a ccde (collection of binary vectors of length n) determines its error detecting and correcting
capabilities: a code can detect dm.n — 1 single-bit errors; it can correct [img'—'j single-bit errors.
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scheme can detect failures that result in single-bit errors in the original machine. Note,

however, that a single hardware failure may not necessarily result in a single-bit error.

If we use Z3 as the monitoring machine, we obtain the partitioning {po ={0,3},;1 =
{1,4},p2 =12, 5}} Again, to detect single-bit errors in a digital implementation, we require
that states within the same partition have Hamming distance greater than 1, as for example
in the encoding {pg = {000,011}, p; = {001, 100}, p» = {010, 101}} (which corresponds to
encoding 0 to 000, 1 to 001, 2 to 010, and so on). If states within the same partition
have Hamming distance at least 3 (partitioning {po = {000,111},p; = {001,110},p; =
{101, 010}} is one such possibility), then we can actually correct singie-bit errors. We use
the fault-free monitor to locate the correct partition and, since codewords within the same
partition have Hamming distance greater or equal to 3, we can correct single-bit errors by
choosing as the correct state the one that has the smallest Hamming distance from the

corrupted state. m]

Example 2.3 The authors of [78, 77] investigate separate monitors for cyclic autonomous
machines. The only input to an autonomous machine is the clock input. The dynamics
are therefore completely predetermined because from any given state only one transition
is possible, and it occurs at the next clock pulse. Since the number of states is finite, an
autonomous machine will eventually enter a cyclic sequence of states. A cyclic autonomous
machine is one whose states form a pure cycle (i.e., there are no transients involved). Such
a machine is essentially the cyclic group machine Zps, but with only one allowable input

(namely element 1) instead of the whole set {0,1,2,...,M — 1}.

Using our algebraic framework and some rather standard results from group theory, we
can characterize all possible monitors T for the autonomous machine Zps: each monitor
needs to be a group machine (7, ®) that is isomorphic to Zp/N, where N is a normal
subgroup of Zps. The (normal) subgroups for Zys are exactly the cyclic groups of order
|N| = D that divides M, [55]; therefore, the monitors correspond to quotient groups T' =
Zy /N = Zy/Zp that are cyclic and of order P = A—L’,’- (that is, T = Zp). Of course, since
only one input is available to the original machine G, we should restrict 7' to only one input
as well. This results in a monitor that is a cyclic autenomous machine with P states (where

P is a divisor of M).
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Using graph-based constructions, the authors of [78, 77] concluded that the minimum
number of states required for a separate monitor is the smallest prime factor of the cycle
length. Our result is a generalization of that conclusion: using the algebraic framework
we are able to describe the structure of all possible monitors (not only the ones with the
minimum number of states) independently of the error model. More importantly, our result
is obtained through simple applications of group theory and can be generalized to machines

with non-trivial inputs and more complicated structure. a

When N is a normal subgroup of G, we can actually decompose the group machine G
into an interconnection of two simpler group machines. This and other results on machine
decomposition introduce some interesting possibilities into our analysis of redundant imple-
mentations. For this reason, in the next section we briefly review some decomposition results
and apply them to the analysis of separate monitors. Machine decomposition is important
because the implementation of group machines (and FSM’s in general) as interconnections

of smaller components may result in an improved circuit design!!, [4].

Group Machine Decomposition

Whenever group G has a non-trivial normal subgroup N, the corresponding group machine
can be decomposed into two smaller group machines: the coset leader machine with group
G/N and the subgroup machine with group N, [2, 3, 40]. Figure 2-5 conveys this idea.
Group machine G, with current state g; and input g, can be decomposed into the “series-
paralle]” interconnection in the figure. Note that the input is encoded differently for each
submachine. The overall state is obtained by combining the states of both submachines.
The above decomposition is possible because the normal subgroup N induces a partition

of the elements of G into cosets, [2, 3]. Each element g of G can be expressed uniquely as
g=nocg;forsomeneN, ¢ eC,

where C = {c1,¢2,...,¢1} is the set of distinct (right) coset leaders (there is exactly one

"'Machine decomposition typically results in reductions of the chip area, of the longest path (between
latch inputs and outputs) and of the clock duration. Furthermore, it tends to minimize the clock skew and
utilize more efficiently the programmable gate arrays or logic devices (if FSM’s are implemented using such
technologies), [47, 4, 39].
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Figure 2-5: Series-parallel decomposition of a group machine.

representative for each coset). The decomposition in Figure 2-5 simply keeps track of this
parameterization. If the machine is in state g1 = n; o¢;; and an input g2 = nz o ¢,

is received, the new state can be expressed as g3 = n3 o ¢;;. One possibility is to take

¢i; = G, 0gz = G;, 03 0 ¢;, (here, T denotes the coset leader of the element z € G); then,
we put n3 = n3 0¢c;; ©g20 (6; 092) . Note that ¢;, 0 go0 (¢;;092)" ! is an element of N
and therefore this group operation can be computed within the subgroup machine'?. The
encoders are used to appropriately encode the input for each machine and to provide the
combined output. The decemposition can continue if either of the groups N or G/N of the
two submachines has a non-trivial norma! subgroup.

Recall that in the previous section we concluded that a group machine (7", ®) can monitor
a mackine (G, ¢) if and only if there exists a normal subgroup N of G such that T = G/N.
Since N is a normal subgroup of G, we can also decompose the original group machine G into
an interconnection of a subgroup machine N and a coset leader machine G/N. Therefore,
we have arrived at an interesting observation: under this particular decomposition and at
a finer level of detail, the monitoring approach corresponds to partial modular redundancy,

because T is isomorphic to the coset leader machine. Error-detection in this special case

2The above choice of decomposition is general enough to hold even if N is not a normal subgroup of G.
In such case, however, the (right) coset leader machine is no simpler than the criginal machine; its group is
still G, [2}.
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Figure 2-6: Construction of a separate monitor based on group machine decomposition.

is straightforward because, as shown in Figure 2-6, failures in T" or G/N can be detected
by concurrently comparing their corresponding states. The comparison is a simple equality
check (up to isomorphism) and an error is detected whenever there is a disagreement.
Failures in the subgroup machine N cannot be detected. The error detection and correction
capabilities are different, however, if G is implemented using a different decomposition (or

not decomposed at all).

Example 2.4 Consider the group machine Z; = {0, 1,2, 3} which performs modulo-4 ad-
dition (its next-state function is given by the modulo-4 sum of its current state and input).
A normal subgroup for Z, is given by N = {0,2} (N = Z3); the cosets are {0,2} and {1, 3},
and the resulting coset leader machine Z;/N = Z,/Z, is also isomorphic to Z,.

Despite the fact that both the coset leader and the subgroup machines have groups
isomorphic to Z;, the overall functionality is different from Z; x Z; (since Zs # Z; X Z3)
due to the interconnecting coder between the coset leader and subgroup machines. The
output of this coder (denoted in Figure 2-5 by »n’) is a symbol based on the current state
of the coset leader machine (¢;, in Figure 2-5) and the current input (denoted by g in the
figure). In this particular example the output functions like the carry-bit in a binary adder:
the coset leader machine performs the addition of the least significant bits, whereas the

subgroup machine deals with the most significant bits. Since this “carry-bit” is available
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concurrently to the subgroup machine (i.e., it depends on the current state of the coset
leader machine and the current input), this decomposition is reminiscent of the use of
carry-lookahead to perform modulo-2* addition using binary adders (in our case k = 2),
[110].

Using N = Z, as a normal subgroup of Z4, we conclude from the analysis of the previous
section that an appropriate separate menitor is given by T' = G/N = Z4/Z; = Z,. It
functions as follows: it encodes the inputs in coset {0,2} into 02 and those in {1, 3} into 1;
thern, it adds its current state to its current input modulo-2. Therefore, the functionality of
this separate monitor is identical to the coset leader machine in the decomposition described
above. As illustrated in Figure 2-6, under this particular decomposition of Z4, the monitor
will only be able to detect failures that cause errors in the least significant bit (i.e., errors
in the coset leader machine). Errors in the most significant bit (which correspond to errors

in the subgroup machine) will remain completely undetected. m]

If one replicated the subgroup machine N (instead of the coset leader machine), the
resulting “monitor” T' = N would not correspond to a separate code. The reason is that
the subgroup machine N receives input from the coset leader machine G/N through the

interconnecting coder (e.g., the “carry-bit” in the example above).

Non-Separate Redundant Implementations of Group Machines

A redundant implementation of a group machine (G, o) need not necessarily use a separate
monitor. More generally, we can appropriately embed (G, o) into a larger, redundant group
machine (H, o) that preserves the behavior of G in some non-separately encoded form (as
in Figure 2-3). At the beginning of Section 2.3.1, we showed that such an embedding can
be achieved via an injective group homomorphism ¢ : G — H, used to encode the inputs
and states of machine G into those of machine H. Furthermore, since ¢ is injective, there
exists a one-to-one decoding mapping o : G' — G (where G’ = ¢(G) was defined earlier as
the subset of valid results) that is simply the inverse of mapping ¢. With these choices, the
concurrent simulation condition in eq. (2.2) is satisfied.

In the above analysis the set G’ = ¢(G) is a subgroup of H. If, in addition, G’ is a normal

subgroup of H, then it is possible to decompose H into a series-parallel interconnection of a
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subgroup machine G’ (isomorphic to G) and a coset leader machine H/G' (in the terminology
introduced in the beginning of Section 2.3.1, G’ plays the role of the normal subgroup N). If
we actually implement H in this decomposed form, then our fault-tolerant scheme attempts
to protect the computation in G by performing an isomorphic computation (in the subgroup
machine G’) and a coset leader computation H/G’. Failures are detected whenever the
overall state of H lies outside G’, that is, whenever the state of the coset leader machine
deviates from the identity. Since the coset leader machine does not receive any input from
the subgroup machine G’, failures in the subgroup machine are not reflected in the state of
H/G'; therefore, failures in G’ are completely undetected and the only detectable failures
are the ones that force H/G' to a state different than the identity. In effect, the added
redundancy is checking for failures within itself rather than for failures in the computation
in G’ (which is isomorphic to the computation in G) and turns out to be rather useless
for error detection or correction. As demonstrated in the following example, we can avoid
this problem (while keeping the same encoding, decoding and error correcting procedures)
by implementing H using a different decomposition; each such decomposition may offer

different fault coverage.

Example 2.5 Suppose that we want to protect addition modulo-3, that is, G = Z3 =
{0,1, 2} and decide tc do this by using an aM coding scheme where a = 2. Therefore, we
multiply by 2 and perform addition modulo 6, that is, H = Zg = {0, 1, ...,5}. The subgroup
G' = {0,2,4} is isomorphic to G and results in cosets {0,2,4} and {1, 3,5}. If we choose 0
and 1 as the coset leaders, now denoting them by 02 and 1, to avoid confusion, the coset

leader machine has the following state transition function:

Input || 02 = {0,2,4} | 1, = {1, 3,5}
State
02 02 1,
1, 12 02

The coding function between the coset leader machine and the subgroup machine (which
has no internal state and provides the input to the subgroup machine based on the current

coset and input) is given by the following table:
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Input |0[1]2|3|4]|5
State
02 0|1C|2]|2(4]4
1, 0212|4141} 0

Note that the input to mackine H will always be a multiple of 2. Therefore, as is clear
from the table, if we start from the 0, coset, we will remain there (at least under fault-free
conditions). Moreover, the input to the subgroup machine will be essentially the same as
in the non-redundant machine (only the symbols used will be different — {0, 2,4} instead
of {0,1,2}).

A failure will be detected whenever the overall state of H does not lie in G/, i.e., whenever
the coset leader machine H/G' is in a state different from 0. Since the coset leader machine
does not receive any input from the subgroup machine, a deviation from the 02 coset reflects
a failure in the coset leader machine. Therefore, the redundancy we have added checks itself

and not the original machine.

We get better results if we decompose H in some other way. If we use the normal
subgroup Ny = {0, 3}, the corresponding cosets are {0, 3}, {1,4} and {2, 5} (we will denote
the coset leaders by 03, 13 and 23 respectively). The state transition function of the coset

leader machine is given by

Input 03 = {0, 3} 13 = {1, 4} 23 = {2, 5}
State
03 03 13 23
13 13 23 03
23 23 03 13

In this case, the output of the ceding function between the two machines is given by the

following table:

Input [0}1]2(3|4]5
State
03 010(0]3(3]|3
13 0103|3310
23 013(3|3|0]0
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This situation is quite different from the one described before. The valid results under
fault-free conditions do not lie in the same coset anymore. Instead, for each state in the coset
leader machine there is exactly one valid state in the subgroup machine. More specificaily,
the valid results (the ones that comprise the subgroup G’) are given by the following (¢, ns)
pairs (where c is a coset leader and ny, is an element of the subgroup machine Ng): (03,0),
(13,3) and (23,0). We can exploit this “structured redundancy” to perform error detection

and correction.

The analysis in this example can be generalized to all cyclic group machines Zj; that
are to be protected through aM coding. The encoding of the states and the inputs involves
simple multiplication by a, whereas the computation should be reformulated using a group
machine decomposition that does not have Zys as a (normal) subgroup. (Otherwise, it is

not possible to detect/correct errors in the computation of Zs.) a

The example above has illustrated that non-separate redundancy can be inefficient (or
even useless), depending on the particular group machine decomposition. Research work in
the past had focused on a given (fixed) hardware implementation of the redundant machine.
For example, ai. codes were applied to arithmetic circuits with a specific architecture in
mind and with the objective of choosing the parameter o so that an acceptable level of
error detecticn/correction is achieved, [87, 81]. Similarly, the design of self-testing and
fault-secure networks in [108] is based on requiring that all failures under the given imple-
mentation cause transitions to invalid states. Again, the indirect assumption is that the
machine implementation and decomposition are fixed. Our approach is different because
we characterize the encoding and decoding mappings abstractly, and allow the possibility of
implementing and decomposing the redundant machine in different ways; each such decom-
position will likely result in different fault coverage. Chapters 3 and 4 illustrate the kind of

flexibility that we have when constructing these redundant implementations.

2.3.2 Redundant Implementations of Semigroup Machines

The development of egs. (2.1) and (2.2) in Section 2.3.1 can be generalized to arbitrary

semigroup machines. For this case, we have the following definition:
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Definition 2.2 A redundant implementation for a semigroup machine (S, o) is a semigroup
machine (H, o) that concurrently simulates S in the following sense: there erist a one-to-
one mapping £ : S’ — S (where S’ = £~1(S) C H) and an appropriate input encoding
mapping £ : S +—— H (from S into H ) such that the following condition holds true:

2007 (s1) 0 &{s3)) = 81 052 (2.3)
for all 54,52 € S.

Using similar analysis te Sectior 2.3.1 (i.e., under the assumptions that £='(1,) = 1,
and £(1,) = 1), we conclude that & and £~! have to be the same injective semigroup

homomorphism, if we use ¢ to denote ¢ and £7!, and o in place of £, we arrive at
P p

o(d(s1) 0 #(s2)) = s105 (2.4)

for all s1,s; € S, which is the same as the condition for fault-tolerant semigroup compu-
tations in Section 2.2.2. We can thus construct redundant implementations for semigroup
machines by embedding them into larger semigroup machines using homomorphisms.

The decomposition of group machines described in Section 2.3.1 has generalizations to

rigroup machines, the most well-known result being the Krohn-Rhodes decomposition
theorem, [2, 3]. This theorem states that an arbitrary semigroup machine (S,0) can be
decomposed in a non-unique way into a series-parailel interconnection of simpler components
that are either simple-group'® machines or one of four basic types of semigroup machines.

These basic machines correspond to the following semigroups (known as units):
o Uz = {1, r1,r2} such that for u,r; € Us, uol=1lou=wuand uor; = r;.
e U; = {ry,r2} such that for u,r; € Uz, uor; =r;.
e U; = {1,r} such that 1 is the identity element and ror =r.

o Up= {1}

137 simple group is a group that does not have any non-trivial normal subgroups.
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Note that Uy, U; and U; ore in fact subsemigroups of Us. Each simple-group machine in
a Krohn-Rhodes decomposition has a simple group that is a homomorphic image of some
subgroup of S. It is possible that the decomposition uses multiple copies of a particular
simple-group machine or no copy at all. Some further results and ramifications can be found
in [40].

A semigroup machine is called a reset if it corresponds to a right-zero semigroup R, that
is, for all r;,7; in R, r;or; = r;. A reset-identity machine R! = R U {1} corresponds to a
right-zero semigroup R with 1 included as the identity. A permutation-reset machine has
a semigroup (S, o) that is the union of a set of right zeros R = {r;,r2,...,m,} and a group
G = {,92,---»9m}. (The product r;og; for i € {1,...,n} and j € {1,...,m} is defined to
be r; og; = ri for some k € {1,...,n}. The remaining products are defined so that G forms
a group and R is a set of right zeros.) A permutation-reset machine can be decomposed
into a series-parallel pair with the group machine G at the front-end and the reset-identity
machine R! = RU {1} at the back-end. This construction can be found in [2].

The Zieger decomposition is a special case of the Krohn-Rhodes decomposition. It
states that any general semigroup machine S may be broken down into permutation-reset
components. All groups involved are homomorphic images of subgroups of S. More details
and an outline of the procedure may be found in [2].

Next, we discuss redundant implementations for reset-identity machines. By the Zieger
decomposition theorem, such machines together with simple-group machines are the only

building blocks needed to construct all possible semigroup machines.

Separate Monitors for Reset-Identity Machines

For a right-zero semigroup R, any equivalence relation (i.e., any partitioning of its elements)
is a congruence relation, [42]. This resuii extends to the monoid R! = R U {1}: any
partitioning of the elements of R! is a congruence relation, as long as the identity forms its
own partition. Using this we can characterize and construct all possible (separate) monitors

for a given reset-identity machine R!.

Example 2.6 Consider the standard semigroup machine Us defined in the previous section.

Its next-state function is given by the following table:
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Input || 1 [ry | 7o
State
1 1 Ty | T2
1 ry|m |7
9 T | Ty | T2

The only possible non-trivial partitioning is {{1},{7‘1,1'2}}; it results in the parity semi-
group T = {17, r}, defined by the surjective homomorphism 7 : U3 — T with n(1) = 17
and 7(r;) = w(ry) = r. Note that T is actually isomorphic to U;. Under this monitoring
scheme, machine T is simply a ccarser version of the original machine Us (it treats both

right zeros, ry and rs, in the same way). o

Example 2.7 Consider the reset-identity machine!* R} = {17,r,,72,,...,77,}. A possible
partitioning for it is {{17}, {r17, 7275 <o r77}} and it results in the same parity semigroup
T = U, as in the previous example (the mapping 7 : R} — T is given by n(17) = 17,
w(ry,) = w(re,) = ...=7(re,) =r).

Other partitionings are also possible as long as the identity forms its own class. This
flexibility in the choice of partitioning could be used to exploit to our advantage the error
model and the actual failures expected in the implementations of the original machine R}
and/or the monitor T.

For example, if R} is implemented digitally (each state being coded to three bits), then
we could choose our partitions to consist of states whose encodings are separated by large
Hamming distances. For example, if the binary encodings for the states of R} are 000 for the
identity, and 001, 010, ..., 111 for ry, to rz, respectively, then an appropriate partitioning
could be {po = {000}, p; = {001,010,100,111},p; = {011,101,110}}. This results in a
monitoring machine with semigroup 7' = Us: state 000 maps to the identity, whereas states
in partition p; map to r; and states in partition p; map to r;. Under this scheme, we
will be able to detect failures that cause single-bit errors in the original machine as long as
the monitoring machine operates correctly (to see this, notice that the Hamming distance

within each of the partitions is larger than 1).

In general, R}, will indicate the reset-identity machine with n right zeros (denoted by {ri,,r2,,.-;"n,})
and an identity element (denoted by 1.); thus, Us = R}.
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The scheme above can be made c-error correcting by ensuring that the Hamming dis-
tance within any partition is at least 2c + 1 (still assuming no failures in the monitoring
machine). Under more restrictive error models, other partitionings could be more effective.
For example, if failures in a given implementation cause bits to stick at “1”, then we should

aim for partitions with states separated by a large asymmetric distance, [87]. a

As we have seen through the above examples (and can easily prove), the monitoring
machine for R. is a smaller reset-identity machine R}, with 1 < p < n. Moreover, just as
in the group case, there exists a particular decomposition of R} in which the monitor RII,
appears as a front-end submachine. In fact, R} can be realized as a parallel decomposition
of R;I, and R; as follows: partition the n resets into p classes, each of which has at most
q elements (clearly, ¢ < » and ¢ X p > n); then, under appropriate encoding, the state of
machine R} can be used to specify the partition and the state of machine R} can specify
the exact element within each partition.

Note that in our examples we have assumed for simplicity that the monitoring machine
is fault-free. This might be a reasonable assumption if the monitor is a lot simpler than the
original machine. In case we want to consider failures in the monitor, the encoding of its

states should also enter the picture.

Non-Separate Redundant Implementations for Reset-Identity Machines

Just as in the case of group machines, a redundant implementation of a reset-identity
machine R} can be based on an injective semigroup homomorphism ¢ : Rl —— H that
reflects the state and input of R} into a larger semigroup machine H so that eq. (2.4) is
satisfied. Under proper initialization and fault-free conditions, machine H simulates the
reset-identity machine R}; furthermore, since ¢ is injective, there exists a mapping o that
can decode the state of H into the corresponding state of R..

An interesting case occurs when the monoid R} = {1,,r1,,72,, ..., n,} is homomorphi-
cally embedded into a larger monoid R} = {lm,71,., 72, s Tmm} fOr m > n (i.e., when
H = R})). The homomorphism ¢ : R} — R. is given by ¢(1,) = 1, and ¢(ri,) # &(j,)
for i # 7, ¢,7 in {1,2,...,n}. Clearly, ¢ is injective and there is a one-to-one decoding

mapping o from the subsemigroup R.! = ¢(RL) C R. onto RL. Assuming that the system
g n n m
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is implemented digitally (i.e., each state is encoded as a binary vector), then in order to
protect against single-bit errors we would need to ensure that the encodings of the states
in the set of valid results R;} are separated by large Hamming distances. Bit errors can be

detected by checking whether the resulting encoding is in R!.

Example 2.8 One way to add redundancy into the semigroup machine R} = {12,71,,72,}
is by mapping it into machine RY. Any mapping ¢ of the form ¢(12) = 17, ¢(r1,) = ri; and
d(re,) = rj; (4,7 € {1,2,...,7}, j # ©) is a valid embedding. In order to achieve detection
of single failures, we need to ensure that each failure will result in a state outside the set of
valid results S’.

If machine R} is implemented digitally (with its states encoded into 3-bit binary vectors),
failures that result in single-bit errors can be detected by choosing the encodings for ¢(12) =
17, ¢(r1,) = ri; and P(re,) = rj; (4,7 € {1,2,...,7}) to be separated by a Hamming distance
of at least 2 (e.g., 001 for 17, 010 for r;, and 100 for r;,). m}

2.4 Redundant Implementations of Finite Semiautcmata

Error detection and correction is extremely important in the design of finite-state controllers
for critical applications. In this section we use algebraic homomorphisms to develop and
analyze separate and non-separate redundant implementations for finite semiautomata.
Given a finite semiautomaton (FS) S with state set @, input set X and next-state
function 8, we can associaie with it a unique semigroup (S,0), [2, 3]. The construction
of S is as follows: for every input sequence of finite length n, denoted by z = z; z;,...z;,
(where z;, € X and n > 0), let s; : @ —> Q be the induced!® state mapping: sz(g0) = gn
if starting from state go and sequentially applying inputs z;,, z;,, and so on (up to z;,),
FS S ends up in state ¢,. There is a finite number of such mappings and our construction
is likely to use only a subset of them. If we let S be the unicn of these mappings s, then

(S, 0) forms a monoid under the composition of mappings given by

Sz O Szt = Sz’

15The underlying assumption is that at any given state there are defined transitions for all possible inputs.
This is not necessarily true, but it can be fixed easily by adding an absorbing “dummy” state and using it
as the next state for all transitions that were not defined originally.
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where z2’ denotes the concatenation of the two input sequences z and z’. One can check that
o is an associative operation (it inherits associativity from the composition of mappings).
The identity element of S is the identity mapping sy which corresponds to the empty input
sequence A (A is assumed to have length 0).

The semigroup machine (S, o) of a given FS & has a larger number of states, potentially
exponential in the number of states of the original semiautomaton. It captures, however, the
behavior of the finite semiautomaton by specifying equivalences between different sequences
of inputs (which is also the description an engineer is likely to be given before constructing
a finite semiautomaton). This representation allows one to explore techniques for algebraic
machine decomposition and parallelism. Furthermore, it introduces alternative possibilities
for semiautomata implementation and state assignment, and it is matched to our framework

for introducing redundancy and eventually fault tolerance.

Example 2.9 A permutation-reset finite semiautomaton is one for which every input either
produces a permutation of the states or resets the semiautomaton to a constant state, [47].
Here, we consider the permutation-reset FS S with state set @ = {q1, ¢2, g3}, input set
X = {=z1,z2} (input z; gererates a permutation whereas input z; is a reset) and the

following next-state function:

Input || = | 22
State
q1 g2 | Q1
q2 q1 | q1
q3 q3 | 91

To generate the semigroup of the finite semiautomaton, we extend this table to sequences

of length 0, 1, 2, etc. as follows:

Input Sequence || A | 21 | 22 | 2121 | T122 | T22y | T222
State
q1 G119 |41 q Q1 q2 q1
g2 92 |91 | 1 q2 q1 q2 q1
g3 93 |1 43 | 41 g3 q1 q2 q

We see that the input sequences induce four different state mappings: ¢ = sy =
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{A, 7121}, b = 55, = {21}, ¢ = 85, = {T2, %172, 2222}, d = Sgy0, = {T221}. It is not hard
to convince oneself that longer input sequences will induce mappings that have already
been generated by one of these four partitions. For example, z2z1222; = z2(z122)2) =
z9(z2)y = (Tox2)zy = (x2)z1 = z2z1 (Where = denotes input sequence equivalence), and
so on. The semigroup S of the permutation-reset FS § is therefore given by the following

table:

“Input” {la|b|cid
“State”
a albicld
b blalel|d
c cldlc|d
d dlc|c|d

One can check that the table defines an associative operation. The table can also be
regarded as the next-state transiticn table for the semigroup machine S: the “states” and
the “inputs” are the same set of elements (given by {e,b,c,d}). Inputs b = s, and ¢ = s,
are in some sense equivalent to the inputs x; and z; of the original FS §. Similarly, if we
assume that the starting state is g3, states a, b are “equivalent” to state g3 in S, state c is
“equivalent” to ¢; and state d to g2 (because, if we start at state g3, we end up in state g3
under input sequence 121 (@ = Sz, 4, ), in state g3 under input sequence z; (b = s, ), and
so forth. Note that the semigroup S consists of the subgroup {a,b} and the set of resets
{ec,d}; more generally, the semigroup of a permutation-reset finite semiautomaton is the

union of a group and a set of resets. O

The reverse construction is also possible but not unique: given a finite monoid (S, 0),
one can generate many different finite semiautomata that have S as their monoid. One
possibility is to take Q = S, X = S, and to set §(s;,8;) = s; o sp; another one is to
take any set of generators for S as the input set X. Therefore, even though each finite
semiautomaton has a unique semigroup, there are many finite semiautomata corresponding
to a given semigroup.

Suppose that (S,0) is the semigroup of a reduced!® FS S (with state set Q, input set

16The FS S is reduced if for all pairs of states g1,gq2 € Q (g1 # g2) there exists a finite input sequence
T = &y, T1,...Ti, such that sz(q1) # sz(g2), [47).
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X and next-state function 8). Then S can also be regarded as a semigroup machine (with
state s; € S, input s; € S and next-state function s; o s3). In certain cases that will be
of interest for us later on, we will need to restrict the inputs of semigroup machine S to
the subset of available inputs I = {sz,, Sz, .y Szn} C S (Where m = |X| is the number of
distinct inputs for F'S §). By restricting the inputs to subset 7, we obtain an F'S Sy (which
is in some sense simpler than S) with state s € S, input s;; € I (1 <7 < m) and next state
given by sos; € S. Under the condition that the original FS § has a starting state, i.e., a
state from which all other states are reachable, it can be shown that FS S can be simulated
by 81, [47]. Specifically, there exist a surjective mapping ¢ : S — @ such that for all s € S
and all s, €1

((s0sz,) = ds5(¢(s), 2i) -

The following example illustrates this, using FS & in Example 2.9:

Example 2.9 (continued): The set of available inputs for the semigroup machine S in
Example 2.9 is given by I = {s;,, 5z, } = {b, c}; therefore, FS S; has the following next-state

function:

Input | bjc
State
a bic
b alc
c d|c
d clc

Machine &; simulates the original FS §. To see this, define  using the following con-
struction: pick the starting state g3 of S (any starting state would do) and for each state
mapping s; € S, set ((sz) = s.(g3). This results in {(a) = ((sa) = g3, ¢(b) = ((sz,) = ¢3,
¢(e) = ((sz;) = @1 and ((d) = ((52,2,) = @ o

2.4.1 Characterization of Non-Separate Redundant Implementations

In this section we construct redundant implementations for finite semiautomata by reflecting

the state of the original finite semiautomaton into a larger, redundant semiautomaton that
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preserves the properties and state of the original one in some encoded form. The redundancy
in the larger semiautomaton can be used for error detection and correction.
The following definition formalizes the netion of a non-separate redundant implementa-

tion:

Definition 2.3 A redundant implementation of an FS S (with state set Qs, input set Xg,
initial state go, and nezxt-state function és) is an FS H (with a larger state set Qy, input
set Xy, initial state qo,, and nezxt-state function d3;) that concurrently simulates S in the
following sense: there ezists a one-to-one mapping £ : Q3 — Qs (where Q% = £71(Qs) C

Q) and an injective mapping € : Xs — Xy (from Xs into Xy ) such that:

£(83(€7(gs), €(25))) = 05(gs, 25) (2.5)
fOf' all gs € QS: zs € Xs.

If we initialize # to state go,, = £™!(gos) and encode the input z, using mapping &,
then the state of S at all time steps can be recovered from the state of # through the
decoding mapping £, i.e., gs = £(gx); this can be proved by induction. The subset Q%, can
be regarded as the subset of valid states; detecting a state outside Q%, implies that a failure
has taken place. Note that in the special case where a group (semigroup) machine (G, 0)
is to be protected through an embedding into a group (semigroup) machine (H,o), the
next-state functions are given by the group (semigroup) products and the equation above
reduces to egs. (2.1) and (2.3).

At the end of each time step in the redundant FS H, we perform concurrent error detec-
tion/correction to check whether the resulting state belongs to the set of valid states (Q%).
Note that this detection/correction stage is input-independent (i.e., the detector/corrector
does not keep track of the input that has been applied). The conditions for single-error

detection and correction can be found in Appendix A.

Theorem 2.1 If FS H is a redundant implementation of FS 8§ (as defined in eq. (2.5)),
then the semigroup S of S is isomorphic to a subsemigroup of H (H denotes the semigroup

of FSH).
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Proof: If we let g, = £7(g,) (since £ is invertible), eq. (2.5) becomes

(01 (9h,€(25))) = 85(£(qn), =5) (2.6)

for all ¢} € Q%, z; € Xs. The redundant implementation # as defined by the above
equation is a particular instance of a cover machine (or simulator). A cover machine C for
S is a finite semiautomaton that simulates S as in eq. (2.6), except that the mapping £ is
only required to be surjective (i.e., the mapping £~! does not necessarily exist and the set
Q% may have order larger or equal to the order of Qs). It can be shown that the semigroup
S is homomorphic to a subsemigroup of C (where C is the semigroup of the cover machine
C), [40]. For the redundant implementation #, the requirement that £ is one-to-one ensures

that S will be isomorphic to a subsemigroup of H. O

The preceding discussion shows how one can use the results of Section 2.2.2 to study
fault tolerance for an FS §. We construct the corresponding semigroup S and study injective
homomorphisms of the form £ : S — H (where H is a larger semigroup that includes an
isomorphic copy of S as a subsemigroup). Such homomorphisms incorporate redundancy

into the implementation of S in a non-separate way.

2.4.2 Characterization of Separate Redundant Implementations

Definition 2.4 An FS T (with state set QT, input set X7 and next-state function d71) is
a separate monitor fco an FS § (with state set Qs, input set Xs and next-state function

ds ) if the following condition is satisfied: for all gs € Qs, s € Xs

C(0s(gs: z5)) = 67(C(g5),€(25)) (2.7)

where ( is a surjective mapping from Qs onto Q7 and £ is a surjective mapping from Xs

onto X7.

Note that if the input mapping £ is one-to-one, then FS 7 being a separate monitor for
FS § implies that FS S is a cover for 7 (the converse is not true because a cover may have

additional states that are not used when simulating 7).
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The above definition for separate monitors (but with £ being the identity mapping) has
appeared in [54, 78, 77}. Monitor 7 operates in parallel and separately from S; it requires
no state information from &, only (a function £ of) its input z,. Condition (2.7) guarantees
that, if FS 7T is initialized to go, = {(qos) (Where gog is the initial state of ), its future
state at all time steps will be given by ((gs;) (where g, is the corresponding state in §).
This can be proved by induction. Therefore, the separate monitor 7 can serve as a separate

(“parity”) checker for FS S.

Theorem 2.2 If FS T is a separate monitor for an FS S, then the semigroup T of T is
isomorphic to S/~ for a congruence relation ~ of semigroup S (the semigroup of FS S). In

other words, there exists a homomorphism w : S — T such that T = ©(S).

Proof: It can be shown that if T is a separate monitor for S, then its semigroup T is a
(surjective) homomorphic image of S, the semigroup of S, [40]. Combining this with the
results of Section 2.2.2 (where we used the fact that T is a surjective homomorphic image
of S only if T' = S/ ~ for some appropriate congruence relation ~), we conclude that 7
can be a moritor for S only if its semigroup T is isomorphic to S/~ for some congruence

relation ~ in S. In particular, when S is a group, 7 has to be a quotient groupof S. O
The above th *rem provides an indirect method of constructing monitoring schemes for
semiautomata:

1. given an FS S, construct the corresponding semigroup machine S;

2. find T = S/~ for a congruence relation ~ in S, i.e., find a surjective semigroup

homomorphism 7 : S+ T such that T' = 7(S);

3. obtain FS 77, (with semigroup T') by restricting the semigroup machine T' to the
input set IT = w(Is) (where Is corresponds to the available inputs Xs in the original
FS §). This forces 7}, to use inputs that correspond to the original input set Xs in
S;

4. FS T, can be used to monitor Sy (which in turn can simulate the original FS S).

65



This procedure is best illustrated by an example, continuing Example 2.9.

Example 2.9 (continued): Let S be the semigroup obtained for FS & in Example 2.9.
One easily checks that 7 : S —— U; = {1,r} defined by n(a) = n{b) =1, 7(c) = n(d) = ris
a surjective homomorphism. The subset of available inputs for S, given by I's = {s;,,5z,} =
{b, c}, maps to the input set It = n(Is) = {1,r}, which is the subset of available inputs for
the separate monitor 7. The restriction of the semigroup machine T to inputs I gives FS

T1, which is a separate monitor for FS §y;. To see this, notice that:

e The mapping £ from the inputs of Sy, to the inputs of Ty, is given by the restriction of

7 on the input set Is. In this particular case, we get: £(b) = 7 (d) = 1,€(c) = 7(c) = r.

e The mapping ¢ from the states of Sy, to the states of 7, is given by =, that is,
C(e) =n(c)=r,¢(d) = 7(d) = r and ((a) = 7(a) = 1.

Note that F'S S;; and monitor 77, are not necessarily in a reduced form; if desirable,

one can employ state reduction techniques to reduce the number of states, [47]. o

Using the approach illustrated in the above example, we can design separate monitors
T for FS Sy by finding semigroup homomorphisms from S onto T (where S and T are
the corresponding semigroups for the two finite semiautomata). Equivalently, as we argued
in Section 2.2.2, one can look for congruence relations on semigroup S.

The authors of [54] designed separate monitors for an FS S using substitution property
(SP) partitions on its state set Qs. (A partitioning {P;} of the state set Qs is an SP
partition if, for each partition P and each input z; in the input set Xg, the next states of
all states in P under input z; are confined to some partition F;.) Our approach focuses
instead on congruence relations in the semigroup S of the given FS S§. The result is a
monitor for FS Sg,, the restriction of semigroup machine S to the set of available inputs.
If we reduce both Sy; and Tp, so that they have the minimum number of states [47],
we recover the results of [54]. Our approach, however, focuses more on the structure of
the finite semiautomata (as summarized by their semigroups) and can take advantage of
machine decomposition concepts (resulting in important simplifications in certain special
cases, as we have seen with group or reset-identity machines).

An additional advantage of constructing the semigroup of S is that the dynamics of the
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finite semiautomata are completely specified. For instance, we can analyze not only the

next-state function, but also the n-step nezt-state function é, defined as

On(gs, z) = 6(...(6(8(gsy Zi,) s Tiy),s -o), Tiy)

for all g, € Qs and all length-n sequences z = z;,%;,...z;, (With z;, € Xs). Note that for
n = 1, §; = 4, whereas for n = 0, dp can be defined as dy(gs, A) = g;. By focusing on the
n-step next-state function é,, we can construct n-step monitors for §. Such monitors have
as inputs sequences of length n and compare their state against the state of the original

finite semiautomaton once every n time steps.

Example 2.10 The 2-step next-state function for the finite semiautomaton in Example 2.9

is given by the following table:

Input Sequence || 121 | T1%2 | 221 | T222
State
Q@ V)] 7 72 q1
q2 92 q1 q2 q1
as q3 Q1 q2 0O

The semigroup generated by this function is given by the subsemigroup of S generated by

the elements {a, c,d} (which correspond to inputs {z11, Z221, 2122 = z272} respectively):

“Input” |{a | c|d
“State”
a ajcld
c cleld
d dleld

By considering surjective homomorphisms of the above semigroup, one can construct sepa-

rate monitors that check the operation of FS S, once every two inputs. a

2.5 Summary

In this chapter we considered the problem of systematically constructing redundant imple-

mentations for algebraic machines (group/semigroup machines and finite semiautomata).
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Our approach was hardware-independent and resulted in appropriate redundant implemen-
tations that are based on algebraic embeddings. We did not made any explicit connections
with hardware failure modes, but we did address issues regarding machine decomposition.
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