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Abstract 

When implementing a digital filter, it is important to utilize in  the 
design a bound or estimate of the  largest  output value which will be 
obtained. Such a bound is  particularly useful when fixed point arith- 
metic is  to  be used since  it  assists in determining register  lengths 
necessary to prevent overflow. In  this  paper we consider the  class of 
digital  filters which have  an impulse response of finite duration  and are 
implemented by means of circular convolutions performed using the 
discrete  Fourier  transform.  A  least upper bound is  obtained  for  the 
maximum possible output of a circular convolution for the  general 
case of complex input sequences. For  the  case of real input sequences, 
a lower bound on the  least upper bound is obtained. The use of these 
results  in  the implementation of this class of digital  filters is discussed. 
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1. Introduction 

When implementing a  digital filter, either  in  hardware 
or  on  a  computer, it is important  to utilize in  the design a 
bound  or  estimate of the largest output value which will 
be  obtained.  Such  a  bound is particularly useful when 
fixed point  arithmetic is to be used, since it assists in de- 
termining register lengths necessary to prevent overflow. 
This  paper  considers  the class of digital filters which have 
an impulse response of finite duration  and  are imple- 
mented by means of convolution  sums  performed using 
the discrete Fourier  transform  (DFT).  The  output sam- 
ples of such a filter are obtained  from the results of N -  
point  circular  convolutions of the filter impulse response 
(kernel) with sections of the  input.  These  circular  convolu- 
tions  are obtained by computing  the DFT of the  input 
section, multiplying by the  DFT of the impulse response, 
and inverse transforming  the  result.  Stockham [ 11 has dis- 
cussed procedures  for utilizing the results of these circular 
convolutions to perform  linear  convolutions,  rationales 
for  choosing the  transform length N ,  and speed advan- 
tages to be  gained by using the  fast  Fourier  transform 
(FFT)  to implement  the DFT. We concern ourselves here 
only with bounding the  output of the  N-point circular 
convolutions. 

I I .  Problem Statement 

According to the above discussion, we would like to 
determine an upper  bound on  the maximum  modulus of 
an  output value that can result from  an  N-point circular 
convolution.  With (x,} denoting  the  input sequence, 
{ h, ] denoting  the kernel, and { y ,  } denoting  the output 
sequence, we have 

N- 1 

Y n  = X k h ( n - k )  mod N n 0, 1, ' ' ' , 1%' - 1 (1)  
k=O 

where it  is  understood that, in general, each of the  three 
sequences may  be complex. The  circular  convolution  is 
accomplished by forming  the  product 

Y k  = H k X k  (2) 
where 

1 .&F-1 

N ,=O 

1 N-1 

A' n-0 

X k  = - & W " k  lc = 0, I ,  . . * , N - 1 (3) 

Y k  = - ?J,Tti"~ 12 = 0, 1, * f , A  47 - 1 (4) 

H k  = h,Wnk k = 0, 1, . . . , N - 1 ( 5 )  
A- 1 

n=@ 

with W defined as W= exp [ j '2x /N] .  
For convenience in notation, we imagine the  computa- 

tion to be  carried out on fixed point  fractions.  Thus we 
bound the  input values so that 

1 X , /  I 1. (6 )  

j X k  i I 1. 
By virtue of (3) we are  then assured that 
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so that  the values of X k  do  not overflow in the fixed point 
word. 

In the typical cases, the  sequence h, is known and,  con- 
sequently, so is the  sequence Hk. Therefore  it is not neces- 
sary to continually  evaluate ( 5 ) ;  that is, the sequence Hk 
is computed,  normalized,  and  stored in advance. Thus  it 
is reasonable to only  apply  a  normalization to Hk and  not 
to h,, so that we require' 

A  normalization of the  transform of  the  kernel so that 
the maximum  modulus is unity  allows  maximum  energy 
transfer  through  the filter, consistent with the  require- 
ment  that Yk does not overflow the register length. 

Our objective is to obtain  an  upper  bound  on 1 y.1 for 
all  sequences { xn } and { Hk } consistent with (6)  and (7). 
This  bound will specify, for  example,  the scaling factor to 
be  applied in computing  the inverse of (4) to  guarantee 
that no value  of yn overflows the fixed point  word.  The 
following  results will be  obtained. 

Result A :  With  the  above  constraints,  the result of the 
N-point circular convolution of (1) is bounded  by 

lYn I I 4n. 
Result B: In the general  case  where f xn } and { h, } 

are  allowed to be  complex, the  bound in Result  A is a 
least upper  bound. This will be  shown by demonstrating 
a  sequence that  can achieve the  bound. 

Result C: If we restrict { xn } and/or ( h ,  } to be real 
valued, the  bound of Result  A is no longer  a least upper 
bound for every N .  However, the least upper  bound P(N) 
is  itself bounded by 

47 
__ I P ( N )  I 477. 

2 

111. Derivation of Results 

Proof  of Result A 

Parseval's relation requires that 
hr- I N- 1 

n=O k=O 

Substituting (2) into (8) and using (7), 

n=O k=O 

or, using (9), 
A'- 1 N- 1 

n=O  n=O 

1 The restrictions of ( 6 )  and (7) do  not impose  any loss of gen- 
erality,  and  are  introduced  only  for  convenience.  The  bounds to be 
derived on max 1 y. 1 can be interpreted  in a more  general sense as 
boundsontheratiomax  Iy.l /(maxlx,ImaxIHk/}.  

with equality if and only if I Hkl = 1. However, (6)  re- 
quires  that 

n=O 

with equality if and only if 1 x, I = 1. Combining (1 1) and 
( W ,  

n=O 

But 

n=O 

and  therefore 
I Y n  1 I 48. (15) 

Proof  of Result B 

To show that 43 is a least upper  bound  on 1 ~ ~ 1 ,  we 
review the  conditions  for equality in the inequalities used 
above.  We  observe  that  for equality to be satisfied in (15), 
it  must be satisfied in  (1 l), (12), and (14), requiring  that 

;; 1:i f: 
3) Any output sequence f yn  } which has  a  point whose 

modulus is equal to 4 N  can  contain  only  one  non- 
zero point. 

The  third  requirement  can  be  rephrased  as  a  requirement 
on the  input sequence and  on  the sequence Hk. Specif- 
ically, if the  output sequence  contains  only  one  nonzero 
point  then Y k  for  this sequence must be  of the  form 

where p is a  real  constant  and no is an integer so that,  from 
(21, 

We can  express Hk and x k  as 

Hi, = e j n k  

and 
x k  = 1 xk I ejak 

where we have used the  fact  that 1 HkI = 1. For (16) to  be 
satisfied, then 

IXkI = I A I  (17) 
and 

2 x  

hT 
r k  = - Bk + - nok + p. 

Therefore,  requirement 3) can  be  replaced by the  require- 
ment  that: 

3') 1 x k l  =constant  and  the  phase of Hk be chosen to 

(18) 

satisfy (1 8). 
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As  an  additional observation, we note  that  for any where Rk and I, are  real valued and (see Appendix) 
input sequence {x, f , 1 

k=O 

with equality  for  some value of II if and only if I HA[  = 1 
and  the phase of Hk is chosen on the basis of (18). There- 
fore,  for  any {x, ] the  output modulus is maximized 
when Hi, is chosen in  this  manner.  This  maximum  value 
will only equal 43, however, if, in  addition, 1 xnl = 1 and 
1 xk 1 = constant. 

For N even, a sequence having the  property  that 
1 x,! = 1 and I Xkl =constant is (see Appendix)  the 
sequence 

For N odd,  a sequence with 1 x, I = 1  and 1 Xkl =constant 
is2 (see Appendix) 

Using one of these sequences as  the  input,  and  choosing 
Hk= eiqk, with q k  given by (IS), equality  in (15) can  be 
achieved for  any N .  Thus  the  bound given in Result A is 
a  least  upper  bound. 

Proof of Result C 
Consider first the case where { x, } is restricted to be 

real. It can  be verified by consideration of all possibilities 
that for N =  2  and N= 3, no real sequence exists for which 
both  the sequence and its  transform have constant  mod- 
ulus.  Therefore,  for these values of N at least, (15) does not 
provide  a least upper  bound, since requirements 2) and 
3') cannot be satisfied simultaneously. Note, however, 
that  for N=4 the  real sequence (x, 1 = { 1, 1, - 1, 11 
satisfies 2) and 3'), and  therefore  for N =  4, (15) is a  least 
upper  bound. 

If { h, } is required to be  real (with no such restriction 
on {x, I), then  one  can verify for N =  2 that if ( } is 
chosen to satisfy 2) and 3'), then  the  phase of Hk cannot 
be chosen to satisfy 3'), and  thus (1 5) is not a. least upper 
bound  for  this case. 

To show that  p(N)>dR/2 for {x, ] and/or ( h ,  ] 
restricted to be real valued, it suffices to show that 
p (N)kdX/2  for  both (x, ] and { h, } real valued.  This 
we will demonstrate only for  the  case where N is even, 
since the  argument  for N odd  is  identical. 

Consider  the complex sequence 

R h 2  + I 2  = 2 ( 2  1) 
N 

Since exp ~ T I I ~ / N ]  is an even function of n, i.e., 

exp [jnn2:/1~] = exp [jn ( 1 ~  - n) */X], 
Rk is the DFT of cos ( x n 2 / N )  and I k  is the DFT of 
sin (rn2/N).  Now, if  we choose 

X 7 L  = cos 

and 

then 

Similarly, if  we choose  x,'=sin (xn2/N) ,  then we can 
choose { Hk f in such a way that 

N- 1 

yo' = I I k I  s (23) 
k=O 

We note  that since { xn ] and {X,' ] are  both real, the 
values y o  and yo' will be  obtained with { Hk f having even 
magnitude  and  odd  phase,  corresponding to real { h ,  f . 
Now, if p is the least  upper  bound  for ly,l, then 

P 2 yo 

P 2 Yo' 
and,  from (21), 

(24a) 

(241,) 

and, hence, 

I R k l  2 dpI R k I 2  (2%) 

1 Ii: [ 2 dr 1 I k  1 2 .  (2513) 

Combining (22), (23), (24), and ( 2 5 ) ,  

k = O  k=O 

Adding (26a) and (26b) and using (21), 

The  sequences (19) and (20) were suggested to the authors by Since we argued previously that PldNy is 
C. M. Rader of the M.I.T. Lincoln Laboratory. proved. 
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IV. Discussion 

The  bound obtained  in  the previous sections  can be uti- 
lized in several ways. If the DFT computation is carried 
out using a  block  floating-point  strategy so that  arrays 
are rescaled only when overflows occur,  then a final re- 
scaling must  be carried out after  each section is processed 
so that  it is compatible  with  the  results  from  previous 
sections. For general  input  and filter characteristics, the 
final rescaling can  be chosen based on the  bounds given 
here to insure that  the  output will not exceed the  available 
register length. 

The use of block  floating-point  computation  requires 
the  incorporation of an overflow test. In some cases we 
may wish instead to incorporate scaling in the  computa- 
tion  in  such a way that we are  guaranteed never to over- 
flow. For example, when we realize the DFT with a power 
of two  algorithm, overflows in  the FFT computation of 
{ Xk ] will be  prevented by including a scaling of 3 at each 
stage, since the  maximum  modulus of an  array in the 
computation  is  nondecreasing  and increases by at most  a 
factor of two as we proceed  from  one  stage to  the next 
[ 2 ] .  With  this scaling, the  bound derived in this  paper 
guarantees that with a  power of two  computation, scaling 
is not required  in  more than half the  arrays in the inverse 
FFT computation.  Therefore, including a scaling of 3 in 
the first half of the stages in the inverse FFT will guaran- 
tee that there are  no overflows in the  remainder of the 
computation.  The  fact  that /?2 .\/N/2 indicates that if  we 
restrict ourselves to only real input  data,  at  most  one 
rescaling could  be  eliminated  for  some values of N .  

The  bounds derived and  method of scaling mentioned 
above  apply to  the general case;  that is, except for the 
normalization of (7), they do  not depend  on  the filter 
characteristics.  This is useful when we wish to fix the scal- 
ing  strategy  without reference to any  particular filter. For 
specific filter characteristics, the  bound  can be  reduced. 
Specifically, it  can be verified from (1) and (6) that in 
terms of { h, ] 

,VI- 1 

I Y n l  -5 c 1 hlI (28) 
L O  

where M denotes  the  length of the impulse response.  This 
is  a  least  upper  bound since a sequence {x.) can  be 
selected which will result  in  this value in the  output.  This 
will be significantly lower than  the  bound  represented  in 
(15) if, for example, the filter is very narrow  band,  or if 
the kernel  has  many  points with zero value. 

Appendix 

We wish to demonstrate  that  for N even, the sequence 

x,, = exp [ j  $1 n - O , l ; ~ . , N - l  
(29) N even 

has a discrete Fourier  transform with constant  modulus 
and  that  for N odd,  the sequence 

has  a discrete Fourier  transform with constant  modulus. 
We consider first the  case of (29). Letting X, denote  the 
DFT of xn, 

or 

We wish to show first that 

is a constant.  It is easily verified by a  substitution of 
variables that 

2 A -  1 

exp [jr(n + I c ) 2 / A i ]  = const'ant, B. ( 3 2 )  
n=O 

But 
2.v- 1 

C exp [ j n h  + k)2/11r] 
n=O 

n= O ? & = x  

A- 1 

= exp [jn(n + I C )  */'VI 
n=O 

A'- 1 + exp [jn(n + 1 2 ) * / ~ ]  exp [ j n ~ ]  
n=O 

or, since N is even, 

n=O 

= 2 exp [jn(n + I c ) * / N ] .  
A- 1 

n=O 

(33) 

Combining (3 I), (32), and (33), 

1 

N 
xk = - B . exp [ -jnk2/1V]. 

To determine  the  modulus of B, Parseval's relation  re- 
quires that 

A'- 1 A'- 1 

j2,p = N I X k 1 2  
n=O 

or 

Therefore 

n=O 

N = 1 B 1 2 .  

IB1 =d/N 
or 

It can  be verified by example  (try N =  3) that  the sequence 
of (29) does not have a DFT with constant modulus if N 
is odd. 

OPPENHEIM AND WEINSTEIN: OUTPUT BOUND ON CIRCULAR  CONVOLUTION 123 



Consider next the sequence of (30). We will show that 
Xk has  constant  modulus by showing that  the circular 
autocorrelation of x,, which we denote by c,, is nonzero 
only at n= 0. Specifically, consider 

s- 1 

C?L = C x&+r)mod Y 
7=O 

x- 1 ,2n[(n + r)*]mod N 
= c exp [ j  y ]  exp [ -3 -_____----- 

7=0 N 

Now, 

,2a [ (n + T )  *I mod 

N 

Therefore, 

Since we are considering the case of N odd, 

1 n=O 
0 n f O .  

Since 1 x ~ /  is constant, we may again use ParseVal’s 
theorem to show that 1 Xkl = l / d N .  
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