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Abstract—In a variety of signal processing and communications
contexts, erasures occur inadvertently or can be intentionally in-
troduced as part of a data reduction strategy. This paper discusses
causal compensation for erasures in frame representations of sig-
nals. The approach described assumes linear synthesis of the signal
using a prespecified frame but no specific generation mechanism
for the coefficients. Under this assumption, it is demonstrated that
erasures can be compensated for using low-complexity causal sys-
tems. If the transmitter is aware of the occurrence of the erasure,
an optimal compensation is to project the erasure error to the re-
maining coefficients. It is demonstrated that the same compensa-
tion can be executed using a transmitter/receiver combination in
which the transmitter is not aware of the erasure occurrence. The
transmitter precompensates using projections, as if assuming era-
sures will occur. The receiver undoes the compensation for the co-
efficients that have not been erased, thus maintaining the compen-
sation only of the erased coefficients. The stability of the resulting
systems is explored, and stability conditions are derived. It is shown
that stability for any erasure pattern can be enforced by optimizing
a constrained quadratic program at the system design stage. The
paper concludes with examples and simulations that verify the the-
oretical results and illustrate key issues in the algorithms.

Index Terms—Erasures, frames, overcomplete signal represen-
tations.

I. INTRODUCTION

I N a variety of signal processing and communications con-
texts, erasures occur inadvertently or can be intentionally

introduced as part of a data reduction strategy. Frame represen-
tations are generalizations of basis representations providing re-
dundancy and, therefore, robustness to signal degradation such
as noise, quantization, and erasures. This paper explores the use
of projections to compensate for erasures in frame representa-
tions.
A. Background

A finite frame represents a vector in a space of finite
dimension using the synthesis equation

(1)
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in which the are the representation coefficients, and the syn-
thesis frame vectors span the space .
This condition requires . The ratio denotes
the redundancy of the frame. For infinite-dimensional spaces,
the definition above is extended to ensure the sum converges for
all with finite magnitude.

Frames are also used as analysis vector sets to determine a set
of representation coefficients using inner products

(2)

in which the analysis frame vectors also
span . These coefficients can subsequently be used to recon-
struct using, for example, an appropriate synthesis set. Details
on frame representations and the relationships of the analysis
and synthesis vector sets can be found in a variety of texts such
as [1] and [2].

The coefficients that represent a vector using a prespec-
ified synthesis frame and the synthesis (1) can be deter-
mined in a variety of ways (for some examples, see [3]–[5] and
references within). Similarly, the coefficients of a vector an-
alyzed using the analysis frame and (2) can be used in a variety
of ways to synthesize the vector. For example, it is not neces-
sary to use all the coefficients to reconstruct the vector. A subset
of the coefficients is sufficient to represent the vector as long as
the corresponding frame vectors still span the space. In this case,
perfect reconstruction is possible, making the representation ro-
bust to erasures during transmission [5].

Most of the previous work in erasures on frame representa-
tions assumes that is represented using inner products with
a fixed analysis frame. Under this assumption, the synthesis is
modified to reconstruct the original signal despite erasures of
certain components. For example, linear reconstruction can be
performed using a recomputed synthesis frame and (1) [5], [6].
Alternatively, the nonerased coefficients can be used to recom-
pute the erased in order to fill in the coefficient stream. The
vector is linearly synthesized using the recovered stream and
the original synthesis frame [7]. However, neither approach is
possible without assuming an expansion using (2).

In this paper, rather than assuming that the vector is analyzed
using the analysis (2), we make no assumptions on how the
representation coefficients are generated. We only assume
that the synthesis is performed using a prespecified synthesis
frame and the synthesis sum of (1). The representation coeffi-
cients may be generated in a variety of ways, including but not
limited to the analysis equation, matching pursuit [3], or basis
pursuit [4]. Without assuming anything about the origin of the
coefficients, it is not possible to fill in for the missing ones or
appropriately modify the synthesis frame at the receiver.
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In principle, it is possible to synthesize at the transmitter
using the synthesis frame and the synthesis sum of (1). Subse-
quently, a frame representation can be recomputed using any
analysis frame with the same redundancy and transmit
these coefficients instead. The receiver receives some of the
recomputed coefficients and synthesizes using the dual of

given the erasure pattern, as discussed in [5]–[7]. This ap-
proach, however, requires significant computation and knowl-
edge of most of the erasure pattern either at the transmitter or
the receiver, which can generate significant delays in the recon-
struction of the signal.

The algorithms described in this paper, instead, modify the
representation coefficients using orthogonal projections at the
transmitter to compensate for an erasure. This assumes that the
transmitter is aware that an erasure occurs, which is the first case
considered. We also consider the case in which a transmitter
encodes the coefficients such that only the receiver is aware
that an erasure occurs. In this case, the transmitter modifies the
frame representation assuming the erasures will occur, and the
receiver undoes the changes if the erasures do not occur. The
input-output behavior of the transmitter/receiver pair is identical
to the input-output behavior of a transmitter which is aware of
the erasure occurrence.

One advantage of using this approach is that the complete
erasure pattern does not need to be known in advance. Further-
more, the representation coefficients may be generated in a va-
riety of ways and it is not necessary to synthesize and reanalyze
the signal at the transmitter or the receiver. The drawback
is that the causality and stability constraints imposed in part
of this development often allow only for partial compensation
of the error. The approach described here is more appropriate
for large or infinite frame representations and streaming condi-
tions, in which delay or computational complexity is important.
This method is not well suited to applications using small finite
frames, in which delay is not an issue. Furthermore, the trans-
mitter described in Section III-B can potentially lead to an in-
crease in the transmitted signal power, which might be an issue,
depending on the application.

Frame designs that are robust to erasures and quantization
have been extensively studied in the literature for various classes
of frames, synthesis assumptions, and optimality criteria (for
some examples, see [5], [6], [8]–[15]). Similar to the existing
work on algorithms mentioned above, and contrary to the ap-
proach presented in this paper, most of this work assumes the
frame is used to perform analysis using inner products instead of
the linear synthesis equation. Some design principles carry over
to the compensation methods presented in this paper. Careful
examination of the frame design in the context of the algorithms
presented here is an interesting topic beyond the scope of this
paper. Furthermore, in several applications in which these al-
gorithms are applicable the frame is not designed but predeter-
mined by the problem.

The use of projections to compensate for erasures is similar
to their use in [16] to extend quantization noise shaping to arbi-
trary frame expansions. However, in [16], the quantization error
is known at the transmitter—not necessarily the case with era-
sure errors. The use of redundancy to compensate for erasures
assuming a fixed reconstruction method has also been consid-
ered in a different context in [17]. In that work the error is again

known at the transmitter and only the case of LTI reconstruction
filters is considered. The problem is formulated and solved as a
constrained optimization.

B. Applications

The potential applications of this approach are several. One
area of applications is in faulty D/A converters that fail to output
some of the coefficients in the reconstruction, replacing the cor-
responding coefficients by zero, as described in [17]. LCD dis-
plays with broken pixels are one example of this application.
The causality constraints imposed in the second half of this de-
velopment make the algorithms applicable to streaming D/A de-
vices that drop samples randomly in time due to hardware fail-
ures.

Another application is in distributed sensor networks, in
which each sensor records measurements from a field and
sequentially transmits them to a central processing node using
a time-division multiplexing algorithm. The central node uses
the frame synthesis equation to combine these measurements
for further processing. Due to power or communication link
conditions a sensor might not be able to communicate to the
central node at some point in time to transmit a measurement
but is able to transmit the measurement to the nearby sensors
that have not transmitted their own measurements yet. The
nearby sensors modify their own measurements, as described
in this paper, and subsequently transmit the modified measure-
ments such that the erasure is causally compensated for in a
distributed manner before the reconstruction. Several suitable
scenarios are described in [18].

It is also possible that a data acquisition device introduces
erasures intentionally, for example using randomized sampling
[19], [20], to reduce the average output rate of samples, possibly
at the cost of some error. The algorithms described in this paper
can be used to reduce or eliminate the error due to the erasures,
thus improving the data acquisition performance, providing an
alternative to spectrally shaping the random sampling pattern as
described in [20].

It should be noted that this paper does not provide a detailed
solution to any of the above applications. These serve only as
a motivation to address the particular problem. This paper in-
troduces and discusses two algorithms for the compensation of
erasures using projections, abstracted from the application de-
tails. Application of the algorithms presented in this work to
particular applications requires further analysis specific to the
application, which includes assumptions on the application con-
straints, the frame design, and the erasure characteristics.

C. Outline

The next section states the problem and establishes the nota-
tion. It is shown that the optimal solution is the orthogonal pro-
jection of the erasure error to the span of the remaining synthesis
vectors, and some properties of sequential compensations are
proved. A causal implementation is proposed in Section III-A,
assuming the transmitter is aware of the erasure. Section III-B
presents a system in which the transmitter precompensates for
the erasure and the receiver undoes the compensation if the era-
sure does not occur. The stability of the algorithms is discussed
in Section III-C. Some key issues for practical implementa-
tions are illustrated in the examples presented in Section IV.
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Appendix A proves the input-output equivalence of the two al-
gorithms presented in Section III-A and B, and Appendix B
proves some of the stability results discussed in Section III-C

II. ERASURE COMPENSATION USING PROJECTIONS

After stating the problem and establishing notation, this
section examines the compensation for a single erasure. In
Section II-C the results are extended to the compensation of
multiple erasures, and properties of sequential compensations
are considered.

A. Problem Statement

We consider the synthesis of a vector using (1), in which
we make no assumptions on how the representation coefficients

originate. The might even be data to be processed
using the synthesis sum (1), such as a discrete-time signal to be
filtered, not originating from the analysis of .

The coefficients are used to synthesize the signal using
the prespecified synthesis frame , subject to erasures known
at the transmitter or the receiver. We model erasures as replace-
ment of the corresponding with 0, i.e. removal of the corre-
sponding term from the summation in (1). Since the anal-
ysis method is not known, the goal is to compensate for the era-
sure as much as possible using the remaining nonerased coeffi-
cients.

In Section III-A, we assume that the transmitter anticipates an
erasure and knows the value of the erased coefficient. Assuming
coefficient is erased, the transmitter is constrained to only re-
place the coefficients with in order to
compensate for the erasure, where denotes
the set of coefficient indices used for the compensation of .
The reconstruction is performed using (1) with the updated co-
efficients:

(3)

such that minimizes the magnitude of the error .

B. Compensation of a Single Erasure

The error due to the erasure of a single coefficient and its
subsequent compensation using the coefficients
can be rewritten using the synthesis sum

(4)

The span of is henceforth denoted using . The
error magnitude is minimized if the sum is
the orthogonal projection of onto .

To compute the projection we define the projection coeffi-
cients such that they satisfy

(5)

in which is the projection of onto . By taking inner
products on both sides with all , it follows that the projection
coefficients satisfy:

...
. . .

...
...

...

(6)

in which is the frame autocorrelation function.
The projection coefficients are used to optimally compensate

for the erasure by updating each of the to

(7)

Consequently

(8)

(9)
(10)

in which and are the error coefficient and the residual di-
rection, defined as:

(11)

(12)

respectively. The error coefficient, , ranging from 0 to ,
quantifies how much of the erasure is compensated for, 0 being
perfect compensation and being no compensation. The
residual direction is a unit norm vector in the direction of the
error.

The residual error after each compensation can be further
reduced using additional frame coefficients for the compensa-
tion. Adding more coefficient indices in the set , and, there-
fore, using additional frame vectors for the compensation of the
error, can enlarge the space and decrease the error magni-
tude. Using more coefficients for the compensation decreases
the error magnitude only if the vector added to the compensa-
tion set is not orthogonal to the residual direction of the error
before the vector is added.

Satisfying (6) is equivalent to computing the frame expansion
of using as a synthesis frame. If the frame vec-
tors are linearly dependent, the solution to (6) is not
unique. All the possible solutions are optimal in terms of mini-
mizing the error magnitude, given the constraint that only coef-
ficients can be modified. If the vector which
is being compensated is in the span of the vectors
used for the compensation (i.e., ), then the erasure is
fully compensated for. In this case the error is zero, and we call
the compensation complete.

C. Compensation of Multiple Coefficients

In the development above we assume only one erasure. Pro-
jection-based compensation can be generalized to the sequential
erasure of multiple expansion coefficients, allowing a subset of
the remaining coefficients for each compensation. If multiple
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coefficients are erased and none of the erased coefficients have
been previously used to compensate for another erasure, the op-
timal compensation is a straightforward application of the re-
sults of the previous section. If however, a coefficient used to
compensate for an erasure is then erased and compensated for,
the method is only locally optimal. This section examines some
of the properties and some conditions under which the compen-
sation of multiple coefficients is also globally optimal subject to
the system design constraints.

We assume that the sets of coefficients used to compensate
each of the erasures are part of the system design. We further as-
sume that once a coefficient has been erased and compensated
for, it is not used to compensate for subsequent erasures. Under
these assumptions four properties of the compensation are de-
rived. In formulating these, the term optimal is used if the com-
pensation minimizes the error given the constraints and the term
complete is used if the error after the compensation is exactly
zero. These properties are described in this section.

1) Compensation of the Error is Equivalent to Projection of
the Data: Consider the vector that can be synthesized from
the erased coefficient and the coefficients to be modified

. Compensating for the erasure is equivalent to pro-
jecting to the space , spanned by the frame vectors corre-
sponding to the coefficients to be modified. Specifically, if

(13)

then

(14)

This also implies that the error after the compensation ,
and consequently the residual direction , is orthogonal to all
the frame vectors used for compensation.

2) Superposition: Using the linearity of projections it fol-
lows that:

(15)

Furthermore, if then . Thus, if the set of
coefficients is used to separately compensate for the
erasure of two different coefficients and , then the superpo-
sition of the individual compensations produces the same error
as the erasure of a single vector followed by com-
pensation using the same set of coefficients .

3) Sequential Superposition: If then

(16)

Furthermore, if then . Consider the case
in which one of the updated coefficients , , used in
the compensation of , is subsequently erased and optimally
compensated for using the remaining coefficients in . Using
properties 1 and 2, this becomes equivalent to the following pro-
jection sequence of the data:

(17)

Fig. 1. Erasure-aware transmitter projecting erasure errors.

in which contains all the elements of
except for , and is the set of the updated coef-
ficients after both erasures of and of have been compen-
sated. Therefore, this is equivalent to optimally compensating
both and using the coefficients in .

4) Sequential Complete Compensation: If an , used
in the compensation of is subsequently erased but completely
compensated using the set , the compensation of is still
optimal since the incremental error of the second compensation
is zero.

If the compensation of was complete, the total error after
both compensations is zero. In this case

(18)

in which is the combined set of
indices used to compensate for the erasure of and . is
the space spanned by the corresponding frame vectors. There-
fore, using property 1, the sequential complete compensation
in this case is equivalent to optimally and completely compen-
sating the erasure of both and using the set .

III. CAUSAL COMPENSATION

For the remainder of this paper, we assume the coefficients
are transmitted in sequence, indexed by in (1). We focus on
causal compensation in which only a finite number of coeffi-
cients subsequent to the erasure are used for compensation. In
this section we examine the causal compensation of coefficient
erasures using a transmitter aware of the erasure occurrence.
We also develop a transmitter/receiver pair that implements the
same causal compensation method but requires only the receiver
to be aware of the erasure occurrence.

A. Transmitter-Aware Compensation

If the transmitter is aware of the erasure occurrence, the pro-
jections are straightforward to implement using the system in
Fig. 1. In the figure, denotes a binary sequence of ones and
zeros, which multiplicatively implements the erasures, and is
a linear system that performs the compensation. To compensate
for the erasure, the system uses only the coefficients subse-
quent to the erased one, which implies that the set is equal to

. The system resembles Sigma-Delta
noise shaping systems; projection-based compensation of errors
is introduced in [16] to extend Sigma-Delta noise shaping to ar-
bitrary frames.

For clarity of the exposition, we first develop the algorithm
for a shift-invariant frame. Such a frame has autocorrelation that
is a function only of the index difference, i.e., satisfies
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. In this case, , and the linear
feedback system in Fig. 1 is time-invariant with impulse re-
sponse

(19)

The compensation is optimal if the erasures are sufficiently
rare such that there is only one erasure within coefficients, or
if is such that the erasure compensation is complete. Other-
wise it is only a locally optimal strategy which minimizes the
incremental error after an erasure has occurred, subject to the
design constraints.

For arbitrary, shift-varying frames, the linear feedback system
is time varying with coefficients that satisfy (6) at the corre-

sponding time point. Specifically, , the output of , is

(20)

in which is the input.
The input and the output of the transmitter satisfy

(21)

(22)

(23)

This is a recursive algorithm. Although an erasure of is
compensated using only the next coefficients, one of these
next coefficients , might be subsequently erased.
In this case, the algorithm compensates for the erasure of the
modified coefficient , i.e., for the erasure of the original data
in and for the additive part due to the compensation of .
Thus, the feedback loop is potentially unstable. In Section III-C,
we explore some stability conditions for this feedback loop.

B. Precompensation With Correction

In many systems, particularly in streaming applications, the
transmitter is not aware of the erasure occurrence. In such situa-
tions it is possible to preproject the error at the transmitter side,
assuming an erasure will occur. If the erasure does not occur, the
receiver undoes the compensation. It should be emphasized that
the algorithm described in this section has identical input-output
behavior to the one described in Section III-A. Therefore, all the
performance analysis for that algorithm applies to this one as
well. The input-output equivalence is proven in Appendix A.

To pre-compensate for the erasure, the transmitter at step
updates the subsequent coefficients to

(24)

where the satisfy (6). The used for
the update is the coefficient as updated from all the previous
iterations of the algorithm, not the original coefficient of the ex-
pansion, making the transmitter a recursive system. Depending
on the frame, the transmitter might be unstable. This issue

Fig. 2. Transmitter and receiver structure projecting erasure errors. Only the
receiver is aware of the erasure. (a) Transmitter. (b) Receiver.

is separate from the stability of the compensation algorithm,
raised previously. Stability of this transmitter is also discussed
in Section III-C.

If an erasure does not occur the receiver at time step receives
coefficient and sets . Otherwise, it sets

(25)

(26)

which is the part of from (24) that is due to the projection
of the nonerased coefficients. An erasure also erases the com-
ponents of due to the projection of the previously received
coefficients. The variables in (26) ensure that these compo-
nents can be removed from the subsequently received coeffi-
cients even when has not been received.

The receiver output is conditional on whether an erasure
has occurred or not

if
otherwise. (27)

This removes the projection of the previously received coeffi-
cients from .

The reconstruction in (27) undoes the recursive effects of (24)
and ensures that the projection only affects the coefficients
subsequent to the erasure. The system is depicted in Fig. 2, in
which , the sequence of ones and zeros denoting the erasures,
is the same in all three locations in the figure. The systems
are the same as in Fig. 1. In Appendix A, it is shown that the
two systems are input-output equivalent.

In several applications, such as packetized transmissions,
frame expansions are used for transmission of blocks of coef-
ficients. In such cases, the systems described can be modified
using property 2 in Section II-C to accommodate block erasures
by projecting the whole vector represented by the transmitted
block to the subsequent coefficients.

C. Compensation Stability

The systems in Figs. 1 and 2 can potentially be unstable, de-
pending on the frame and the erasure pattern. This section ex-
amines some aspects of the instability and provides a necessary
condition and a sufficient condition for the systems to be stable.
In this discussion, stability refers to bounded-input-bounded-
output (BIBO) stability of the systems. All stability conditions
presented in this section can be summarized using the system in
Fig. 3 for appropriate choice of the linear system .

In examining the system robustness, a separate issue is the
performance subject to external disturbances such as param-
eter mismatches, quantization, and different initial conditions.
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Fig. 3. System summarizing the stability conditions for the algorithms. De-
pending on the stability condition considered, the system in the figure should be
stable with satisfying one of the input-output relations in (34), (36), or (33).

This issue, while important and interesting, is beyond the scope
of this paper. The results in this section can only provide a
guarantee that the design remains stable subject to these distur-
bances.

1) Stability of the Compensation Algorithm: The evolution
of the system variables is determined by (21). By taking the
expected value of both sides, this becomes

(28)

in which , , and is the
probability of erasures. Therefore, the compensation algorithm
is stable in the mean if and only if the time varying system in
(28) is stable. For a shift-invariant frame this is equivalent to
the LTI system being stable.
Stability in the mean is a necessary but not sufficient condition
for system stability since the variance can diverge.

A sufficient condition for stability can be derived using the
triangle inequality to determine an upper bound for the magni-
tude of the coefficients

(29)

Therefore, assuming a bounded input , the stability of the
algorithm is guaranteed for all if the system in (29) is stable.

It is further shown in Appendix B that if the erasure process is
independent of the frame expansion coefficients , the second
moment of the compensated coefficients has upper bound

(30)

which implies that if the system in (30) is stable, then the vari-
ance is bounded, and, therefore, the coefficients are bounded
with probability one.

For shift-invariant frames, the conditions in (29) and (30) are
equivalent to the systems and

being stable, respectively.
These are only sufficient conditions for stability.

In Appendix B, it is also shown that BIBO stability of the
systems in (29), and (30) can be guaranteed if the sum of the
coefficient magnitudes is less than 1, i.e.

(31)

(32)

respectively.

It follows that if a system satisfies (32) for probability of era-
sure , it also satisfies it for any . First-order systems
always have , which implies that first order optimal
compensation algorithms are always stable.

Summarizing in terms of the system in Fig. 3, if the system
is stable for that satisfies

(33)

in which and are the input and output to , respectively,
then the compensation algorithm is stable for any erasure pattern
with probability of erasure less than . Furthermore, the com-
pensation algorithm is stable at probability of erasure only if
the system in Fig. 3 is stable for that satisfies

(34)

2) Transmitter and Receiver Stability: The analysis above
considers the stability of the compensation algorithm. However,
the stability of the transmitter and the receiver in Fig. 2 as in-
dependent systems is a separate issue. Even if the combined
system is input-output equivalent to the system in Fig. 1, the
combined system might exhibit internal instabilities which can
be triggered, for example, by mismatched initial conditions or
other disturbances. The conditions derived here permit the sep-
aration of the algorithm into two systems that are stable on their
own. However, the effect of external disturbances other than era-
sures on the performance is not considered in this paper.

The output of the transmitter in Fig. 2(a) follows the same
dynamics as the mean in (28) with . Therefore, the
transmitter is a stable system if and only if the compensation
algorithm is stable in the mean for . BIBO stability of the
compensation algorithm for guarantees stability in the
mean for , which implies a stable transmitter.

The receiver variable follows the same dynamics as the
overall compensation algorithm in (21):

(35)

in which is the receiver input, and the sum
is the receiver input through a finite

response system. If the compensation algorithm is stable at a
certain probability of erasures, then (35) is also stable even if
the second sum is replaced by an arbitrary input. Thus, stability
of the compensation algorithm implies that the receiver is
stable for any input, even if the input did not originate from the
transmitter in Fig. 2(a).

In summary, the only additional condition for the system to be
internally stable in a separate transmitter/receiver configuration
is that the transmitter in Fig. 2(a) is stable. This is identical to the
system in Fig. 3 for that satisfies the transmitter dynamics

(36)

in which and are the input and output to , respectively.
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D. Enforcing a Stable Design

The solution to (6) might not provide coefficients that produce
stable systems. In these cases, the projection coefficients should
be such that they balance the optimality of the projection with
the stability of the system. Although the condition in (31) is
sufficient to guarantee stability in all situations, it is very severe,
and not necessary, especially in conditions with low probability
of erasures. It is often sufficient to enforce the constraint in (32)
for the appropriate choice of .

In either case, the constraints can be enforced by considering
a constrained optimization approach. Specifically, the coeffi-
cients should be such that the incremental error magni-
tude is minimized subject to the constraint

(37)

The solution to this constrained quadratic program produces a
system with guaranteed stability for all erasure patterns with
probability of erasure less than , at the expense of an in-
crease in the incremental error compared to the unconstrained
approach. As grows the optimization eventually becomes a
projection, satisfying (5).

It should be noted that in general the optimization is carried
out once for each frame vector, while the constraint might be
on the coefficients for the compensation of several frame vec-
tors. Thus, it might be necessary to balance the optimization of
competing cost functions subject to the constraints, for example
by jointly optimizing a linearly weighted sum of the cost. The
joint optimization might also generate a very large program if
the frame is arbitrary. However, the optimization only needs to
be performed once, at the system design stage. The optimiza-
tion complexity does not affect the run-time complexity of the
system. Furthermore, the frame might have enough structure to
reduce the size of the problem. Some examples are shown in
Section IV, but further discussion of this optimization process
is beyond the scope of this paper.

IV. EXAMPLES AND SIMULATIONS

This section presents two examples of the compensation al-
gorithm described in the previous sections. The examples are
chosen to demonstrate key features and tradeoffs in the algo-
rithm.

In the first example, the signal is synthesized using the shift-
invariant frame implied by an LTI low-pass filter. This example
demonstrates that the compensation performance improves with
the order of the compensation and the redundancy of the frame.
The frame is chosen to expose the tradeoff between stability and
performance. A key feature of this example is that even when
the algorithm is unstable for certain probabilities of erasure, the
transmitter shown in Fig. 2(a) can be stable. Therefore, the im-
plementation described in Section III-B is possible.

In the second example the synthesis is performed using an
oversampled synthesis filterbank. This is an example in which
extending the compensation beyond a certain order does not im-
prove the compensation, and correspondingly the optimal com-
pensation will be of finite order. The example illustrates that

if the frame is not shift-invariant, it is necessary to compute
more than one set of coefficients. Imposing, therefore, the sta-
bility constraint of (37) requires balancing the optimization of
competing cost functions. The example further shows that for
the same frame, higher order compensation might be stable and
achieve better performance, even if a lower order compensation
is unstable.

Although, the results presented assume i.i.d. erasures and
white frame representation coefficients, the simulations were
performed for a variety of erasure conditions, and frame coeffi-
cients spectra. Although the performance varies among different
conditions, the simulations confirm the stability results and the
performance improvements using the algorithm. Due to the
local nature of the algorithm, the performance improvements
are smaller in the case the erasures are correlated and greater
in the case the erasures are anticorrelated. Unfortunately, in the
interest of brevity, it is not possible to present more simulation
results in this paper.

A. Synthesis Using a Low-Pass Filter

For a shift-invariant frame the autocorrelation is only a
function of the index difference

(38)

In this case, assuming a fixed compensation order for each co-
efficient, the compensation coefficients are also shift-invariant,
and (6) only needs to be solved once. The matrix becomes
a symmetric Toeplitz matrix, and the equation takes the special
form of the Yule-Walker autocorrelation normal equations [21],
[22]

...
. . .

...
...

... (39)

in which . The special structure allows for
an efficient solution using the Levinson-Durbin recursion [23],
[24].

The convolution implied by LTI filtering can also be viewed
as a linear synthesis equation in which the frame vectors are
shifts of the time-reversed filter impulse response, and the input
to the filter corresponds to the representation coefficients

(40)

(40a)

with the frame autocorrelation given by the deterministic auto-
correlation of the filter impulse response:

(41)
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Fig. 4. Performance of erasure compensation for a low-pass frame with cutoff under various conditions. In the figures, denotes the redundancy and
denotes the compensation order. (a) and (b): Compensation coefficients are computed to satisfy (39), and (c) and (d): they are computed subject to the constraint

. (a) . (b) . (c) , . (d) , .

It follows that the system implementing the projections in
Fig. 1 and 2 is an LTI system with transfer function

(42)

in which the are the projection coefficients from (39). Specif-
ically, if is a low-pass filter with cutoff frequency

, the impulse response has the form of a function,
and (39) becomes

...
. . .

...
...

... (43)

with . It should be noted that the au-
tocorrelation matrix in (43) becomes ill-conditioned as the
compensation order increases. Some methods to closely approx-
imate the solution to this system are described in [17].

The ill-conditioning of the matrix equation also leads to solu-
tions with compensation coefficients that are large in magnitude,

which can cause the resulting systems to be unstable for certain
erasure conditions, as described in Section III-C. As discussed,
stability in this case can be enforced by solving the constrained
quadratic program of (37). Due to the shift invariance of the
frame there is only one cost function to be minimized.

Fig. 4 shows simulation results that demonstrate the perfor-
mance of the algorithms in the case of i.i.d. erasures. The input

to the system is a white Gaussian process with unit variance
and zero mean. The oversampling frame is approximated using
a 4096th order, Hamming window FIR filter with cutoff .
Since the synthesis filter is not ideal, the feedback coefficients
are calculated using the implemented filter autocorrelation in-
stead of the autocorrelation of the ideal filter. To compute the
error, the output is compared to the unerased signal, as synthe-
sized using the low-pass filter. The subplots demonstrate the
error power normalized by the signal power as a function of
the probability of erasure. The region of instability is indicated
in the figures by the trend of the corresponding plots to grow
rapidly above the axis limit of 0 db, towards infinity, as the era-
sure rate increases.

In Fig. 4(a), the error due to erasures is plotted for various
compensation orders, , with constant redundancy . Com-
pensation order corresponds to a baseline uncompen-
sated system. The compensation coefficients are computed to
be optimal using (39). As the compensation order increases, the
compensation error is improved at low probabilities of erasures
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Fig. 5. Root locus plot of the system for
, with the compensation coefficients computed using an ideal low-pass

filter as a frame. At all poles are at the origin. As increases, two of
the three poles (following the top and bottom trajectories) move out of the unit
circle, making the system unstable. As reaches 1, the poles return inside and
the system returns to stability.

but the system becomes unstable with a lower erasure proba-
bility. In Fig. 4(b), the error due to erasures is plotted for a fixed
compensation order and various redundancy rates . As
the redundancy increases the compensation is improved, but, as
expected, the systems are stable in a smaller range of erasure
probabilities.

Fig. 4(c) and (d) demonstrates the tradeoff between compen-
sation and stability. In both figures, the compensation order is

. The compensation coefficients are computed using the
constraint . In Fig. 4(c), the redundancy is

and varies, while in Fig. 4(d) and the redundancy
is variable. The figures demonstrate that as the constraint is re-
laxed the compensation improves and the stability decreases.
They further demonstrate that under a fixed constraint, as the
redundancy increases, the compensation improves, while the re-
gions of stability are essentially not affected.

The root locus plot for the system with transfer function
is plotted in Fig. 5, which

demonstrates the trajectory of the system poles as , the prob-
ability of erasures, varies. The coefficients in the figure are
computed for a order system with redundancy .
The plot demonstrates the stability in the mean of the system
as the probability of erasures increases. This is a necessary
condition for the stability of the algorithm and, therefore,
when the poles of the system are outside the unit circle the
algorithm is unstable. Furthermore, the stability of the system
for demonstrates that the transmitter of Fig. 2(a) is
stable, and, therefore, the separation of the algorithm to a
transmitter/receiver combination is theoretically possible even
if the operating conditions are such that the overall system
is unstable. We should note that in practice the location of
the poles so close to the unit circle for might cause

Fig. 6. A general synthesis filterbank.

dynamic range and finite-wordlength implementation issues,
and, therefore, some compromise might still be necessary.

B. Synthesis Using a Synthesis Filterbank

This section examines the same compensation method ap-
plied to the synthesis frame implied by the -channel oversam-
pled filterbank of Fig. 6. In this example, the coefficients are
transmitted in sequence, time-multiplexed in one-channel such
that coefficient is transmitted at time , in
which is the channel index, is the coefficient index within
that channel and is the coefficient index in the single-channel
stream. Erasures occur in individual coefficients and the com-
pensation is causal in . We use the notation to denote the
frame vectors indexed using the single stream sequence and the
notation to denote the vectors indexed using the
two-dimensional channel-and-time indexing. Similar notation is
adopted for all the relevant coefficients.

In this case, there are different sets of compensation
coefficients that need to be solved for. Due to the shift in-
variance of the filters in each channel, the system in Fig. 1
and 2 becomes periodically time varying. Assuming
order compensation for each set of coefficients, the sets
should each be chosen to minimize ,

, either using a projection or subject to the
stability constraints discussed in Section III-C. It should be
noted that the stability constraints are on sums of coefficients
taken from all optimizations, and, therefore, the constrained
optimization problems cannot be solved independently. In
this example, the competing cost functions are jointly
optimized by minimizing the sum of their squared norms

subject to the constraints.
Although the issue of joint optimization of the cost functions
deserves further investigation, such investigation is beyond the
scope of this paper

If the filters of the filterbank have finite length , and their
impulse responses span the space of length- signals, then
compensation beyond a certain order does not reduce the error
further. Specifically, it can be verified that for frame vector

, only the next are
necessary to minimize the error. If , it can be further
shown that only frame vectors subsequent to

are useful for compensation. For , this generalizes
to subsequent vectors. To satisfy the
span condition, the number of filters in the filterbank should be

.
The filterbank used to generate the results in this section has
filters of length . The nonzero part of the impulse
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Fig. 7. Performance of erasure compensation using the length harmonic frame as the impulse response for the filters of an channel oversampled
filterbank, under various conditions. In the figures, denotes the expansion factor, with corresponding redundancy , and denotes the compensation
order. In (a) and (c), the compensation coefficients are computed to satisfy (39), and in (b) and (d), they are computed subject to the constraint .
(a) ; (b) , ; (c) ; (d) , .

response of the filter is equal to the vector of an -vector
Harmonic frame for [25]. Specifically, for even

(44)

(45)

otherwise (46)

For odd

(47)

(48)

(49)

otherwise (50)

The harmonic frame has the property that any subset of frame
vectors spans [25]. This property guarantees that erasures
of the coefficients corresponding to the top channels
can be perfectly compensated for using the causal system de-
scribed. Furthermore, the impulse responses span the space of

length- signals and the compensation has finite length. Specif-
ically, compensation order beyond should not
provide any compensation benefit. The input to the systems is
assumed to be a white, unit variance Gaussian process. The re-
dundancy of this filterbank is .

Fig. 7 demonstrates the simulation results for an
channel system with synthesis filters of length for
various compensation orders . The synthesis bank for
Fig. 7(a) and (b) has an expansion factor of , i.e.,
the system has redundancy . For the bottom
parts, Fig. 7(c) and (d), the expansion factor is , with
corresponding redundancy . The simulations
are performed assuming optimal compensation using (6) in
Fig. 7(a) and (c). In Fig. 7(b) and (d) , the compensation
is performed using the stability constraint with . The
compensation orders were selected to illustrate a number of
issues. In all simulations increasing the order beyond
provides no compensation benefit, as expected.

In Fig. 7(a), it is demonstrated that although the system is
unstable for compensation order , the system returns
to stability as the order increases to , even though the
stability constraint is not met. Imposing the stability constraint
in Fig. 7(b) makes the order system stable but reduces
the gain from compensation. Although not shown in the figure,

and order systems also exhibit unstable behavior
when the constraint is not imposed.
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The same issue is demonstrated in Fig. 7(c) and (d). The op-
timal compensation, although stable, does not meet the con-
straint for all the compensation orders shown. The system is un-
stable for compensation order , not shown in the figure.
Imposing the constraint ensures stability, but unnecessarily pe-
nalizes the compensation ability of the system. In these fig-
ures, it is also evident that decreasing the system redundancy by
making reduces the compensation ability of the system.

APPENDIX A
INPUT-OUTPUT EQUIVALENCE OF THE SYSTEMS IN FIG. 1 AND 2

To show that the system in Fig. 2 implements the same com-
pensation method as the system in Fig. 1, it suffices to examine
the evolution of the coefficients

(51)

(52)

(53)

(54)

Rearranging (52) and substituting into (54)

(55)

(56)

(57)

which holds for any input and any signal , not restricted
to be an erasure pattern of zeros and ones. Assuming the same
initial conditions, and comparing with (21), it follows that:

(58)

Using (27) in (58), the output is equal to

(59)

which is the same as (22). Thus, the two systems are input-
output equivalent.

APPENDIX B
PROOF OF THE STABILITY RESULTS

Taking the square root of the second moment in (21) and ap-
plying the triangle inequality on the random variables it follows
that:

(60)

Assuming that

(61)

and that the probability of erasure is , (62) follows:

(62)

It should be noted that
for any joint density of the , as long as the unconditional mean
of is constant and equal to , and is independent of ,
conditional on the previous values and , for . In-
dependence of the erasure process with the frame expansion
coefficients is sufficient to guarantee the conditional inde-
pendence, for any joint density of the erasure sequence and
for any correlation structure of the frame expansion coefficients

.
The systems in (29) and (30) follow similar dynamics within a

factor of in the coefficients. BIBO stability of these systems
can be guaranteed if the sum of the coefficients is slightly less
than 1. In the case of (29), stability can be guaranteed using (31)
if

(63)

Substituting (63) into (64), stability follows by induction, as-
suming initial conditions are within some bound

(64)

(65)

(66)

Similarly the stability in (30) is guaranteed if the sum of the
coefficient magnitudes is less than

(67)
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