GENERATING BINARY PROCESSES WITH ALL-POLE SPECTRA

Petros Boufounos

MIT Digital signal Processing Group,
77 Massachusetts Avenue, Rm. 36-615, Cambridge, MA 02139
petrosb@alum.mit.edu

ABSTRACT

This paper presents an algorithm to generate autoregressive random
binary processes with predefined mean and predefined all-pole power
spectrum, subject to specific constraints on the parameters of the all-
pole spectrum. The process is generated recursively using a linear
combination of the previously generated values to bias the genera-
tion of the next value. It is shown that an all-zero filter whitens the
process, and, therefore, the process has an all-pole spectrum. The
process is also described using an ergodic Markov chain, which is
used to determine the appropriate initialization and to prove conver-
gence if the algorithm is not initialized properly. The all-pole pa-
rameter range for which the algorithm is guaranteed to work is also
derived. It is shown to be a linear constraint on the all-pole parame-
ters and their magnitude, subject to the desired mean for the process.
The example and simulations presented elucidate and confirm the
theoretic developments.

Index Terms— autoregressive, binary sequence, stochastic process

1. INTRODUCTION

The generation of random binary processes with pre-specified power
spectra is important in a variety of signal processing applications
such as randomized sampling, radar waveform generation and oth-
ers [1-4]. For example, in randomized sampling applications, spec-
trally shaped binary zero-one random processes are used to dictate
the sampling times and mitigate the effects of aliasing [1]. In radar
applications, binary processes taking values in {—1,1} are useful
because they exhibit low peak-to-average power ratio [3]. Unfor-
tunately, the generation of binary random processes with arbitrary
pre-determined power spectra is not straightforward. Although the
generation of a random process with an arbitrary spectrum is possi-
ble by linear filtering of a white process, the output of the linear filter
cannot be guaranteed to be a binary sequence, even if the input is bi-
nary. This paper presents an algorithm to generate binary random
processes that have pre-specified all-pole spectra, subject to certain
conditions on the spectrum parameters.

Several algorithms exist to generate binary processes (for ex-
amples see [5—7]). However, the spectrum of these processes is of-
ten difficult to compute and analyze. The algorithm presented is
parametrized by the coefficients of the desired centralized power
spectrum—subject to well-defined constraints—making the genera-
tion of a process with a desired spectrum straightforward. Although

The author is currently with Rice University, Electrical and Computer
Engineering Dept. The work was supported in part by: the Texas Instruments
Leadership University Consortium Program, BAE Systems Inc., and MIT
Lincoln Laboratory.

The author would like to thank Sourav S. Dey, Alan V. Oppenheim,
Charles Rohrs, and Matthew S. Willsey for their help in writing this paper.

the algorithm implements a Markov chain, the presentation in this
paper focuses mostly on the spectral properties. It should be noted
that it is not always possible to generate a binary process with an
arbitrary power spectrum [4, 8]. The algorithm described in this pa-
per is also a proof that all-pole spectra with parameters in the range
described are realizable.

The problem can be considered as an infinite-length extension
to the problem of generating a finite-length sequence of random bi-
nary variables with a pre-specified mean for each variable and pre-
specified correlation structure among them. The finite-length prob-
lem has been extensively studied in the statistical literature (for ex-
amples, see [9-14] and references within). However, the solutions
developed in the finite-length case cannot be immediately applied to
generate a random process. Most of the solutions require that the
length of the vector is known in advance. Furthermore, some have
computational complexity that does not scale well with the length of
the sequence. The algorithm presented in this paper can be consid-
ered an extension of [13] to random processes. Although the genera-
tion principle is similar, this paper considers issues unique to random
processes such as stationarity, initialization, and convergence of the
algorithm. A whitening argument is also introduced to prove that the
algorithm generates the desired process.

The next section defines the problem and establishes the nota-
tion. Section 3 describes the algorithm to generate the process. Sec-
tion 4 proves that under specific assumptions the algorithm generates
the process desired and that the algorithm converges for any initial-
ization. An example with simulations is presented in Sec. 5. The
Appendix proves the conditions on the parameters that guarantee the
assumptions in Sec. 4.

2. PROBLEM FORMULATION

The problem is to generate a random binary sequence, denoted using
x[n] and taking values in {0, 1}, with a predetermined mean p =
E{x[n]}, and a predetermined autocorrelation denoted using:

Rasm] = E{z[n]a[n +m]} = Keolm] + 4, M

in which K. [m] denotes the autocovariance. This is defined as the
autocorrelation of the centered process z.[n] = z[n] — p, which is
zero mean and takes values in {—p, 1 — pu}:

Kozlm] = E{(z[n] — p)(z[n +m] — p)} = Recoo[m]. ()

The power spectrum is denoted using S, (¢?), and the covariance
spectrum using @, (e’“’). They are equal to the Fourier transforms
of Rye[m] and K., [m] respectively.

The covariance spectrum of z[n] should have the form:

B A
Ty, are ik

Dy (€7”) = Sypao (€7) 3)

in which the all-pole parameters are denoted using ax, the order of
the model is denoted using p, and the scaling constant A depends on
the variance of the process. Since the variance of a binary process
is a function of the process mean, the constant A is determined by p
and the all-pole parameters aj. The all-pole parameters are assumed
pre-determined, such that the algorithm generates a process with the
spectral density desired in the application. The determination of the
parameters is not examined in this paper. The only assumption is
that they satisfy the constraints described in Sec. 4.4.

3. ALGORITHM
The algorithm generates x[n] iteratively using z[n—1], ..., z[n—p]
as follows:

1. The bias xp[n] for the generation of [n] is computed accord-
ing to the relationship:

P
ol =pt Y aah K- @
k=1
P
=p+ Z arxe[n — k] ®)
k=1

in which the ay, and p are the parameters of the algorithm.

2. The sample z[n] is randomly generated from a binary distri-
bution biased by x[n] as follows:

[1 with probability x;[n]
zln] = { 0 with probability 1 — z[n] ©)

Conditional on z[n] the generation of z[n] is independent on any
other variable z[n — k]. Unless otherwise noted, the assumption in
the execution and the analysis of this algorithm is that the bias com-
puted in Eq. (4) is within the interval [0, 1]. Section 4.4 discusses the
necessary constraints to guarantee that the bias is within the bounds.
It should be noted that the algorithm describes a p'™ order Markov
process.

4. ANALYSIS

In this section it is demonstrated that the mean of x[n] is 4, and that
the power spectrum of x.[n], which corresponds to the covariance
spectrum of z[n], is the all-pole spectrum in Eq. (3), as desired. The
properties of the implied Markov chain are used in section 4.3 to
demonstrate the stationarity and the convergence of the algorithm.

4.1. Mean

The mean of x[n] can be evaluated as follows:
E{z[n]} = By {E{z[n][zs[n]} = E{zs[n]} (D)

=p+ Y ar(E{z[n — K|} — p). ®)

k=1

The sum remains equal to p as long as the expected value of all
previous z[n — k], k = 1,...,pis also p. Thus, if the algorithm is
initialized with p biased binary random variables with mean equal to
1, the mean of the process will stay constant at .

Even if the algorithm is not initialized as described, the mean
of x[n] converges to y at a rate governed by the magnitude of the

system poles. This can be shown using the discrete-time final value
theorem on the dynamic equation describing E{x.[n]}:

E{zc[n]} = axE{zcn — k]}.)

k=1

4.2. Power Spectrum

This section demonstrates that the algorithm performs as desired by
evaluating the power spectrum of the generated process. In particu-
lar, the optimal causal minimum mean squared error (MMSE) pre-
dictor is used to predict the next value of the process. It is demon-
strated that the MMSE predictor is linear and time-invariant (LTI) by
the construction of the algorithm. By the orthogonality principle, the
prediction error is white. Thus the spectrum is derived by inverting
the LTI system that computes the error.

The optimal causal MMSE predictor for z:.[n] is the expectation
conditional on all the previous values z.[n — k], k > 1:

Ze[n] = E{xc[n]|zc[n — k], k=1,2,...}, (10)

which, using step 2 of the algorithm, can be computed using a linear
combination of the previous p samples:

Ze[n] = E{zc[n]|zy[n]} = zp[n] — p (11)
= Z arzen — k. (12)

The prediction error, which is white by the orthogonality principle,
is equal to:

e[n] = zc[n] — Zc[n] (13)
= ze[n] = Y axwe[n — k). (14)

Therefore, the LTI system H(z) = 1 — >_P_ a2z~ " whitens the
generated process z.[n] by calculating the prediction error. The
power spectrum of x.[n] follows:

A A

Sz,z, g = - - -) 15
¢ c(e) |H(e]“’)|2 |1 _ Z£:1 ake—_wk)|2 (15)

for some constant A, as desired. The stationarity and the conver-
gence of the algorithm is demonstrated in the next section.

4.3. Markov Chain

As noted in section 3, the algorithm defines a p!" order Markov pro-
cess, in which the {z[n — k], k = 1,...,p} determine the state at
any given time n. Since the z[n— k] only take discrete binary values,
the process can also be represented using a 2P-state Markov chain.
Using the properties of this Markov chain, this section demonstrates
that the algorithm reaches a stationary steady state.

In this section (z[n — 1], ..., z[n — p]) denotes the state of the
system before each iteration of the algorithm in section 3 has been
executed. The state transition probabilities are:

P((z[n],...,z[n—p+ 1) |(z[n—1],...,2[n—p])) =

P
pt Y ar(@ln — K - p), if zn] =1
k=1 (16)

L= (u+ Y ar(eln—k —p), ifzln] =0,

which is equal to 2 [n] and 1 — z [n] if z[n] = 1 and 0, respectively.
The transition probabilities are zero for all other state transitions. It
is assumed that the parameters are such that the probabilities in (16)
are both strictly positive, which is equivalent to 0 < zp[n] < 1 for
all n, as discussed in section 4.4.

Under this assumption, it can be shown any state can be reached
with positive probability within p transitions from any other state.
Assuming p is finite, it follows that the Markov chain is ergodic,
and, therefore, the chain has a unique stationary distribution. The
algorithm can be initialized by randomly starting in one of the 27
states, according to the steady state distribution. Alternatively, the
initialization can be arbitrary, and the ergodicity property guarantees
convergence to the steady state distribution. This implies that the au-
tocorrelation and the power spectrum of the process converge to the
all-pole model. The rate of convergence is governed by the second
largest eigenvalue of the implied 27 x 2P transition matrix. At the
steady state, the process is strict sense stationary, as desired.

4.4. Parameter Range

A necessary condition in the discussion above is that the bias, z;[n],
computed at every iteration of the algorithm is always within the
range (0, 1). This can be guaranteed for a given set of parameters ax
if the following inequalities are satisfied:

P

0<pt+ Y a(zln—k —p) <1 (17)
k=1
P

<:>—u<z:akasc[n—k]<1—u7 (18)
k=1

in which z.[n] can take either of two values: 1— s, which is positive,
and —p, which is negative. In the Appendix it is shown that (18) is
equivalent to the following constraint on the parameters:

P 1 P
1) s 1), 19
(Z)>|1—2u<,§'“’“') 1

which corresponds to the shaded area in Fig. 1. As u tends to 1/2,
the constraint is relaxed, eventually becoming:

P

> lax] < 1forp=1/2. (20)

k=1

This condition is sufficient but not necessary for x;[n] to be within
the bounds. There exist combinations of parameters aj, and u that do
not satisfy the bound derived, and, yet, the algorithm does not over-
flow if properly initialized. For example, consider the trivial case of
4 = 0, or 1 for any set of a, outside the constraint in (19), initialized
with z[0] = ... = z[p — 1] = 0 or 1, respectively. However, with
all such combinations of parameters it can be shown that there is a
state for which x [n] is exactly equal to 0 or 1, and with a small per-
turbation of the parameters the algorithm overflows. Furthermore,
the constraint in Eq. (19) is necessary to guarantee that arbitrary ini-
tialization does not cause x[n] to overflow. It is also necessary in
proving the ergodicity of the implied Markov chain using the argu-
ment in Sec. 4.3.

Although this algorithm demonstrates that it is possible to gener-
ate autoregressive processes with parameters that satisfy (19), there
is no implication about autoregressive processes with parameters that
do not satisfy (19). It might still be possible to generate such pro-
cesses using different algorithms.

Slawl+ Cp—1) Y ar =2p

2ar) Yak =3 Jak|

: 3 lax]

7

>ak == |akl

NG

Slap| + (1 —2p) S ar =2 —2pu

Fig. 1. Coefficient Space for © < 1/2. The shaded area is the set
of coefficients for which the algorithm is guaranteed not to overflow.
As p increases, the two constraints due to Eq. (25) and (26) pivot
around the point (1,1), as shown in the plot. The shaded area is
maximized at o = 1/2. For p > 1/2 the constraints cross over each
other, and the shaded area is identical to the shaded area for 1 — p.

5. TWO-POLE EXAMPLE

In this section a simple two-pole example with a; = 0.1, and az =
—0.5 is considered and simulated for different values of the process
mean p. Although this is only one, arbitrarily chosen, example, sim-
ulations for various parameter choices verify the results. For this
choice of parameter values the constraint in (19) is equivalent to
5/14 < p < 9/14. Therefore, for v within that range, the bias
xp[n] is guaranteed to be with the bounds [0, 1].

One way to accommodate overflows is to hard limit the bias
xp[n] to be 0 or 1 whenever it is computed below or above the
range [0, 1], respectively. This is the method used in the simula-
tions presented. For the parameter values chosen this implies that
for < 5/14, the algorithm sometimes hard-limits the bias to zero,
while for > 9/14 the algorithm hard-limits the bias to one. In
these cases, the true mean of the generated process is respectively
greater or less than p. Of course, if the algorithm overflows, the re-
sults in the previous sections do not hold, and the algorithm is not
guaranteed to converge or to produce a stationary process.

Figure 2 presents simulation results for various values of . To
facilitate comparison, the generated process is centralized using the
sample mean and normalized to have unit sample variance. The
power spectral density is subsequently computed using the average
periodogram method for a window size of 256 taps with 128 points
overlap. The figure plots the computed sample power spectral den-
sity. The ideal power spectral density corresponding to Eq. 3 is also
plotted for the purposes of comparison. The figure only plots the
results for 4 = 0.1,0.2,0.3,0.4. The results for © = 0.5 coincide
with ;1 = 0.4 since there is no overflow for both values, and the
results for ;¢ > 0.5 coincide with the ones for 1 — .

The simulations confirm that if p is within the constraints of
Eq. (19) the sample power spectral density of the generated process
is the one desired. If y is outside the constraints, the algorithm over-
flows, and the sample mean and the sample power spectral density

——u= 0.1

/N
J \ ——u=0.25
x _sl VA =04 |
/ - - -Desired

L L
o)

Power Spectral Density (dB) - ®__(e/®)
R
o

|
N
(¢)}

0.2 0.4 0.6 0.8 1
Normalized Frequency — o

Fig. 2. Simulation results for a two-pole process with a; = 0.1 and
az = —0.5, for various values of ;.. The plots present the experi-
mental power spectrum, centralized by removing the sample mean
and normalized such that the sample variance is unity. The dashed
line plots the desired spectrum properly normalized. The results for
1 = 0.5 (not plotted) coincide with the results for . = 0.4, as ex-
pected. The results for ;2 > 0.5 coincide with the results for 1 — p.

do not coincide with the algorithm parameters.

6. REFERENCES

[1] S. Dey and A. V. Oppenheim, “Frequency shaped randomized
sampling,” in Proc. IEEE Int. Conf. Acoustics Speech and Sig-
nal Processing (ICASSP 2007), Honolulu, Hawaii, April 2007,
IEEE.

[2] M. R. Said and A. V. Oppenheim, “Discrete-time randomized
sampling,” in Proc. Int. Conf. on Electronics, Circuits, and
Systems (ICECS-2001), Malta, September 2001.

[3] M. L. Skolnik, Ed., Radar Handbook, McGraw-Hill, second
edition, January 1990.

[4] J. L. Martins De Carvalho and J. M. C. Clark, “Characterizing
the autocorrelations of binary sequences,” IEEE Transactions
on Information Theory, vol. 29, no. 4, pp. 502-508, July 1983.

[5] G. Grunwald, R.J. Hyndman, and L. Tedesco, “A unified view
of linear ar(1) models,” Research report, Department of Statis-
tics, University of Melbourne, June 1996.

[6] E. McKenzie, “Some simple models for discrete variate time
series,” Water Resources Bulletin, vol. 21, no. 4, pp. 645-650,
1985.

[7] E. McKenzie, “Discrete variate time series,” in Handbook of
Statistics, C.R. Rao and D.N. Shanbhag, Eds., pp. 573-606.
Elsevier Science B.V., Amsterdam, 2003.

[8] X. K. Karakostas and H. P. Wynn, “On the covariance function
of stationary binary sequences with given mean,” IEEE Trans-
actions on Information Theory, vol. 39, no. 5, pp. 1684-1687,
September 1993.

[9] L.J. Emrich and M. R. Piedmonte, “A method for generating
high-dimensional multivariate binary variables,” The American
Statistician, vol. 45, no. 4, pp. 302-304, Nov. 1991.

[10] C.G. Park, T. Park, and D. W. Shin, “A simple method for gen-
erating correlated binary variates,” The American Statistician,
vol. 50, no. 4, pp. 306-310, Nov. 1996.

[11] S. D. Oman and D. M. Zucker, “Modelling and generating
correlated binary variables,” Biometrika, vol. 88, no. 1, pp.
287-290, 2001.

[12] M. A. Al-Osh and S. J. Lee, “A simple approach for generating
correlated binary variates,” J. Statist. Comput. Simul., vol. 70,
pp- 231-255, 2001.

[13] B.F. Qaqish, “A family of multivariate binary distributions for
simulating correlated binary variables with specified marginal
means and correlations,” Biometrika, vol. 90, no. 2, pp. 455—
463, 2003.

[14] N. Rao Chaganty and H. Joe, “Range of correlation matrices
for dependent bernoulli random variables,” Biometrika, vol.
93, no. 1, pp. 197-206, 2006.

A. OVERFLOW CONSTRAINTS

The sum in (18) is maximized when z.[n — k] = 1 — u for all
positive ay, and x.[n — k] = —pu for all negative ay. Similarly, the
sum is minimized when z.[n — k] = —p for all positive aj and
xe[n — k] = 1 — p for all negative ar. To guarantee xp[n] stays
within the bounds, it is sufficient to ensure that the maximum of the
sum is less than 1 — p and that the minimum is greater than —u,
which implies:

(I=p) D a—p Y an<l—p, @1)
keAt k€A~

poy o ak—(L—p) > ax<p, (22)
keAt k€A~

in which the sets A = {k|ax, > 0} and A~ = {k|a) < 0} denote
the indices of the positive and negative coefficients, respectively.

The sums of the positive and the negative coefficients can also
be used to express the sum of the coefficients and the sum of their
magnitude using:

(7=
S

>
I

Z ar + Z ag (23)

k=1 keAt keA—
P

lakl = Y ax— Y ax, (24)
k=1 keAt keA—

Substituting into (21) and (22), and rearranging:

P P
D larl+ (1= 20)) ar <22 (25)
k=1 k=1

P P
D lakl+2u—1)Y ax < 2p. (26)
k=1 k=1

Combined with the bounds on the sum of the coefficients,

p p P
=D larl <Y an < ax, @7
k=1 k=1 k=1

the constraints produce Fig. 1. In the figure it is demonstrated that
only one of (26) and (25) is an active constraint for any given .
Thus, the constraints can be summarized using the inequality in
Eq. (19). It is important to note that if > 7 _, |ax| < 1 it is impossi-
ble to determine a mean p for which the algorithm can violate both
sides of the inequality (18). This is not the case if > 7 _, ax| > 1.

