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ABSTRACT
This work explores low complexity systems to compensate
for coefficient erasures in frame representations of signals.
Assuming linear synthesis with a pre-specified frame it is
demonstrated that erasures can be compensated for even if
the origin of the representation coefficients is not known. If
the transmitter is aware of the erasure occurrence, the com-
pensation is performed by projecting the erasure error to
the remaining coefficients. Furthermore, it is demonstrated
that the same compensation can be executed using a trans-
mitter/receiver combination in which the transmitter is not
aware of the erasure occurrence. The transmitter compen-
sates for all the coefficients using projections, assuming an
erasure will occur. The receiver undoes the compensation
for the coefficients that have not been erased, thus main-
taining the compensation only of the erased coefficients.

1. INTRODUCTION

In a variety of signal processing and communications con-
texts, erasures occur inadvertently or can be intentionally
introduced as part of a data reduction strategy. Frame rep-
resentations are generalizations of basis representations pro-
viding redundancy and, therefore, robustness to signal degra-
dation such as noise, quantization, and erasures. This paper
explores the use of frames and projections to compensate
for erasures.

Finite frames represent a vector x in a space W of finite
dimension N using the synthesis equation:

x =
∑

k

akfk, (1)

in which the ak are the representation coefficients, and the
synthesis frame vectors {fk, k = 1, . . . ,M} span the space
W . This condition requires that M ≥ N . Usually, but
not always, the representation coefficients are determined
by the analysis equation:

ak = 〈x, fk〉, (2)
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in which the analysis frame vectors {fk, k = 1, . . . ,M}
also span W . Details on frame representations and the re-
lationships of the analysis and synthesis vector sets can be
found in a variety of texts such as [1]. The ratio r = M/N
is referred to as the redundancy of the frame. For infinite di-
mensional spaces, using a frame ensures the sum converges
for all x with finite magnitude.

In contrast to basis representations, frame representa-
tions are not unique. Given a synthesis frame {fk, k =
1, . . . ,M}, different sets of coefficients ak might produce
the same vector x in W , depending on the redundancy of
the frame. This property decouples the analysis from the
synthesis process. The ak can be determined in a variety of
ways (for some examples, see [2, 3] and references within).
The ak might also be original data to be processed using the
synthesis sum (1), not originating from an expansion of x.

Similarly, the representation coefficients ak of a vector
analyzed using the analysis frame and equation (2) can be
used in a variety of ways to synthesize the vector. For ex-
ample, the reconstruction might use only a subset, as long
as the corresponding frame vectors span the space, mak-
ing the representation robust to erasures. Indeed, most of
the existing work on erasures on frame representations as-
sumes that x is expanded using the analysis equation. Using
that assumption, the synthesis is modified to reconstruct the
original signal. For example, linear reconstruction can be
performed using a recomputed synthesis frame and equa-
tion (1) [3, 4]. Alternatively the erased coefficients can be
re-computed using the non-erased ones, and used to fill in
the coefficient stream before the synthesis is performed us-
ing linear reconstruction with the original synthesis frame
[5, 6]. However, neither approach is possible without as-
suming an expansion using equation (2).

In our work, rather than assuming that the vector is ana-
lyzed using the analysis equation (2), we make no assump-
tions on how the representation coefficients ak are gener-
ated. We only assume that the synthesis is performed us-
ing a pre-specified synthesis frame and the synthesis sum of
equation (1). Thus, it is not possible to fill in the missing co-
efficients or modify the synthesis frame at the receiver. In-
stead, we modify the representation coefficients at the trans-

III ­ 8481­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



mitter to compensate for the erasure. This assumes that the
transmitter is aware that an erasure occurs, which is often
not the case. Still, even if only the receiver is aware that
an erasure occurs, we demonstrate that a simple transmit-
ter/receiver combination can be used to compensate for the
erasure using the same orthogonal projection principle. The
transmitter modifies the frame representation assuming the
erasures will occur, and the receiver undoes the changes if
the erasures do not occur. The advantage of this approach
is that the representation coefficients may be generated in a
variety of ways, including the analysis equation or the use
of the matching pursuit [2]. They might also be original data
to be processed using the synthesis sum.

The use of projections to compensate for errors has been
considered in [7, 8] as an extension of quantization noise
shaping to arbitrary frame expansions. However, in that
work, the quantization error is known at the transmitter—
not necessarily the case with erasure errors. The use of re-
dundancy to compensate for erasures assuming a fixed re-
construction method has also been considered in a different
context in [9, 10]. In that work the error is again known at
the transmitter, and only the case of LTI reconstruction fil-
ters is considered. The problem is formulated and solved as
a constrained optimization.

In the next section we state the problem and establish
the notation. In section 3 we demonstrate that the optimal
solution is the orthogonal projection of the erasure error to
the span of the remaining synthesis vectors. A causal imple-
mentation is proposed in section 4, assuming the transmitter
is aware of the erasure. Section 5 presents a transmitter that
pre-compensates for the erasure and a receiver that undoes
the compensation if the erasure does not occur. The causal-
ity constraints imposed in part of this work, often allow only
for a partial compensation of the error.

2. PROBLEM STATEMENT

Consider the synthesis of a vector x:

x =
∑

k

akfk, (3)

in which we make no assumptions on how the representa-
tion coefficients {ak} originate.

The coefficients {ak} are used to synthesize the signal
using the pre-specified synthesis frame {fk}, subject to era-
sures known at the transmitter or the receiver. We model
erasures as replacement of the corresponding ak with 0, i.e.
removal of the corresponding term akfk from the summa-
tion in (3). Since the expansion method is not known, the
goal is to compensate for the erasure as much as possible
using the remaining non-erased coefficients.

Thru section 4 we assume that the transmitter antici-
pates an erasure and knows the value of the erased coef-

ficient. Assuming coefficient ai is erased, the transmitter
is only allowed to modify the coefficients {ak|k ∈ Si}
to {âk|k ∈ Si} in order to compensate for the erasure.
Si = {k1, . . . , kp} denotes the set of coefficient indices
used for the compensation of ai. The reconstruction is per-
formed using equation (3) with the updated coefficients:

x̂ =
∑
k∈Si

âkfk +
∑

k/∈Si,k �=i

akfk, (4)

such that x̂ minimizes the magnitude of the error E = x−x̂.

3. COMPENSATION USING PROJECTIONS

The error due to the erasure and compensation can be rewrit-
ten using the synthesis sums:

E = aifi +
∑
k∈Si

(ak − âk)fk (5)

The vectors {fk|k ∈ Si} span a space Wi. Therefore, the
error magnitude is minimized if the sum

∑
k∈Si

(ak − âk)fk
is the orthogonal projection1 of −aifi onto Wi.

Exploiting the linearity of projections, we define the
projection coefficients ci,k such that they satisfy:

PWi
(fi) =

∑
k∈Si

ci,kfk, (6)

in which PWi
(fi) is the projection of fi onto Wi. Thus, the

compensation of the erasure of ai can be performed opti-
mally by updating each of the ak to:

âk = ak + aici,k, for all k ∈ Si (7)

⇒ E = aifi − ai

∑
k∈Si

ci,kfk (8)

= ai(fi − PWi
(fi)). (9)

Using inner products with {fk|k ∈ Si} on (6), and defin-
ing the frame autocorrelation as Rk,l = 〈fk, fl〉, the deter-
mination of the projection coefficients becomes equivalent
to choosing the ci,k as the solution to:

⎡
⎢⎣

Rk1,k1 · · · Rk1,kp

...
. . .

...
Rkp,k1 · · · Rkp,kp

⎤
⎥⎦

⎡
⎢⎣

ci,k1

...
ci,kp

⎤
⎥⎦ =

⎡
⎢⎣

Ri,k1

...
Ri,kp

⎤
⎥⎦ .

(10)
Satisfying (10) is equivalent to computing the frame ex-

pansion of fi using {fk|k ∈ Si} as a synthesis frame. If
the frame vectors {fk|k ∈ Si} are linearly dependent, the
solution to (10) is not unique. All the possible solutions are
optimal given the cost function and the constraint that only

1Henceforth the term projection refers to orthogonal projections.
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coefficients {ak|k ∈ Si} can be modified. If the vector aifi
being compensated is in the span of the vectors {fk|k ∈ Si}
used for the compensation (i.e. fi ∈ Wi), then the erasure is
fully compensated for. In this case the error is 0, and we call
the compensation complete. In the development above we
assume only one erasure, i.e. that none of the {ak|k ∈ Si}
are erased during the transmission.

Projection-based compensation can be generalized to the
sequential erasure of multiple expansion coefficients, allow-
ing a subset of the remaining coefficients for each compen-
sation. The sets Si of coefficients used to compensate each
of the erasures are part of the system design constraints. We
assume that once a coefficient has been erased and compen-
sated for, it is not used to compensate for subsequent era-
sures. Under these assumptions the following can be shown:

(a) Superposition: The linearity of projections implies
that the superposition of the optimal compensation of
ai and aj using the same set of the remaining coeffi-
cients Si = Sj , (i.e. j /∈ Si) produces the same error
as the optimal compensation of the vector aifi + ajfj
using the same set.

(b) Sequential superposition: If one of the coefficients
ak, k ∈ Si used in the compensation of ai is sub-
sequently erased and the remaining coefficients of Si

are used to optimally compensate for the erasure of
the updated âk, this is equivalent to optimally com-
pensating both ai and ak with the remaining coeffi-
cients in Si.

(c) Sequential complete compensation: If an ak, k ∈ Si

used in the compensation of ai is subsequently erased
but completely compensated, the compensation of ai

is still optimal.

Projections can be used at the transmitter to intentionally
introduce erasures before transmission, a process known as
puncturing. Erasures compensated for with projections can
be the basis for algorithms that sparsify dense representa-
tions. They can also be combined with quantization, in
which the combined error is projected to the remaining co-
efficients, as described in [7, 8], although not necessarily in
a data-independent ordering. This, however, is beyond the
scope of this paper, and it is not discussed here.

4. TRANSMITTER-AWARE COMPENSATION

The projections are straightforward to implement if the trans-
mitter is aware of the erasure occurrence. For the remaining
of this paper we assume the coefficients are transmitted in
sequence indexed by k in (2). We focus on causal compen-
sation in which only a finite number of coefficients, sub-
sequent to the erasure can be used for compensation. For
clarity of the exposition, we assume a shift invariant frame

�ai �
ei

�×�+
−

�a′
i �âk = a′

iei

�� �+− +
ai(1 − ei)�hn

�

Fig. 1. Erasure-aware transmitter projecting erasure errors.

in the figures, although we develop the algorithms for ar-
bitrary frames. A shift invariant frame has autocorrelation
that is a function only of the index difference, i.e. satisfies
Ri,j = Ri−j,0 ≡ R|i−j|. Thus, ci,i+k = c0,k ≡ ck, and
a transmitter aware of the erasure occurrence can be imple-
mented using the system in figure 1, in which the feedback
impulse response is equal to:

hn =
p∑

k=1

ckδn−k. (11)

In the figure, ek denotes a sequence of 1 and 0, which mul-
tiplicatively implements the erasures. The resemblance of
the system to Sigma-Delta noise shaping systems is not ac-
cidental, given that projection based compensation of errors
in frame expansions was introduced in [7, 8], as an exten-
sion of Sigma-Delta noise shaping to arbitrary frames.

The compensation is optimal if the erasures are such that
there is only one erasure within p coefficients, or if p is such
that the erasure compensation is complete. Otherwise it is
only a locally optimal strategy which minimizes the incre-
mental error after an erasure has occurred, subject to the
design constraints.

For arbitrary, shift varying frames, the feedback should
use a time-varying system hn,m in which the coefficients
satisfy (10) at the corresponding time point. The output yk

of this system should be

yk =
∑

i

hk,ixi, (12)

in which xi = ai(1 − ei) is the input, and

hk,i =
{

ci,k for 0 < k − i ≤ p,
0 otherwise.

(13)

5. PRE-COMPENSATION WITH CORRECTION

In many systems, and particularly in streaming applications,
the transmitter is not aware of the erasure occurrence. In
such situations it is possible to pre-project the error at the
transmitter side, assuming an erasure will occur. If the era-
sure does not occur, the receiver undoes the compensation.

To implement this algorithm the transmitter at step i up-
dates coefficients ai+1, . . . , ai+p to

a′
i+k = ai+k + ci,i+ka′

i, (14)
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Fig. 2. (a) Transmitter and (b) receiver structure projecting
erasure errors. Only the receiver is aware of the erasure.

where the ci,i+k satisfy (10). The a′
i used for the update is

the coefficient as updated from all the previous iterations of
the algorithm, not the original coefficient of the expansion,
making the transmitter is a recursive system. Depending on
the frame, this has the potential to generate instabilities, not
addressed in this paper.

If an erasure does not occur the receiver at time step i
receives coefficient a′

i. Otherwise it sets

a′
i =

p∑
k=1

ci−k,ia
′
i−k, (15)

which is the part of a′
i from equation (14) that is due to the

projection of the non-erased coefficients. Note that an era-
sure also erases the components of a′

i due to the projection
of the previously received coefficients. Equation (15) en-
sures that these components are retained for the projection
to be removed from the subsequently received coefficients,
even though a′

i has not been received. The system outputs
âi, depending on whether an erasure has occurred or not:

âi = (a′
i −

p∑
k=1

ci−k,ia
′
i−k)ei (16)

This removes the projection of the previously received co-
efficients from a′

i. It can be shown that this system is input-
output equivalent to the system in section 4 [11]. To demon-
strate this, it suffices to show that if a coefficient a′

i is not
erased, then its projection is recursively removed from all
the remaining non-erased coefficients. Any erased coeffi-
cient, has already been compensated for by the transmitter
using (14). The reconstruction in equation (16) undoes the
recursive effects of (14) and ensures that the projection only
affects the p coefficients subsequent of the erasure. If the
frame is shift invariant, the system looks like the one in fig-
ure 2, in which ei,the sequence of ones and zeros denoting
the erasures, is the same in all three locations in the figure.
The system hn is the same as in figure 1.

In several applications, such as packetized transmissions,
frame expansions are used for transmission of blocks of co-
efficients. In such cases the systems described can be modi-
fied to accommodate block erasures by projecting the whole
vector represented by the transmitted block to the subse-
quent coefficients.
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