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ABSTRACT

In this dissertation we present a new approach to the problem of estimating multiple
unknown signals and/or parameters from noisy and incomplete data. We approximate
the various unknowns as being stochastically independent, then fit a separable probabil-
ity density approximation to the given model density by minimizing the cross-entropy.
Given the separable density, all the unknowas can then be estimated independently of
each other using conventional methods. Surprisingly, all the well known Maximum A
Posteriori and Maximum Likelihood methods for this problem can be viewed as degen-
erate forms of this cross-entropy approach, in which one or more componeats of the
fitted separable density are constrained to be impulse functions. We solve for the
Minimum Cross-Entropy and MAP separable density approximations by iteratively
minimizing with respect to each unknown component of the density. This iterative
approach takes a particularly simple form when the probability densities belong to an
exponential class of densities. Each iteration decreases the cross-entropy, and conver-
" gence can be prover under mild conditions. Applications discussed in the thesis include:

a) grouped, truncated, quantized data

b) optimal signal reconstruction from time/frequency constraints
bandhmited extrapolation
phase-only reconstruction
magnitude-only reconstruction

¢) multidimensional FIR filter design

d) multidimensional Maximum Entropy spectral estimation

¢) optimal signal reconstruction from time/Short Time Fourier
Transform constraints

i) penalty functions for constrained minimization
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Chapter 1

Introduction

1. The Subject of the Thesis

Using noisy and incomplete data to reconstruct a signal or identify parameters of
the signal model are two of the most common problems in stochastic &sﬁmation theory.
Applications abound throughout all engineering disciplines. In controlling a chemical
plant subject to unknown disturbances and sensor errors, it is necessary to estimate tem-
perature and pressure profiles (the parameters) as well as material flows (the signal) in
order to maximize the yield of the reaction. Bandwidth compression or enhancement of
noisy speech benefits greatly from accurate estimation of the vocal tract and voicing
parameters. Optical images blurred by motion or by instrument inaccuracies can often

be restored if an accurate estimate of the distortion is available.

In all these cases, we start with a model of the signal and observation processes.
The model describes the inputs and outputs of the system, and mathematically charac-
terizes its internal behavior as well as characterizing its overall environment. The model
may be incomplete, with only vague information about the values 'of various internal
parameters. Our measurements of the system may also be poor. Noise may be
present, the values being measured may be distorted through transmission, samples
may be missing, suspect, or coarsely quantized, and sometimes only short segments of
data may be available. Given whatever information we have, the partial model and the
partial data, our goal in all these applications is 1o try to estimate the unknown aspects
of the model, reconstruct the internal stéte of the system, and try to fill in any missing

observation data. )
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Unfortunately, deciding what is the "optimal™ estimate of these unknowns depends
strongly on how we choose to define "optimality™. .If we have 2 specific goal in mind,
such as maximizing the plant yield or improving the intelligibility of speech, then
optimality of the estimation algorithm can be measured in terms of the improvement in
our application. Unfortunately, optimality criteria such as these are usually difficult to
quantify in a form that is convenient for processing. A common approach, therefore,
is to choose a method which is relatively simple yet works well (though perhaps not
"optimally”) in a wide variety of applications. Numerous techniques, both ad hoc and
theoretidl, have been discussed in the literature. Throughout this thesis we will assume
that a statistical model for the unknowns is available. If a cost function is also given,
describing the relative cost of various types of estimation error, then the “optimal”
Bayesian estimation approadh is to choose the estimate which, given the available data,
would on average result in minimum cost {1] . If the cost function is the mean square
error between the actual unknown and the estimate, then the resulting Minimum Mean
Square Error estimate would cakulate the conditional expectatica of the unknowns.
Urnfortunately, while this may be the best one could do, the multidimensional integrals

required to estimate several unknowns simultaneously are usually extremely difficult to
evaluate.

The most commonly suggested compromises are Maximum A Posceriod (MAP) or
Maximum Likelihcod (ML) methods [1,2,3,4] . These approaches try tc choose the
values of the unknowns which are "likefiest™ given the available observations. In effect,
these methods replace the multidimensional integration of the Minimum Cost Bayesian
method with a computationally simpler maximization of a probability density. Perhaps
the most important property of MAP and ML is that, although they give higher costs

than the “optimal™ Bayesian approach, for many stationary and ergodic systems these
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techniques yield asymptotically consistent, efficient and normal parameter estimates
[5,6,7] . In these cases, MAP and ML are "optimal” in the sense that no cther asymp-
totically consistent technmique can yield estimates with asymptotically lower variance.
The problem is that for short data lengths, these methods may be quite biased. More-
over, when there are multiple unknowns, there are many ways in which we can apply
these methods to the problem, some of which are significantly better than others. In

fact, this thesis will treat three fundamentally different ways to apply MAP or ML to a

stochastic estimation problem with two unknowns.

The main thrust of this dissertation, however, is to develop a new approach to the
problem of stochastic estimation with multiple unknowns and noisy or incomplete
observation data. What we would really hike is 8 method which works about as well as
the Minimum Cost Bayesian approach, but which doesn’t require complicated multidi-
mensional integrations. The real problem with the Minimum Cost approach is that the
snknowns are usually closely correlated, and it is the interaction between all the unk-
nowns which causes the computational complexity. If we could uncouple all the uncer-
tainties and deal with only one unknown at 2 time, then the problem would be substan-
tially simpler.

We start with what is admittedly a shaky basis. Let us pretend that all the unk-
nown variables are independent, and approximate the given model probability density
p(x.y, --) by a probability density q(z,y,---) that is separable. Thus
q(x.y, - )=qlx)q(x) - - - is simply a product of individual densities involving only
a single unknown. Once we have computed such a separable approxin_aaﬁon, we could
then use it to estimate each unknown independently of the others. The question is,

how do we best fit a separable density to the given model? The answer lies in informa-
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tion theory. Shore and Johnson [8] have proven that the "only” method of stochastic
inference which correctly incorporates knowledge about the form of the probability
density is to choose the density which minimizes the “cross-entropy”, an information-
theoretic measurement of the difference between the original and the new model den-
sity. Our Minimum Cross-Entropy Method (MCEM) thus consists of finding the best
separable approximation to the given model density by minimizing the cross-entropy

over the infinite dimensional space of separable probability densities.

Surprisingly, all the usual MAP and ML methods can be reduced to degenerate
forms of this single cross-entropy method, in which we not oﬁ]y fit a scparab}e approxi-
mation to the given model, but also insist that one or more components 0f~that separ-
able approximation be impulse functions. Cross-entropy thus servés' as a unifying
framework for stochastic estimation of multiple unknowns; it provides a concrete meas-
ure for comparing the various MAP methods, and also suggests that betier, lower
cross-entropies could be achieved by removing this impulse function restriction of the
MAP methods. Cross-entropy, like Minimum Cost Bayesian estimation, can also deal
properly with‘ generalized probability densities containing impulses. MAP and ML can-
not. The cross-entropy approach also tends to retain any symmetry in the underlying
model, while the MAP methods often do not. In 2 number of examples we have tried,
cross-entropy also seems to yield estimates with less bias than the MAP methods, and
although we have not proven this, it appears to be asymptotically consistent whenever
an MAP method would be asymptotically consistent. All these features suggest that this
Minimum Cross-Entropy Method is the "natural” alternative to Minimum Cost Baye-
sian Estimation.

Unfortunately, by introducing cross-entropy, we have comverted an estimation
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problem invo'ving 2 finite number of unknowns into an infinite dimensional functional
minimization over the space of . ,-ossible separablc probability densities. We choose
the simplest possible approach to implementing this minimization, iteratively minimiz-
ing the cross-entropy over each component of the separable approximation in turn.
This is comparable to using a "coordinate descent” minimization technique, and though
gradient directed methods might be faster, none would be as simple. Minimizing the
cross-entropy with respect to a2 component q(x) of our separable density q(x)q(y) - - -
involves averaging the model log probability density over all unknowns except x, then
using the result as the estimated log probability density logq(x) of the unknown x. In
effect, we average the log model probability density over all variables except one, then
assume that the remaining variable must account for any remaining variation. We then
move to the next variable and do the same. Each iteration strictly reduces the ctoss-
entropy, and thus strictly improves the separable approximation. Furthermore, since
the MAP methods can also be stated in terms of fitting a separable model to the given
density, exactly the same iterative approach can be used for solving these problems also.
The only difference is that in the MAP methods, the components that are restricted to
be impulse functions are estimated by maximizing an averaged log density. Each itera-
ton of the MAP algorithms not only strictly decreases the cross-entropy, but also

strictly increases the corresponding likelihood function.

We're still left with some multidimensional integrations, the same problem which
curses the "optimal” Minimum Cost Bayesian approach. However, if the given model
density forms an exponential class of densities, then the infinite dimensional cross-
entropy minimization problem reduces to iteratively calculating the expectation of a fin-
ite set~of functions, each involving only a single unknown. This restricion to the

exponential class is actually not that limiting; incdluded in this class are binomial,



- 15 -
multinomial, negative binomial, Poisson, Exponential, Gaussian, Gamma, Chi-Square,
Beta, and many other densities. In fact, under mild conditions, one an show [9] that
every density which can be characterized by a sufficient statistic must be an exponential
class. When the model density is transformed to its "natural” exponenual form, the
algoricams take their simplest form. Cross-entropy simply alternates between calculat-
ing the conditional expectation of each unknown in turn given the latest estimate of the
other unknowns. The MAP algorithms differ only in that some or all of the expecta-
tions are replaced by maximizations of the conditional density. MAP algorithms are

usually computationally cheaper than MCEM, but their estimates are usually worse.

Convergence of all the algorithms can be proven under mild conditions. Two
basic approaches are used for proving convergence in this thesis. The first relies on the
fact that the algorithms strictly decrease a cross-entropy expression on each iteration,
and the MAP algorithms also increase a Fkelihood function on each pass. Analyzing
the shape of these functions then leads to an understanding of how these estimates must
evolve. The other approach used is that when the cross-entropy or likelhood functions
are concave, cach iteration often defines a contraction or nom-expansion mapping on
the space of unknowns. Well known fixed point theorems can then be invoked to

prove convergence of the estimates.

The remainder of this thesis is concerned with applications of these ideas to a
variety of problems in statistics and signal processing. The first problem we consider is
fitting the parameters of a given model density to a set of data w;zhen the data has been
coarsely quantized, grouped into bins for convenience in collection, or similarly man-
gled. We propose four different cross-entropy and MAP algorithms for solving this

problem. All four algorithms alternate between estimating the exact values of all data



16~

measurements, fitting parameters to the model density using these data estimates, then
using the improved parameter estimates to further refine the data estimates. We com-
pare the performance of our algorithms with the Minimum Mean Square Error esti-
mates for a couple of examples involving Exponential and Gaussian densities. Cross-
entropy appears to give csﬁmétw which are virtna]iy identical to those of Minimum
Mean Square Error estimation at a fraction of the computational cost, and its estimates
are asymptotically consistent. Omne of the MAP methods is almost as good, but for
small amounts of data it gives biased estimates. The two other MAP methods are

asymptotically biased (ca the other hand, they take very little computation.)

The next class of applications we consider involves optimal reconstruction of Gaus-
sian signak corrupted by additive Gaussian noise, where we are given separate con-
straints on the signal and output valies. Again we apply four different cross-entropy
and MAP algorithms to the problem. Each algorithm filters the output estimates, and
applies a conditional expectation or projection operator to estimate the signal. The out-
put is then reestimated by applying a conditional expectation or projection operator to
the signal. When the constraint sets are convex, each step defines a contraction map-
ping on the estimates, and geometric convergence to the unique global optimizing solu-
tion is guaranteed. If the constraint sets are not convex, convergence is only

guaranteed to a critical point of the cross-entropy or likelihood function, provided that

the estimates remain bounded.

We also analyze the LEmiting behavior of our algorithms when our a priori signal
density becomes asymptotically flat. We show that our algorithms for this case have a
similar form, except that the filtering step is omitted, and the resulting iteration is only

a non-expansive mapping. Nevertheless, by using a new upper bound on the variance
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of a log concave protability density, we prove that if the constraint sets are convex,
then the "Fisher” algorithms converge to a global optimizing solution if and only if a

solution to the problem exists.

The case when the known constraints on the signal and noisy output are defined
by linear equalities is particularly interesting and. clegant. All of our estimation
approaches give identical algorithms in this case. Each iteration uses a linear filtering
step, and two linear projection operations onto each of the coastraint sets in order to
calculate its estimates. An alternative "dual” algorithm is developed which iteratively
calculates transformed Lagrange Mulipkers, rather than the variables themselves, by
using a similar filter/project/project iteration. The dual projection operators, however,
are "orthogonal” to those of the original "primal” algorithm, and the dimensions of the
problems can be quite different. Numerous dosed-form sohtions are developed, and
we also suggest several different conjugate gradient and PARTAN algorithms to solve
the problem in a finite number of steps. Noise sensitivity is analyzed, and shown to be
directly related to the convergence rate. Finally, since both the primal and dual prob-

lems define a linear mapping on the signal and output spaces, we can analyze the eigen-

structure of these mappings.

The simplest application of these reconstruction algorithms is to the problem of
reconstructing signals given noisy constraints on its behavior in the time and frequency
domains. We first consider the general linear equality time and frequency constraint
problem, and two special cases: bandimited extrapolation, and reconstruction of 2 fin-
ite signal given the phase of its transform modulo =. For all these problems we develop
both pﬁmal and dual iterative algorithms, conjugate gradient algorithms, closed-form

solutions, and analyze their eigenvalies and eigenvectors. Next we consider applica-
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tions involving more general convex constraint sets. Reconstruction of finite length sig-
nals from noisy measurements of the phase modulo 2w is treated in depth, and we com-
pare its performance with the algorithm suggested by Hayes, Lim and Oppenheim [10].
Another application in this category is a new multidimensional Finite Impulse Response
filter design algorithm capable of designing FIR filters meeting arbitrary time and fre-
quency constraints. Finally, we discuss magnitude-only reconstruction, a problem
involving non-convex constraints, and present three different algorithms, one of which
is jdentical to that used by Fienup [11] and Hayes [12, 10]. When the constraint sets are
nom-convex, convergence is only guaranteed to a critical point of the objective function.

As a result, our algorithms in this application tend to converge to a local minimum far

from the global minimum.

Next we consider more esoteric applications. A new development of Short Time
Fourier Transform is presented, in which we generalize the concept of "windows™ to
arbitrary one-to-one linear operators, prove that the inverse Short Time Fourier
Transform is a projection operator, and develop a Parseval-like theorem equating the
energy in the time and Short Time Fourier domains. These properties are used to
develop gencral algorithms for reconstruction of signals from constraints on its time and
Short Time Fourier domain behavior. In fact, all the time/frequency domain results
generalize directly to time/Short Time Fourier domain algorithms. Next we present a
possible improvement to Malik and Lim’s algorithm (we have not tested this yet, and
so there is no guarantee that it works.) We conclude with a new suggestion for penalty

functions for constrained minimization problems.



2. Ongoing Research

There are a number of additional applications which were not included in this

thesis due to lack of time. These include:

*

Iterative Multidizaensional Extrapolaﬁon/lnterpolation/Smoothing, of Noisy
Finite Segments of Stationary Rational P;ocwses (this iterates between a
Weiner-Hopf smoothing filter, optionally linearly predicts the signal tails,
then reestimates the unknown output tails from the signal tails.)

Iterative Pole/Zero Estimation from a Finite Segment of Noisy Observaticns

(these iterate between a finite length smoothing filter, and linear prediction

and aross-correlation parameter estimation.)

Iterative Pole/Zero Estimation and Extrapolaﬁon/lntetpolaﬁon/Smoothing of
Noisy Autoregressive Moving Average Models (these combine the above two

algorithms in order to implement the filtering in the frequency domain.)
Recursive Versions of the Noisy Pole/Zero Modeling Algorithms

A 3 way Separation Theorem for Optimal Control of Linear Quadratic Gaus-
sian Systems in Standard Controllable Form (these replace the expectation of
the quadratic cost function by an expectation operator using the separable
density approximation. The standard dynamic programming derivation of
the separation theorem then gives an algorithm in which we iteratively fit a
signal density, fit a parameter density, then refit | a control.

Recursivefiterative versions of the algorithm are also possible.)

The first algorithm only involves linear equality constraints; it has been programmed

and works well. The MAP algorithms for solving the second and third applications

bave also been programmed; these work best for estimating all-pole models from noisy
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data, since the zero estimates converge rather slowly. Using iterative extrapolation of
the soisy output is also a rather simple but very effective method of climinating the
boundary effects one would normally encounter when using frequency domain filters on

finite data segments. The last two applications are areas of ongoing research effort.

3. Historical Background

The idea of developing connections between information theory and probability
has been investigated by numerous authors. Kullback’s book [13] is perhaps thf: best
example, although it primarily concentrates on ipplying statistical analysis to informa-
tion theory rather than vice versa. Many reseaf;ilcts have tried to derive an axiomatic
information theoretic basis for statistical inference [14,15,16,17]. The most successful
of these, however, was Shore and Johnson {8] who provided a complete axiomatic jus-

tification for cross-entropy as the only viable estimation method for incorporating

observation data about the form of the model density.

Much has also been written about stochastic estimation involving multiple unk-
nowns, but most analyses have focused on specific applications in which particular
features could be exploited to solve the problem. One common suggestion [18,19] for
dealing with pole/zero parameters of 2 linear state space model, for example, is to add
the parameters to the state vector, then iteratively or recursively linearize the equations
about the last parameter estimate and use a Kalman Filter to estimate improved param-
eter and state values. This quasilinearization "extended Kalman Filter” technique,
unfortunately, does not necessarily converge. In stafistics, extra parameters or signals
are often considered "nuisance parameters” to be eliminated if at all possiblke. No
coherent theory seems to have developed for dealing with these extra parameters,

though several suggestions recur throughout the literature. We could estimate the
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nuisance parameters, then set them permanently to their estimated values. We could
jointly maximize over the parameters of interest and over the nuisance parameters. Or
we could integrate out the nuisance parameters, leaving only a probability deunsity over
the desired parameters. It is well known that only the last approach seems to lead to
asymbtotically consistent parameter estimates. However, I know of no proof of this, or

in fact any theoretically solid treatment nf the subject.

The work in this thesis was motivated primarily b, research on two rather dif-
ferent subjects: pole/zero estimation, and optimal signal reconstruction. Bar-Shalom
[20] and Lim [21,22] independently suggested 2 new approach for solving autoregres-
sive modeling problems with noisy data in which they search for the combination of sig-
nal and pole parameters which are jointly most likely. Each iteration Simply filters the
noisy observations using the latest pole estimates, then fits 2 new antoregressive model
to the clean signal estimate by using linear prediction. This method, which Lim called
LMAP, corresponds to our PSMAP approach. Contrary to Bar-Shalom’s implication,
however, the pole estimates are not asymptotically consistent; in fact, the iteration tends
to pull the poles onto the unit drcle and drops the model gain to zero, thus producing
exceptionally peaky spectra. Using an intuitive argument, Lim suggested a fix for this,
called RLMAP, in which he added the signal variance to the correlations of the signal
estimate when computing the pole parameters. He noticed that with this correction, the
pole spectra appeared to be much doser to the actual signal spectrum. In fact, except
for the gain cakulations, this idea is exactly what our PARMAP algorithm would calkcu-
late, and it exactly solves what we would consider to be the best MAP approach tc the
problem. Our Master’s thesis [23] develops ihe three MAP algorithms we use in this
thesis. By working backwards from Lim’s RLMAP algorithm, we discovered a general

approach for iteratively computing M.AP éstimatm of pole/zero modek from noisy data.
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At that time, we did pot understand the full applicability of the idea, and did not
understand the connection with cross-entropy. As a result, the derivation of the three
algorithms in the master’s thesis was rather magical; various functions (now recognized
as cross-entropies) with exactly the right properties were invented out of thin air, and

used to solve the MAP problems. With the cross-entropy development in this disserta-

tion, this former work now takes a more sensible interpretation.

The second source of inspiration for this thesis was the large literature on signal
reconstruction from constraints stated in multiple domains. Most of this work, once
again, has narrowly focused on specific applications. This has allowed the authors to
exploit particular features of the application, but has also tended to obscure the connec-
tions between all the problems. The best known signal reconstruction problem given
multiple constraints is exfrapolating 2 finite segment of data given that it is part of a
bandlimited sequence. Papoulis [24] originally treated this problem for continuous sig-
nals, and proposed an algorithm for solving it which iterated between bandlimiting the
estimated signal, and then replacing the known segment with its correct value. Conver-
gence was proved by exploiting the properties of Prolate Spheroid Wave Functions.
Sabri and Steenaart [25] proposed a single step, closed-form solution to the preblem
using an "extrapolation matrix”. Cadzow [26] reconsidered the problem, and by discre-
tizing the continuous time problem arrived at a much superior closed-form solution.
Gerchberg [27] comsidered same problem with the frequency and time domains
reversed; he uses a similar iterative algorithm to estimate the high frequencies of 2 finite

length signal when the low frequencies were given.

A conceptually related problem is that of reconstruction of a signal from samples

of the f:hase or the magnitude of its Fourier Transform, together with some extra infor-
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23
mation such as finite ime domain support, a minimum phase constraint, rtc. Fienup
{11] considered the problem of reconstructing a finite length signal from the magnitude
of its spectrum, a common problem in optict, and proposed two iterative techniques
which alternate between clipping the signal to the correct support and forcizg it to have
the correct spectral magnitude. By varying the algorithm irregularly, he showed that
reconstruction was possible in some test cases. Gerchberg and Saxton coisidered the
case when the signal magnitude was known as well is its spectral magnitude This algo~
rithm alternates between forcing the correct magmnitude in the time domain, *hen forcing
the correct magnitude in the frequency domain. Hayes, Lim and Oppenhem [10] con-
sidered the related problem of reconstruction of a finite length signal from knowledge
of its spectral phase modulo 2%, and proposed an iterative algorithm for solving the
problem which alternated between forcing the signal to satisfy the known time domain
constraints (finite support, known signal point) and forcing it to have the rrect spec-
tral phase (but keeping the spectral magnitude constant.) Quatieri and Oppenheim [28]
used a similar procedure to iteratively reconstruct minimum phase signals from their
phase or magnitude. Finally, Hayes [12, 10] proved a set of simple condtions under

which one could uniquely reconstruct a signal with finite support from sanples of its

spectral phase or magnitude.

The structures of these algorithms are quite similar; we simply altermite between
forcing time domain and then frequency domain constraints on the signal. This simple
idea of iterating between two domains has encouraged many others to try o apply the
same concept 1o mote complicated problems. Malik and Lim [29], for exanple, solve a
multidimensional Maximum Entropy (MEM) spectral estimation problem by iterating
betweex{ the correlation domain and the convolutional inverse of the correlation

domain, forcing constraints on the model power spectrum in both donains in an
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attempt to find the MEM power spectrum. Finite Impulse Response filter design algo-
rithms, such as Remez exchange and others [30], have been deliberately designed to try
to iteratively adjust the filter coefficients in the time domain in order to decrease the
worst errors in the frequency domain. Another example is that in considering a statisti-
cal probiem involving grouped d;ita, Hartley [31] discovered one of our MAP algo-
rithms for the special case of fitting a discrete multinomial distribution to a given
grouped data distribution. This paper, which we only found after finishing chapter 4 on
grouped data problems, had the misfortune to be written in 1958 before the advent of
modern digital computers. Since the iteration did not converge in 4 to S passes, the
idea was apparently discarded. Even more extreme examples are the iterative ARMA
modeling algorithms suggested iu chapter 7 of [18], or the Iterative Inverse Filtering -
algorithms of Konvalinka and Matausek [32) which iterate between estimating residu-

als, poles and zeroes ia a manner that appears to solve the corresponding modeling

problems.

Recognizing the conceptual similaritv of all these algorithms. as well as their
resemblance to certain iterative deconvolution algorithms, numerous authors have tried
to unify the presentation and convergence proofs of these algorithms. The most suc-
cessful attempts revolve around the notion of non-expansive and contraction mappings.
Tom, Quatieri, Hayes and McClellan [33], for example, showed that when the solution
to the reconstruction problem is unique, then convergence of the bandlimited and the
phase-only reconstruction algorithms cculd be proved by showing that each iteration of
the algorithms defined a strictly non-expansive mapping. Fixed point theorems of
Ortega and Rheinboldt [34] were then invoked to prove convergence. Schafer, Mer-
sereau .and Richards [35] took an identical approach in proving convergence of decon-

volution and bandlimited extrapolation algorithms. Landau [36], Sandberg [37, 38],
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and Zames [39] proved similar results for systems incorporatir 7 nonlinearities. Wiley

[40,41] used these nonlinear extensions to analyze iterative wideband FM demodulation

algorithms.

Youla [42] considered the reconstruction problem from a different perspective,
recognizing that the Papoulis handhmited extrapolatién problem was only one example
of a class of iterative projection algcrithms involving two sets of constraints on projec-
tions of the unknown signal. By considering the morc general reconstruction problem
in an abstract Hilbert space setting, he was able to characterize the properties of the
algorithm in terms of the "angle” between the constraint spaces. The approach we use
in the special case of linear equality constraints will be somewhnat similar to that of
Youla, although we will tighten some of his noise bounds, provide a convergence rate
analysis, characterize the cigenvalues and eigenvectors of the problem, and show that
additional properties can be proven for finite dimensional spaces. We will only treat
finite dimensional problems in detail; many of Youla’s conclusions for infinite dimen-
sional spaces will follow, however, from limiting arguments. Perhaps the most impor-
tant differencc between our approach and that of Youla, is that we show that many of
the properties of the class of iterative projection algorithms remain true even when the

constraints are not linear, but only convex, and even if we use expectation operators of
| truncated Gaussians instead of projection operators. Mosca [43] also treated the same
subject in depth, analyzing the various degemeracies possible in solving ill-behaved
hinear problems in infinite dimensional spaces.

The paper which comes closest to our appfoach is that of Jain and Ranganath [44],
published six months after this PhD proposal was submitted. They interpreted the

bandlimited extrapolation problem as solving a least squares problem. They derive
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Papoulis’ iterative algorithm, they discuss closed-form solutions in terms of Discrete
Prolate Spheroid functions, and they show that Cadzow’s dosed-form solution is the
minimum norm solution to the least squares problem. The least squares approach leads
to a conjugate gradient iterative algorithm. It also suggests simple techniques for simul-
taneously filtering out noise or certain types of clutter.” Our basic approach is conceptu-
ally similar to theirs in that we both start with (slightly different) optimality criteria for
judging the "goodn&s” of a signal estimate. We both use this criterion to derive estima-
tion algorithms which can be made robust to noise. The major difference is that we
show that the properties of the algorithm which they derive are not particular to the
bandlimited extrapolation problem, but hold for an extremely wide class of signal
reconstruction problemAs with constraint sets defined by linear equaliies. AIll these
problems have eigenvalues and eigenvectors with properties identical to the Discrete
Prolate Spheroid functions, all can be madc noise insensitive, all have several different
types of closed form solutions, each of which can be efficiently solvea by conjugate gra-
dient or PARTAN algorithms in a finite number of steps. All can be solved by either
primal or dual algorithms. (Our dual iterative algorithm appears to be completely
new.) Finally, when the noise characteristics are known, and when the constraint sets
are comvex, though noi linear varieties, then cross-entropy and certain MAP
approaches provide better optimality criteria than simple least squares. In turn, our
major debt to Jain and Ranganath is that their paper encouraged us to examine the use

of conjugate gradient methods for the general signal reconstruction problem.

Finally, we remark that fixed point theorems are a fundamental tool of analysis,
and the advantage of using this approach is that convergence can be proven even if the
algorithﬁa involves non-linearities or convex constraints [37,38,33]. On the other hand,

the non-expansive mapping approach is only useful for proving convergence of pre-
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existing algorithms and is not that helpful at suggesting algorithms for solving new
problems. A much more rewarding approach is to define an objective function measur-
ing the "goodness’ of our estimates, and then to optimize this function steratively.
When the objective function is quadratic, or sometimes even when it is only concave,
the resulting iterations are often contraction or non-expansion mappings, and we will

have thus generated an algorithm whose convergence can be easily verified.

4. QOutline of Thesis

The remainder of this chapter coantains a brief summary of some concepts of real
analysis that will be used in the convergence proofs, and a list of symbols. Section A of
chapter 2 discusses the classical Minimum Mean Square Error, MAP and ML methods
of stochastic estimation, then introduces Cross-entropy and lists numerous properties of
&B information measure. Section B considers stochastic estimation problems involving
two different unknowns, which we arbitrarily take to be a signal and a parameter. The
Minimum Mean Square Error (MMSE) estimate is briefly described, then three dif-
ferent MAP methods are introduced. One (PARMAP) finds the most likely parameter
value; the second (SIGMAP) finds the most likely signal value; the third (PSMAP) finds
the combination of signal and parameter values which are simultaneously most likely.
The Minimum Cross-Entropy Method (MCEM) is introduced, and we show that all
three MAP methods can be viewed as degenerate forms of MCEM. Section C discusses

existence and uniqueness theorems for optimization of functions over finite or infinite

dimensional spaces.

Chapter 3 develops iterative algorithms for solving our estimation algorithm. The
simple idea of minimizing with respect to the signal component and then the parameter

component of the separable density, is used to solve MCEM and the three MAP
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methods. For exponential families of densities, all four algorithms are shown to take a

particularly elegant form. Section B of chapter 3 painstakingly develops the mild condi-

tions under which convergence of these four algorithms is guaranteed.

Chapter 4 applies the four methods to statistical modeling problems involving
grouped or quantized data. These algorithms all iterate between estimating the actual
data values, then estimating the model parameters using these data estimates. Chapter
5 considers optimal signal reconstruction for Gaussian signals corrupted by Gaussian
noise, when the available observation information defines constraints on the possible
signal and output values. In all four algorithms the signzl is estimated by applying a
projection or conditional expectation operator to the filtered output estimate. The out-
put is then reestimated by applying another projection or conditional expectation opera-
tor to the fikered signal estimate. Lavish attention is given to the case when the con-
straints are defined by linear equalities, and we develop primal and dual iterative algo-
rithms, conjugate gradient algorithms, closed-form solutions, noise sensitivity analysis
and analyze the eigenstructure. Chapter 6 continues analyzing the optimal signal recon-
struction problem by treating the behavior of the algorithms when the a priori signal
density becomes asymptotically flat. The limiting form and convergence behavior of all

our reconstruction algorithms is then carefully reexamined for the case when the density

is exactly flat.

Chapter 7 applies a1l this reconstruction theory to problems involving time and fre-
quency constraints. Special cases considered include bandlimited extrapolation, phase-
only and magnitude-only recomstruction, and multidimensional FIR filter design.
Chapter 8 concludes by extending the algorithms to recoustructing signals given time

and Short Time Fourier domain constraints. This chapter also suggests a new MEM
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spectral estimation algorithm, and a new penalty function for constrained optimization

problems.

5. Elementary Concepts of Real Analysis

Several ideas in functional analysis will be used quite heavily throughout this
thesis. The following is intended as a quick summary of some of the most fundamental
of these concepts. Other definitions and theorems will be introduced as needed. There
are many good references for this material; see, for example, Luenberger, [45] Gold-

stein, [46] or Demyanov and Rubinov [47] . (The casua! reader should skip this section

and continue with chapter 2.)

In general, we will restrict our attention to finite dimensional normed linear vector
spaces such as the N dimensional rea! or complex Euclidian spaces R¥ or C¥. Sets A
will be called bounded if there exists an upper Emit M to the norm of every vector in

A, llxll=M for all x€A. A sequence of points {x} is called a Cauchy sequence if for

any ¢>0, there exists an N such that:

[ta=xall =€ forall nm=N (1.5.1)
The spaces RY and CV are complete, which means that every Cauchy sequence in the
space converges to a point in the space. The set A is called "closed” if every Cauchy
sequence {x,} in A converges to an element of A. The complement A of the set A, con-
taining all elements not in A, is open if A is dosed. If x4 is an element of an open set,
then there exists a ball of radius €>0 around z, such that every element in the ball also
belongs to A (thus if ||z -zgl| <e then x€A.) Intuitively, closed sets incdlude their
boundary, and open sets do not. The closure of a set is the union of the set with all
limit points of all infinite converging sequences in the set. A set A is called "compact” if

cvery infinite sequence of elements in the set has at least one infinite subsequence which
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converges to an element of A. The Bolzano-Weiersirass theorem guarantees that every
closed and bounded set in R¥ or C¥ is compact. The "cluster points” ("limit points™) of
an infinite sequence {x,} are all points r. such that there is an infinite subsequence

{x',}C{x,} which converges to x.. Equivalently, every neighborhood of a cluster point

contains an infinite number of clements of {x,}.

A set A is called convex if for every two points x,y €A, every point on the line

connecting x and y is also in A:

Ax + (1=N)y € A for 0<a<1 (1.5.2)

Non-Convex Convex

Convex and Non-convex Sets

The closed convex hull of a set, sometimes called the “cover”, is the smallest closed con-

vex set containing A.
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Convex Hull of A

A function f:A-R mapping a corvex set A into the reals is itself called convex if for all

X,y €A,

FOE+(1-MDx) s @) + (1-NFf (@) for all 0<a<1 (1.5.3)
In other words, the line connecting (x,f (x)) and (y.f(x)) always lies above the func-
tion f. This function is called strictly convex if equality holds in the definition above if
and only if x#y. "Proper” convex functions also satisfy f(x)>-x for all x. (We will
assume throughout that all functions are proper.) Convex functions are continuous in
the interior of their domain. If a convex function is also differentiable, then the follow-
ing relationships hold:

<f'@,x-x> = fQ@) - f&) (1.5.9)

<f'Q)-f'@)r-z> =0
If f(x) is strictly convex, then strict inequality holds above if x #y. Intuitively, these
relationships imply that the tangent to f (z) Lies below the function. The function F@)

is called "concave™ if —f (x) is convex.



0| )
A @)+ (1-N)F ()

M@)+(1-MF @)

fF@+<f'x)y—x>

y X g x

Non-Convex

Convex

Convex and Non-convex Functions

We will also need to treat infinite dimensional vector spaces in this thesis. Unfor-
tunately, analyzing convergence in infinite dimensional spaces is considerably more dif-
ficult than in finite dimensions. For example, closed and bounded infinite dimensional
sets are not compact, and it is easy to find infinite bounded sequences with no hmit
points whatsoever. This subject is ordinarily treated by generalizing our concepts of
convergence to a "weak” topology. We mention this only to stress that extending the
results of this thesis to infinite dimensional spaces is generally non-trivial, and we will

therefore concentrate primarily on finite dimensional problems.
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6. The Cast of Characters

First let us introduce some notation.
A, B - capital Roman letters are matrices
¥, ® - capital Greek letters are sets
X, v - underlined Greek or Roman letters are vectors
a, B - lower case Greek or Roman letters are scalars
F(x), f(a) - functions
Indexing:
A or [A]; - the (i,/)* element of matrix A (the first row or column may be
numbered from 0 or 1 depending on c‘ucﬁmstanm.)

x; -the i™ element of the vector x

A, -thek® ina sequence of matrices A;, Ay, - - -

% - cither the k™ vector in a sequence, or a vector of length &, depending on

use.

[A:]; - the (i,j)* element of the k™ matrix A. Analogously for vectors.
Transpose, Inverses, Conjugates

AT, gT - transpose of Aor g, i.c. AT=A;

A’, 4" - complex conjugate of A or a

A¥, g™ - complex conjugate transpose (Hermitian) of A, i.e. AH=AT

A~ .inverse of A

AT, A™H . inverse of AT or AH respectively
Special Functions:

8;; - Kronecker delta function, ;=11 i=j, and =0 else

5(1—1p) - impulse function, equals zero everywhere except {4, but integrates to
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one over all neighborhoods of £g.
'A| - determinant of A .
tr(A)=3A; - thetrace of A
Special Vectors, Matrices

. B 2 1 ﬁ i=j
I -identity matrix, I; = &;; = {5 .
I, -themXxXm identity matrix
0 - the zero vector, 0 = (0 --- 0)T

0. - a zero vector of length m

A = diag(a) - a diagonal matrix with elements A; =q;3

Special Sets:
N{A) - the null-space of the matrix A
R(A) - the range space of the matrix A

Deerivatives of a Scalar Function:

fa) ~ is the column vector, {—';-g—} = A
i

ag aa;

A - is the matrix, | 2L | = 2.
A A |, aA

_6.21_. -isthematrix, —aZL-] :—a—z.i—-

Derivatives of a Vector Function:

oa Jda aa

ﬁ( ) 3f.
9£44) _ s the mamrix 2L -2

af.
m -isthe mlumnyect°r {M] = ..’L‘..(_?._)..
{

ij
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Derivative of a Matrix Function

dA(x
da,

- is the matrix [%‘e‘-} = i
ij

[s
Higher order derivatives will not be needed.
Probability - Let A be an event, and x a random variable
P(A) - the probability of an event A
p(x) - the probability density function of x
p(x |A4) - the conditional probability density of x given that A occurred
E[x] = [ x p(x) dx - the expected vahe of x
E[x{A] = [ x p(x|4) dx - the expected value of x given that A occurred
Covla] = B[ (2 ~Elx]) (x - Eal)* | = Bl ™ ] - Efx]E(s]
- the covariance of
N(z,V) - the normal distribution with mean x and eovarianec} matrix V
Inner Products, Orthogonality:
<u,x>p = 4"A7Yy - an inner product, where A is a positive definite Hermi-
tian Linear operator, AH = A
Hella = \/2:;:3: - the vector norm associated with this inner product

, _ By ||
iIBlla = max He Ha

- the matrix norm associated with this inner product.
Clearly [[By ||z |Blallx I for all 2.

flvfl, = (xMv)* - the Euclidian norm

xly -meansy is orthogonaltoy, <z .y> =0

1|V - means z is orthogonal to every element of the set ¥, <z, 4> = 0 for all
O gev |

&V - means cvery element of the set @ is orthogonal to every element of set



VY, <d, k> = 0 for all €&, y<¥

¥l - s the orthogonal complement of the set ¥, i.e. the set of all elements
such that <x,{> = 0 for all ¢V

N(A), R (A)i - the orthogonal complements of the null and range spaces of A.

Other Notation:

v=w - every component of the vector y is less than or equal to the correspond-
ing component of w, v; =w,;

A>0 - the matrix A is positive definite, x Az >0 for all x #0

A=z0 - the matrix A is semipositive definite, zPAx =0 for alix

A=B -means that y"Ax = ;"9By for all x

(a,b) - the open interval between a and b

{a,b] - the dlosed interval including @ and b
I .
Oxd = {(z,,y_) ;;éﬂ, y<d } - the Cartesian product of sets Q and @

Other notation will be introduced as needed.
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Chapter 2

Estimation Approaches

SECTION A - ESTIMATION METHODS

1. Totroduction

In this chapter we will discuss the problem of parameter and signal estimation
given noisy and incomplete data. We consider two fundamentally different types of
estimation methods. Point estimation methods based on Minimum Mean Square Error
(M'ASE), Maximum Likelilhood (ML), and Maximum A Posteriori (MAP) are
developed first. These methods use the given data to generate an estimate of the unk-
nowns, possibly together with a confidence interval for their value. We will also con-
sider a quite different approach, based on Minimum Cross Entropy (MCEM), which
uses the available observation information to estimate the entire probability density of
the unknowns. When only one unknown needs to be estimated (the “classiczl” estima-
tioﬁ problem), all these methods are straightforward. When several signals and/or
parameter variables must be estimated from noisy and incomplete observations, how-
ever, there are many ways in which each of these criteria could be applied. We there-
fore propose and compare several different MMSE, ML, and MAP approaches. We
also propose 2 new MCEM method which uses cross<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>