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Abstract

We consider “bit stealing” scenarios where the rate of a source code must be reduced without prior
planning. We first investigate the efficiency of source requantization to reduce rate, which we term
successive degradation. We focus on finite-alphabet sources with arbitrary distortion measures as well
as the Gaussian-quadratic and high-resolution scenarios. We show an achievable rate distortion trade-off
and prove that this is the best guaranteeable trade-off independent of source code design. This trade-off
is in general different from the rate distortion trade-off with successive refinement, where there is prior
planning, but we show that with quadratic distortion measures, for all sources with finite differential
entropy and at least one finite moment, the gap is at most 1/2-bit or 3 dB in the high-resolution limit.
In the Gaussian-quadratic case, the gap is at most 1/2-bit for all resolutions.

We further consider bit stealing in the form of information embedding, whereby an embedder acts
on a quantized source and produces an output at the same rate and in the original source codebook.
We develop achievable distortion rate trade-offs. Two cases are considered, corresponding to whether
or not the source decoder is informed of the embedding rate. In the Gaussian-quadratic case, we show
the informed decoder need only augment the regular decoder with simple post-reconstruction distortion
compensation in the form of linear scaling, and that in this case such systems can be as efficient as bit
stealing via successive degradation. Finally, we show that the penalty for uninformed versus informed
decoders is at most 3 dB or 0.21-bit in the Gaussian-quadratic case, and that their performance also lies
within the 1/2-bit gap to that of successive refinement.

Index Terms — transcoding, successive refinement, information embedding, digital watermarking, rate
distortion theory, coding with side information, successive degradation, quantization

1 Introduction

There are a variety of engineering scenarios where the rate of a source code must be decreased. This paper

considers achievable, and guaranteeable, distortion rate trade-offs when no provisions have been made for

the rate reduction. Because it is not planned for, we term this “bit stealing”.
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To illustrate an application of bit stealing, consider transporting an compressed source through a con-

gested multi-hop network. Suppose that the source code is of rate R◦ and achieves distortion d◦. We discuss

two strategies for alleviating the congestion that occurs when the source packet (which can be further com-

pressed) and a second digital data packet (which cannot be compressed) both arrive at a common link that

cannot support their combined rate.

The first is to split the link rate into two independent data streams. With this strategy the source

codeword is transcoded into a lower rate codebook of rate R, which increases the distortion to d > d◦,

and the remaining (stolen) rate is used to transmit the second data packet. Transcoding is efficient if the

pairs (R◦, d◦) and (R, d) both lie on the rate distortion curve. If the source was originally encoded in a

successively refinable manner (see, e.g., [1] and the references therein), efficient transcoding is sometimes

possible by discarding least significant descriptions. In [1], Equitz and Cover give a necessary and sufficient

Markov condition for such efficiency. We show, however, that near-efficiency in “successive degradation” can

be possible even without such special codebook structure.

An alternative to splitting the rate into two data streams is to inject the data bits into the source bits

via information embedding. This scenario differs from other investigations that jointly consider quantization

and information embedding (see, e.g., [2] [3] [4]) because the source is quantized before embedding occurs.

Therefore, the host signal at the information embedder is not a source vector, but rather a quantization index.

If the embedded (stolen) rate is r, then the residual rate is R = R◦ − r. As with successive degradation, the

information embedding approach is efficient if (R◦, d◦) and (R, d) both lie on the rate distortion curve.

Each strategy has its advantages. In rate-splitting the data packet is easily decoded as it is transmitted

independently of the reduced-rate source description. However, source decoding is more involved because

the decoder must be informed of what lower rate codebook was used during transcoding. In embedding,

on the other hand, message decoding is more involved because data bits are now intertwined with source

bits. However, while the embedding operation changes which codeword is transmitted, the codebook can be

kept the same. In certain applications this may be an advantage, for example, since source decoders do not

necessarily have to be informed that any bit stealing has taken place.

From a broader perspective, one can view the original successive refinement problem as one of transcod-

ing with informed encoders, i.e., encoders aware of the possibility that the source may subsequently be

transcoded, and the rate of that transcoding. In contrast, the bit stealing problem is one of transcoding

with uninformed encoders, i.e., encoders that either do not know that transcoding may take place, or do

but do not know the residual rate. Within this taxonomy, there are two natural bit stealing subproblems,

corresponding to whether a source decoder is also informed or not about whether transcoding has taken

place. We ultimately explore both cases in our development of the successive degradation and information

embedding approaches.

An outline of the paper is as follows. Section 3 poses the successive degradation problem and character-

izes its solution. The proofs are developed in Section 4, and Section 5 applies them to the case of a binary

source and Hamming distortion measure for the purpose of illustration. Section 6 develops the corresponding
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Figure 1: Bit stealing via successive degradation: the rate R◦ of the code for source x is reduced to R, incurring
an increase in reconstruction distortion from d◦ to d. Source decoder I is the decoder for the original encoding,
which produces reconstruction x̂◦ at distortion d◦. Source decoder II is the decoder for the transcoded source, which
produces reconstruction x̂ at distortion d.

results for a Gaussian source and quadratic distortion measure, and Section 7 discusses continuous sources

more generally in the high resolution limit. Finally, Section 8 develops aspects of the behavior of informa-

tion embedding strategies in the corresponding scenarios, for both informed and uninformed decoders, and

Section 9 contains some concluding comments.

2 Notation

We use I(·; ·), H(·), h(·), and D (·‖·) to denote mutual information, entropy, differential entropy, and relative

entropy (divergence), respectively. The argument to H(·) and h(·) can be either a random variable or its

distribution; we use both interchangeably. In addition HB (·) denotes the entropy of a Bernoulli source with

the specified parameter. We use R(·) to generically denote the rate distortion function for a source, and d(·)
the corresponding distortion rate function. We further use T to denote the type (i.e., empirical distribution

of the elements) of its vector subscript, and T(·) to denote the type class of its argument, i.e., the set of

vectors with empirical distribution given by the argument. Joint types are defined similarly. The superscript

c applied to an event denotes its complement, and |·| applied to a set denotes its cardinality. Finally ↔ is

used to denote Markov chain relationships, and E [·] denotes expectation.

3 Successive Degradation

Fig. 1 depicts the successive degradation scenario. The i.i.d. source x, to which we restrict our attention to

simplify the exposition, is encoded at rate R◦ giving source reconstruction x̂◦ at distortion d◦. The transcoder

re-encodes the source codeword into a second codebook of residual rate R ≤ R◦ giving source reproduction

x̂ at distortion d. In our problem model, all codebooks are known to their respective decoders.

Given the possibility of an informed source encoder, this problem is a special case of branching commu-

nication systems investigated by Yamamoto in [5]. Yamamoto considered the joint encoding, but sequential

decoding, of a pair of correlated sources. Setting the two sources equal gives the same rate distortion region

as generalized successive refinement [6]. Therefore, given control over the design of the source encoder, an

optimal successive degradation approach is to encode into two codewords, per successive refinement. Decoder
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(a) Nested successive refinement code (b) Non-nested code

Figure 2: Voronoi regions are designed to nest efficiently in a successive refinement code (Fig. 2-a), but such a
packing does not come naturally to all codes (Fig. 2-b). To degrade a code, a clustering of Voronoi regions that form
a higher-distortion, lower rate, description of the source must be found.

I receives both codewords, while Decoder II receives only the most significant.

In this paper by restricting our attention to uninformed encoders, we preclude the possibility of having

control over the design of the original source code. Instead we only assume knowledge of source statistics

and that the source code achieves some average distortion. Under these assumptions we determine guaran-

teeable transcoder performance independent of detailed knowledge of source code design. This scenario is

of interest, e.g., when the transcoder must be backward (or future) compatible and function correctly with

encoders not designed to anticipate transcoding. Furthermore, since a refinable structure is an additional

design requirement, we want to determine how important such structure is. In some prominent cases the

performance lost by not imposing such structure is not great — the natural structure of any non-nested

source code can be nearly refinable.

An informal sense of the difference between successive refinement and successive degradation is illustrated

in Fig. 2. A successive refinement code has a nested structure as indicated in Fig. 2-a. The base index specifies

a rough quantization region (the bold circles in Fig. 2-a), and refinement regions (the small circles in Fig. 2-a)

are designed conditionally, given a base indices and the source vector. This design is most efficient when fine

regions nest in rough ones.1

On the other hand, not all high rate codes have a nested structure. In general, to lower the description

rate of a source, a clustering of fine quantization regions must be chosen. The clusters describe the source at

lower fidelity, and can be enumerated at a lower rate. This is depicted in Fig. 2-b. Degradation performance

1The nesting character of successive refinement codes is developed formally by Rimoldi [6].
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will therefore be dependent on source code design. We determine guaranteeable rate distortion trade-offs

independent of source code design.

3.1 Rate Distortion Functions

We begin by defining an information rate distortion function, which we subsequently show to be operational

in a rather natural sense.

Definition 1 Let px(x) be the distribution of the i.i.d. source, and let d (·, ·) be the corresponding per-letter

distortion measure. Let px̂◦|x(x̂
◦|x) be a conditional distribution that uniquely achieves2 a point on the rate

distortion function with

d◦ =
∑

x,x̂◦

px̂◦|x(x̂
◦|x) px(x)d (x, x̂◦) (1)

Then, the information successive degradation rate distortion function RSD(d) is defined for distortions d ≥ d◦

as

RSD(d) = inf I(x̂ ; x̂◦). (2)

where the minimization is over all conditional distributions px̂|x̂◦(x̂|x̂◦) such that the Markov constraint

x ↔ x̂
◦ ↔ x̂ is satisfied and E [d (x , x̂)] ≤ d.

The corresponding information successive degradation distortion rate function is defined as

dSD(R) = inf{d ≥ 0 : RSD(d) ≤ R}. (3)

The successive degradation rate distortion function RSD(d) can be related to some other familiar rate

distortion functions. First, we show that it cannot in general coincide with the regular rate distortion function

RSC(d). To see this, note that because of the Markov constraint in its definition, we can rewrite the mutual

information being minimized in (2) as

I(x̂ ; x̂◦) = I(x̂ ; x , x̂◦) = I(x ; x̂) + I(x̂◦; x̂|x). (4)

Then since the first term on the right-hand side of (4) corresponds to RSC(d), the successive degradation

rate distortion function is RSC(d) when the second term is zero, i.e., when the additional Markov constraint

x̂
◦ ↔ x ↔ x̂ is satisfied. Under fairly general conditions,3 this Markov constraint and that in Definition 1

can only hold simultaneously if x̂ is independent of x and x̂
◦. From this we conclude that, in most cases,

RSD(d) 6= RSC(d) unless RSC(d) = 0.

2Achievability means that (1) implies I(x ; x̂◦) = RSC(d◦) , R◦, where RSC(·) is the rate distortion function for regular
source coding. Uniqueness means that no other conditional distribution qx̂◦|x (x̂

◦|x) can achieve the same point on the rate

distortion function. We assume the sufficient conditions for such uniqueness (see, e.g., [7, Lemma 7]) are met.
3A sufficient condition is that px,x̂◦(x, x̂◦) > 0 for all x, x̂◦. This condition is satisfied, for example, in the binary-Hamming

and Gaussian-quadratic cases unless d◦ = 0.
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Figure 3: Typical rate distortion functions corresponding to an original operating point (R◦, d◦). The successive
degradation rate distortion function is indicated by the solid curve, and is defined for distortions d ≥ d◦. The
successive refinement rate distortion function is indicated by the dash-dotted curve, and is defined for distortions
d ≤ d◦. Finally, the regular rate distortion function is indicated by the lower dashed curve.

Similarly, RSD(d) generally differs from the successive refinement rate distortion function RSR(d) as well.

In particular, [6] shows that a source description at distortion d◦ using rate R◦ = RSC(d◦) is refinable to a

distortion d ≤ d◦ if and only if the total rate of the refined description is at least

RSR(d) = inf I(x ; x̂ , x̂◦), (5)

where the minimization is over all conditional distributions px̂|x̂◦,x(x̂|x̂◦, x) such that E [d (x , x̂)] ≤ d. Ex-

panding the mutual information in (5) as

I(x ; x̂ , x̂◦) = I(x ; x̂) + I(x ; x̂◦|x̂) (6)

we see, as established in [1], that RSR(d) differs from RSC(d) unless a still different Markov constraint

x ↔ x̂ ↔ x̂
◦ is satisfied.

For reference, typical successive degradation and successive refinement rate distortion functions are de-

picted in Fig. 3.

3.2 The Successive Degradation Game

To determine the best guaranteeable rate distortion trade-off for the successive degradation problem, consider

the following zero-sum game. The first player picks a transcoder anticipating the worst possible encoder.

The second player picks an encoder designed to be as difficult as possible to transcode while meeting given

rate and distortion constraints. In Section 3.3 we show that the information successive degradation rate

distortion function RSD(d) defined in Section 3.1 is the operational rate distortion function for this game.
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Specifically, any of a broad class of rate-R◦ source codes for x that achieve average distortion d◦ with

R◦ arbitrarily close to RSC(d◦) can be degraded to distortion arbitrarily close to d > d◦ if and only if the

transcoder rate satisfies R > RSD(d). To develop this result, we first introduce the formal problem setting.

An instance of the successive degradation game consists of the tuple

{X, p(x), d (·, ·) , R◦, R} . (7)

The source (and reconstruction) alphabet X is finite unless otherwise indicated, p(x), p(x̂◦|x) and d : X×X 7→
R

+ are as given in Definition 1, and R◦ and R are rate constraints on the encoder and transcoder that are

the inputs to the game. Note, too, that by the uniqueness in Definition 1, R◦ specifies p(x̂◦|x) in the game.

An encoder Φ◦
n = (C◦

n, W ◦(·|·)) consists of a codebook C◦
n of cardinality |C◦

n| = 2nR◦ and a potentially

randomized encoding rule W ◦(i|x). The latter denotes the probability that the n-length input vector x is

mapped to codebook index i ∈ {1, 2, . . . , |C◦
n|}. The reconstruction corresponding to this encoding is simply

the codeword corresponding to the chosen index, i.e., x̂◦ = C◦
n(i).

A transcoder Φn = (Cn, W (·|·, ·)) is a codebook Cn of cardinality |Cn| = 2nR and a potentially randomized

rule W (j|i, Φ◦
n). The latter denotes the probability that a given index i produced by the (known) original

encoder Φ◦
n is mapped to index j ∈ {1, 2, . . . , |Cn|}. The reconstruction corresponding to this transcoding is

simply the codeword corresponding to the chosen index, i.e., x̂ = Cn(j).

Notationally, we use dn (·, ·) for the average distortion between length-n sequences, i.e., for any an and

bn,

dn (an, bn) =
1

n

n
∑

i=1

d (ai, bi) . (8)

where d (·, ·) is the per-letter distortion measure, which is bounded unless otherwise indicated. Hence, the

distortion in the reconstruction x̂◦ associated with encoding is dn (x̂◦,x), and likewise for the reconstruction

x̂ associated with transcoding it is dn (x̂,x). We omit the subscript n when there is no risk of confusion.

We now describe the pay-offs in the successive degradation game for a fixed n. The encoder and transcoder

players choose randomized strategies PΦ◦ and PΦ for generating encoder/decoder and transcoder/decoder

pairs, respectively. Given these strategies and a reference distortion level d, the pay-off to the transcoder is

given by

π(PΦ◦ , PΦ, d) = Pr{d (x, x̂) ≤ d}. (9)

The pay-off to the encoder is simply −π(PΦ◦ , PΦ, d). The probability in (9) is evaluated as follows. First,

the source x is drawn according to px(x) =
∏n

i=1 p(xi). Then, an encoder Φ◦ is chosen according to PΦ◦ and

used to generate x̂◦ from x. Finally, a transcoder Φ is chosen according to PΦ and used to generate x̂ from

x̂◦ and Φ◦. The random choices in these steps are mutually independent.

We consider the asymptotic value of π(PΦ◦
n
, PΦn

, d) for sequences of strategies {PΦ◦
n
} and {PΦn

} where

the sequence of encoders must achieve the point (R◦, d◦) in a sense to be defined below and the sequence

of transcoders must use rate R. We demonstrate a saddle point for this asymptotic game so that the order
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of play does not effect the equilibrium pay-offs. Note, however, that by restricting our attention to the case

in which the random encoder and transcoder choices are made independently, our results do not address

scenarios in which the encoder codebook C◦ is a function of the transcoder codebook C, nor vice-versa.

3.3 A Coding Theorem

Intuitively, we expect that just as the familiar source coding rate distortion function depends on the source

distribution, the successive degradation rate distortion function should depend on properties of the original

source code. We focus on efficient encoders with performance close to the rate distortion bound.

To formalize this notion, we define a class of admissible encoders. In the sequel, we use standard definitions

of (and notation for) empirical distributions or types [8] [9]. For example, if Tx̂◦,x denotes the joint type of

(x̂◦,x) then Tx̂◦,x(x̂
◦, x) is the relative frequency of occurrences of the sample-pair (x̂◦, x) in the sequences

(x̂◦,x).

Definition 2 Let Tx̂◦,x be the joint type of encoder output x̂◦ and source x. A sequence of encoders {Φ◦
n} is

said to be admissible if D (Tx̂◦,x‖px̂◦,x) → 0 in probability as n → ∞, where D (·‖·) denotes relative entropy,

and px̂◦,x = px(x) px̂◦|x(x̂
◦|x).

An admissible sequence of rate-R◦ encoders achieves the point (R◦, d◦) on the rate distortion function.

This is because the probability that x̂◦ and x are asymptotically strongly typical according to px̂◦,x approaches

one, whence d (x, x̂◦) → E [d (x , x̂◦)] = d◦ in probability. To verify the strong typicality claim, it suffices to

note that via [9, Lemma 12.6.1, p. 300] we have, for all (x̂◦, x),

|Tx̂◦,x(x̂
◦, x) − px̂◦,x(x̂

◦, x)| ≤
√

2 ln 2 · D (Tx̂◦,x‖px̂◦,x). (10)

and, moreover, that for all (x̂◦, x) with px̂◦,x(x̂
◦, x) = 0 we have Tx̂◦,x(x̂

◦, x) = 0 (otherwise D (Tx̂◦,x‖px̂◦,x)

would be infinite).

Note that the set of admissible encoders is reasonably broad. For example, it includes the familiar strong

typicality encoders.4 Furthermore, extensions to source coding (see [10], and particularly [11, Chap. 2.6])

of analogous results in channel coding [12] tell us that the probability that source sequences are jointly

non-typical with their codewords decays exponentially in block length. In this statement, joint typicality is

with respect to the joint distribution px̂o,x induced by the source probability mass function and the (assumed

unique) rate distortion achieving channel.

Our main theorem is as follows.

4To see that strong typicality implies small divergence, consider a vector x that is strongly typical with respect to the
distribution px(x). That is, |Tx(x) − px (x)| < ε for all x and some ε. Without loss of generality, px (x) ≥ pmin for all x. Thus,

D(Tx||px) =
X

x

Tx(x) log
Tx(x)

px(x)
≤

X

x

Tx(x)
Tx(x) − px (x)

px(x)
≤

ε

pmin
,

where the first inequality follows since log x ≤ x − 1 for x > 0 and the second inequality follows by strong typicality and the
above assumption. With the choice of ε, the divergence can be made as small as desired.
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Theorem 1 For the successive degradation game,

inf
{PΦ◦

n
}

sup
{PΦn}

lim
n→∞

E
[

π(PΦ◦
n
, PΦn

, d)
]

= sup
{PΦn}

inf
{PΦ◦

n
}

lim
n→∞

E
[

π(PΦ◦
n
, PΦn

, d)
]

(11)

=







1 if R > RSD(d)

0 if R ≤ RSD(d)
, (12)

where the minimizations are over admissible sequences of rate-R◦ encoders and the maximizations are over

sequences of rate-R transcoders.

Theorem 1 implies that the information rate distortion function of (2) gives the best possible worst-case

successive degradation trade-off. If the transcoder’s rate is below (2) then there exists at least one encoder

that causes the transcoder to fail. If a rate higher than (2) is used, then there exists a transcoder that

almost always wins. The achievability argument is developed in Section 4.3; the converse is developed in

Section 4.4.

4 Proof of Successive Degradation Rate Distortion Theorem

Intuitively, one can view the encoder output x̂◦ as a noisy source observation. If the quantization noise

were i.i.d. then results on encoding noisy sources (see, e.g., [13] and the references therein) would give the

transcoding rate distortion region. However, the joint distribution of (x, x̂◦) for good vector quantizers is

generally not i.i.d..

Accordingly, we prove Theorem 1 by using a special form of dithered quantization. The joint input/output

distribution of quantizers in this class is essentially indistinguishable from an i.i.d. relationship, and yet as

we will see their performance approaches the rate distortion bound. The forward part of the theorem is

proved using this dithered quantization at the transcoder. This induces an i.i.d.-like joint distribution on

the transcoder inputs and outputs, allowing us to use the Markov lemma [14] to guarantee that as long as

the the source x and encoder output x̂◦ are strongly typical, then the transcoder output x̂ and the source

x will be also. The converse is shown in a complementary manner. In this case, our dithered quantization

is used at the source encoder. No transcoder can do better in this situation than the rate distortion results

for quantizing noisy source. The position of dithered quantization in the achievability and converse halves

of the proof is indicated in Fig. 4-a and 4-b, respectively.

4.1 Dithered Quantization

The design of a dithered quantizer is governed by an input distribution pu(u), a quantization distribution

pv|u(v|u), a quantization rate Rδ, and a parameter δ > 0 that can be arbitrarily small. The resulting quantizer

Φδ
n = (Cδ

n, W δ
n(·|·)) consists of a codebook Cδ

n of cardinality |Cδ
n| = 2nRδ

and a quantization rule W δ
n(·|·) that

avoids joint typicality encoding. We let u and v denote the quantizer input and output, respectively.
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R◦
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(a) Achievability

Encoder Transcoder
  Dither      Anyx x̂◦

R◦

x̂

R

(b) Converse

Figure 4: The role of dithered quantization in the successive degradation rate distortion coding theorem. Dithering
is used at the encoder and transcoder in the converse and achievability arguments, respectively.

Dithered Quantization Codebook Cδ
n Construction:

1. Generate 2nRδ

sequences of length n in an i.i.d. manner according to pv (v) =
∑

u pu(u)pv|u(v|u).

These are the codewords in the codebook.

2. Label these codewords v(1), v(2), . . . , v(2nRδ

).

Dithered Quantization Rule W δ
n(·|·):

1. Generate a noisy observation w from the input u according to the conditional distribution

pw|u(w|u) =

n
∏

i=1

pv|u(wi|ui). (13)

Denote by Tw,u the joint type of (w,u). Denote by pv,u the joint probability distribution pu(u)pv|u(v|u).

2. If D (Tw,u‖pv,u) > δ the quantization fails, so choose a codeword at random from the codebook.

3. Otherwise, list all sequences v in the codebook such that Tv,u = Tw,u. If no such sequences exist,

the quantization fails, so choose a codeword at random from the codebook.

4. Otherwise, choose a codeword at random from this list. In this case the quantization succeeds.

When they succeed, dithered quantizers have the property that their outputs “look” like the output of

a memoryless noisy channel with a channel law given by the quantization distribution. This property is

formalized by the following lemma, which establishes that any theorem regarding a noisy observation of the

quantizer input also holds for the output of dithered quantizers, even when there is encoder side information.

A proof is provided in Appendix A.

Lemma 1 Consider any binary valued test θ[·] ∈ {0, 1}, and a random map g(·) with domain X and a finite

but arbitrary range. Furthermore, let u and v be the input and output, respectively, of a dithered quantizer,

and let w be generated from u in an i.i.d. manner according to the distribution (13). Then

|E{θ[v,u, g(v)]} − E{θ[w,u, g(w)]}| < 4 Pr[E] (14)

provided that Pr[E] < 1/2 and that the map g(·) is independent of u, v, and w, where E denotes the event

that the dithered quantization fails.
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4.2 Design and Properties of Dithered Encoders and Transcoders

We now develop specific dithered encoders and dithered transcoders, and some of their key properties that

will be useful in the sequel.

In the design of our dithered encoder, we choose the input distribution to be px(x), that of the i.i.d.

source. Furthermore, we choose the quantization rate to be R◦ and the quantization distribution to be the

conditional distribution px̂◦|x(x̂
◦|x) in Definition 1 that achieves the distortion rate function at the target

rate, i.e., dSC(R◦) = d◦ for the distortion measure d (·, ·) of interest.5

Propositions 1 and 2, whose proofs are provided in Appendices B and C, respectively, establish that

dithered encoders designed in this way are good, i.e., can perform within ε of the rate distortion function,

and are admissible in the sense of Definition 2.

Proposition 1 The distortion for the dithered encoder satisfies

Pr
[

d (x, x̂◦) > E [d (x , x̂◦)] + dmax

√
2δ ln 2

]

≤ Pr[E], (15)

where δ is the encoder parameter and dmax = max
a,b∈X

d (a, b).

Proposition 2 There exists a δmax > 0 such that for every R◦ > I(x̂◦; x) and δ ∈ (0, δmax), Pr[E] → 0

exponentially as n → ∞ when the input is an i.i.d. sequence x. Furthermore δmax depends only on R◦ and

px̂◦,x(x̂
◦, x).

We turn next to our dithered transcoders. For their design, we choose the input distribution to be

px̂◦(x̂◦) =
∑

x

px̂◦|x(x̂
◦|x) px(x), (16)

where px(x) is the original source distribution and px̂◦|x(x̂
◦|x) is again the conditional distribution associated

with the original source code in Definition 1 corresponding to the distortion rate function operating point

dSC(R◦) = d◦. Furthermore, we choose the quantization rate to be R, and the quantization distribution to

be the optimizing px̂|x̂◦ in (2).

The following proposition, whose proof is provided in Appendix D establishes that dithered transcoders

designed in this way are successful.

Proposition 3 Let x̂◦ be the reconstruction corresponding to an admissible rate-R◦ encoder. Then there

exists a δmax > 0 such that for every R > I(x̂◦; x̂) and δ ∈ (0, δmax), Pr[E] → 0 as n → ∞ when the input is

x̂◦. Furthermore δmax only depends on R and px̂◦,x̂(x̂
◦, x̂).

5The distortion rate function is defined in terms of the rate distortion function in the usual way: dSC(R◦) = inf{d◦ ≥ 0 :
RSC(d◦) ≤ R◦}.
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4.3 Successive Degradation Converse

In this section we show that RSD(d) from (2) gives a lower bound on the best rates that can be guaranteed.

To develop this result, it is convenient to express the pay-off (9) for the successive degradation game in the

form

Pr{d (x, x̂) ≤ d | Φ◦, Φ} = E {θd,Φ [x̂◦, x, Φ◦]} (17)

where

θd,Φ [x̂◦, x, Φ◦] ,







1 if d (x, x̂) ≤ d,

0 otherwise.
(18)

Then since a min-max upper bounds a max-min, to establish the converse of Theorem 1, it suffices to show

the following.

Proposition 4 For every ε > 0 and rate R ≤ RSD(d) there exists an admissible sequence of randomized

encoders (in particular, a sequence of dithered encoders, {Φδ
n}) with

sup
{Φn}

lim
n→∞

E
{

θdSD(R),Φn

[

x̂◦, x, Φδ
n

]}

≤ ε. (19)

The expectation is over the source, codebooks, and encoding rules, and the maximization is over all sequences

of rate-R transcoders.

Proof:

The key to our proof is showing that the transcoder input “looks” like a noisy observation of the source, and therefore
the results of noisy source coding can be applied directly.

First, let x̂◦ be an encoding of x created by the dithered encoder Φδ
n = (Cδ

n, W δ
n(·|·)). Then we can express

the dithered encoder in the form Φδ
n = g(x̂◦) where g(·) is a random map. In particular, for v ∈ X, g(v) consists

of a codebook C
δ
n(v) with v at a random entry and the remaining (2nR◦ − 1) entries generated in a i.i.d. manner

independently of v, and a rule W δ
n(·|·)(v) that is independent of v. Hence, g(·) is independent of x and x̂◦.

Next, let y be a random vector generated from x in an i.i.d. manner according to the distribution px̂◦|x , indepen-
dently of g(·). Then, we can use Lemma 1 with d = dSD(R) along with Proposition 2 to infer that for all n sufficiently
large

E
˘

θdSD(R),Φ [x̂◦, x, g(x̂◦)]
¯

≤ E
˘

θdSD(R),Φ [y, x, g(y)]
¯

+ ε/2 (20)

for any choice of transcoder Φ.
Now the expectation on the right-hand side of (20) is the probability that the distortion in quantizing a noisy

observation of x given the associated side information is smaller than dSD(R). But such encoder side information
does not help in source coding problems (see, e.g., [15] [16]), and the rate distortion function for quantizing noisy
sources is, in fact, given by dSD(R) in (2) when px̂◦|x(x̂

◦|x) represents the noisy channel law [17] [13]. This means
that no matter how Φ is chosen,

E
˘

θdSD(R),Φ [y, x, g(y)]
¯

≤ ε/2. (21)

Substituting (21) into the right-hand side of (20) yields

E
˘

θdSD(R),Φ [x̂◦, x, g(x̂◦)]
¯

≤ ε, (22)

from which we obtain (19) as desired.
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4.4 Successive Degradation Direct Part

In this section we establish that if the transcoding rate is larger than RSD(d) from (2), then the output of

any admissible encoder can be transcoded successfully.

Since a max-min lower bounds a min-max, to establish this forward part of Theorem 1 it suffices to show

the following.

Proposition 5 For every ε > 0 and rate R > RSD(d) there exists a sequence of dithered transcoders {Φδ
n}

with rates RSD(d) such that

inf
{Φ◦

n}
lim

n→∞
E

{

θd,Φδ
n

[x̂◦, x, Φ◦
n]

}

≥ 1 − ε. (23)

The expectation is over the source, codebooks, and encoding and transcoding rules, and the minimization is

over all admissible sequences of encoders with rate R◦.

Proof:

Let the transcoder in this case be a dithered transcoder as designed in Sections 4.1 and 4.2. Fix ε > 0, then
according to Proposition 3, this dithered transcoder succeeds in transcoding x̂◦ to x̂ with probability at least 1 − ε.

Therefore x and x̂◦ are strongly typical by the definition of admissible encoders and (10). Furthermore the
distribution of (x̂◦, x̂) is indistinguishable from an i.i.d. distribution according to Lemma 1, so x̂◦ and x̂ are also
strongly typical. Thus, according to the Markov lemma [9], x and x̂ are strongly typical according to the distribution

p(x̂, x) =
X

x̂◦

p(x̂|x̂◦)p(x̂◦|x)p(x).

Hence the distortion will be close to E [d (x , x̂)].

5 Binary-Hamming Case

As we now show by example, the successive degradation rate distortion function is generally different from

the regular rate distortion function.

Consider a binary (i.e., Bernoulli-p) source and a Hamming distortion measure:

d (u, v) =







1 u 6= v

0 u = v
, (24)

so the (average) distortion range of interest is the interval [0, 1/2]. In this case, the optimal reverse test

channel for the original quantization is a binary symmetric channel with crossover probability d◦. It is

straightforward to verify that the optimizing successive degradation reverse test channel takes the form of a

binary symmetric channel as well, but with crossover probability 0 ≤ γ ≤ 1/2. The corresponding rate and

overall distortion are, respectively, R = HB (q) − HB (γ), with HB (·) denoting the binary entropy function,
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q = Pr[x̂◦ = 1], and d = d◦ + γ(1 − 2d◦), so the rate-distortion trade-off is

RSD(d) = HB

(

p − d◦
1 − 2d◦

)

− HB

(

d − d◦
1 − 2d◦

)

. (25)

By comparison, the corresponding regular rate distortion bound for this source and distortion measure is

RSC(d) = HB (p) − HB (d) . (26)

Since, without loss of generality we may assume 0 ≤ d ≤ p ≤ 1/2, RSD(d) ≥ HB (p)−HB ((d − d◦)/(1 − 2d◦)),

and since HB (·) is strictly monotonic on [0, 1/2], it follows that RSD(d) > RSC(d) whenever d◦ 6= 0.

For some range of distortions above d◦, requantization via (25) does not yield rate savings and transcoding

is better avoided. Thus, we can conclude from (25) that

RSD(d) ≥ min

{

HB

(

p − d◦
1 − 2d◦

)

− HB

(

d − d◦
1 − 2d◦

)

, R◦

}

(27)

with R◦ = RSC(d◦) given by (26). By equating the two terms in (27) and solving for d, we obtain the

distortion threshold d∗ below which transcoding should be avoided. A simple lower bound on d∗ is found by

lower bounding the first term of (27) with HB (p), and setting the result equal to R◦. This gives

d∗ ≥ 2d◦(1 − d◦). (28)

It remains only to show that there is no better successive degradation rate distortion trade-off than

(27) that can be achieved. To see this, first note that a dithered encoder will produce an output that is

indistinguishable from a noisy version of the source where the noise is generated by a binary asymmetric

forward test channel. The crossover probabilities for this channel can be determined from Bayes rule, the

prior Pr[x = 1] = p, and the crossover probability γ of the symmetric reverse test channel. The results of

[13] confirm for the symmetric case (p = 1/2) that the rate distortion function for this source corrupted by

such noise is indeed given by (25).

We next outline the generalization of the approach in [13] needed for general binary sources where p 6= 1/2.

We consider asymmetric sources and binary asymmetric channel observations. The generalization follows

the approach in [13], except that the two types of bit error events (cf. eq. (38) of [13]) are now weighted by

the (non-equal) prior probabilities of the symbols to be encoded. However, one can check that this weighting

corresponds to the same uneven likelihood of bit errors that we induce by using a symmetric reverse test

channel with crossover probability γ for successive degradation. This is exactly the effect that when encoding

binary asymmetric sources source symbols with higher apriori likelihood are more likely to be flipped. Thus,

again (25) is the rate distortion function for this source and (27) is the best rate that can be achieved.6

6While time-sharing can in general expand a rate distortion function to include its lower convex envelope, the resulting
distortion cannot be achieved within a block, but only averaged over multiple blocks with codebooks of different rates. While
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R

R◦

0
0 d◦ d∗ 2d◦

d

Figure 5: Common form of the rate distortion function for the symmetric (p = 0) binary-Hamming and Gaussian-
quadratic cases. The successive degradation rate distortion function is indicated by the solid curve, and d∗ is the
threshold above which transcoding should be performed. The dashed curve indicates the lower bound corresponding
to the regular rate distortion function. The distortion at which both the dashed and solid curves intersect the axis
(R = 0) is 1/2 in the binary-Hamming case, and σ2

x in the Gaussian-quadratic case.

The associated rate gap for this example takes the form depicted in Fig. 5 for the symmetric case

(p = 1/2). The successive degradation and regular rate distortion functions are depicted with the solid and

dashed curves, respectively, and intersect at distortion d = 1/2.

6 Gaussian-Quadratic Case

In this section we develop the rate distortion expression (2) for Gaussian sources under a quadratic distortion

measure: d (a, b) = (a − b)2. We also extend the class of admissible encoders for achievability results in the

Gaussian quadratic case to all encoders that achieve d◦ and not just those encoders that satisfy the divergence

condition of Definition 2. This shows that Gaussian-quadratic transcoding is robust in the sense that any

good source code for the Gaussian-quadratic case can be successfully transcoded.

The proofs in Section 4 assumed that the signals were drawn from finite alphabets and that all distortion

measures were bounded. This simplified the development, but the results can be generalized to continuous

alphabets with unbounded distortion. Among other subtleties, care must be taken to preserve the Markov

relationship x ↔ x̂
◦ ↔ x̂ . Such techniques are developed in, e.g., [18]. However, in the sequel we establish

the achievable transcoding trade-off for the Gaussian-quadratic scenario more directly.

we do not consider such variable rate systems in this paper, the associated expanded rate distortion functions are readily
computed.
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6.1 Rate Distortion Function

For an i.i.d. zero-mean Gaussian source x of variance σ2
x
, and an original source code with average mean-

square reconstruction distortion d◦, the information successive degradation rate distortion function given by

(2) is, for d ≥ d◦,

RSD(d) = min

{

1

2
log

(

σ2
x
− d◦

d − d◦

)

, R◦

}

. (29)

where, according to the familiar Gaussian-quadratic rate distortion function,

R◦ =
1

2
log

(

σ2
x

d◦

)

. (30)

This successive degradation rate distortion function also takes the form shown in Fig. 5. Again, the successive

degradation and regular rate distortion functions are depicted with the solid and dashed curves, respectively,

and intersect at distortion d = σ2
x
.

Eq. (29) is obtained as follows. The usual conditional distribution for achieving the rate distortion bound

for Gaussian sources, which we assume to be unique, corresponds to x̂
◦ = αx + e◦, where

α = (1 − d◦/σ2
x
), (31)

and where e◦ is a zero-mean Gaussian random variable with variance αd◦ that is independent of x . Since

x̂
◦ is Gaussian, we know from [19, Lemma A.3] that the optimum x̂ and x̂

◦ must also be jointly Gaussian.

Optimizing the specific moments we conclude that second conditional distribution is of the form x̂ = γx̂
◦+e,

where γ = (1 − ∆/σ2
x̂◦), and where e is a zero-mean Gaussian random variable with variance γ∆ that is

independent of x̂
◦. Combining the two conditional distributions results in a rate

I(x̂ ; x̂◦) =











1
2 log

(

σ2
x
−d◦

∆

)

∆ > 0

1
2 log

(

σ2
x

d◦

)

∆ = 0
(32)

with overall mean-square distortion

d = E
[

(x̂ − x)2
]

= d = d◦ + ∆. (33)

Substituting for ∆ in (32) using (33), and we obtain (29).

The minimization in (29) suggests that there is a range of distortions above d◦ for which requantization

will not save any rate, i.e., it is better to leave the original source code as is. This is inherently a result of the

discrete nature of the input to the transcoder. To identify the distortion threshold d∗ at which successive

degradation becomes effective, we equate the two terms in (29) and solve for d, yielding

d∗ = d◦

(

2 − d◦
σ2

x

)

. (34)
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In the Gaussian-quadratic scenario, the successive degradation rate loss is at most 1/2 bit, which we see

as follows. To begin, note that 1 ≤ d∗/d◦ ≤ 2, with d∗/d◦ → 2 as R◦ → ∞. Thus, in the high resolution

limit, each time the source is requantized with an independently generated source code of the same rate, the

overall distortion increases by roughly d◦. Since the rate loss in successive degradation is largest in this high

resolution limit, an upper bound on the loss occurs at d = d∗:

RSD(d∗) − RSC(d∗) ≤
1

2
log

(

σ2
x

d◦

)

− 1

2
log

(

σ2
x

d◦(2 − d◦/σ2
x
)

)

=
1

2
log

(

2 − d◦
σ2

x

)

<
1

2
. (35)

where the last inequality follows from the fact that d◦ ≥ 0. Recall that, by comparison, there is no rate loss

with successive refinement in this Gaussian-quadratic scenario [1]. This is because the the full original source

signal — not just a quantized version of it — is available when selecting the second codeword. Finally, from

Fig. 5 and (34), we see that the corresponding distortion gap is at most 3 dB:

d∗
d◦

= 2 − d◦
σ2

x

< 2. (36)

6.2 Converse

The operational successive degradation rate distortion function is lower bounded by (29). To see this, it

suffices to use entropy coded dithered quantization (ECDQ) [20] for the original source encoder. This is

the natural counterpart in the Gaussian-quadratic case of the finite-alphabet dithered quantization strategy

introduced in Section 4.1. With this source encoder, the quantizer becomes asymptotically indistinguishable

in an appropriate sense from an additive white Gaussian noise channel [21], and has output variance σ2
x
−d◦.

In particular, the quantized output is indistinguishable from this channel to the transcoder, and thus the

best transcoder is a source encoder for noisy sources. Thus, in the Gaussian-quadratic case the resulting

rate-distortion trade-off is given by the first term in (29).

6.3 Achievability

We now show that (29) is also an upper bound on the operational successive degradation rate distortion

function. Moreover, we allow the original source encoder to be any good one. In particular, we don’t restrict

our attention to some admissible subset as we did earlier. In this sense, our results in this case are inherently

more robust.

Specifically, we show that for any rate-R◦ original encoder operating close to its optimal distortion level

dSC(R◦) = σ2
x
2−2R◦ (37)

a rate-R transcoder can be designed so that it operates close to the information successive degradation

distortion rate function

dSD(R) = dSC(R◦) + (σ2
x
− dSC(R◦))2

−2R. (38)
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obtained from (3) with (29).

We quantify this argument in the following theorem, which makes use of a basic result from [22].

Theorem 2 Let x be a length-n i.i.d. sequence of Gaussian random variables with variance σ2
x
. For any

ε > 0 and any rate-R◦ original source code with

1

n
E

[

‖x − x̂◦‖2
]

≤ dSC(R◦) + ε, (39)

there exists a rate-R transcoder with

1

n
E

[

‖x − x̂‖2
]

≤ dSD(R) + ε + δ(n), (40)

where δ(n) → 0 as n → ∞.

Proof:

To obtain this result, we first bound the variance of a processed version of the output of the original coder. We then
use a result from [22] on quantizing sources given only second order statistics.

Let x̂′ be the minimum mean-square error (MMSE) estimate of x given x̂◦. Since x̂′ is a reconstruction of x based
on nR◦ bits and since x̂′ estimates x (in the mean-square sense) at least as well as x̂◦, we know that

dSC(R◦) ≤ 1

n
E

h

‚

‚x − x̂
′
‚

‚

2
i

≤ 1

n
E

h

‖x − x̂
◦‖2

i

. (41)

Furthermore, the error in the MMSE estimate is uncorrelated with the reconstruction itself, i.e.,

E
ˆ˙

(x − x̂
′), x̂′

¸˜

= 0, (42)

whence, by Pythagoras’ Theorem,

1

n
E

h

‚

‚x̂
′
‚

‚

2
i

=
1

n
E

ˆ

‖x‖2˜

− 1

n
E

h

‚

‚x − x̂
′
‚

‚

2
i

(43)

≤ σ2
x − dSC(R◦), (44)

where (43) follows from (42), and (44) follows from the left-hand inequality in (41) and the fact that x is an i.i.d.
variance-σ2

x Gaussian sequence.
Consider a random transcoder which encodes x̂′ by mapping it to the element x̂ of a rate-R random Gaussian

codebook that is closest in Euclidean distance. Regardless of the distribution of x̂′, via [22, Theorem 3] we know
there exists a deterministic transcoder with output x̂ such that

1

n
E

h

‚

‚x̂
′ − x̂

‚

‚

2
i

≤ 1

n
E

h

‚

‚x̂
′
‚

‚

2
i

2−2R + δ(n), (45)

where δ(n) → 0 as n → ∞. Due to the structure of the two encodings we have the Markov chain x ↔ x̂′ ↔ x̂ and
hence (x− x̂′) ↔ x̂′ ↔ x̂ as well. With this latter Markov chain we conclude from the optimality properties of MMSE
estimates that (42) yields

E
ˆ˙

(x − x̂
′), x̂

¸˜

= 0. (46)

To complete the proof, it suffices to observe that

1

n
E

ˆ

‖x − x̂‖2
˜

=
1

n
E

h

‚

‚(x − x̂
′) + (x̂′ − x̂)

‚

‚

2
i

=
1

n
E

h

‚

‚x − x̂
′
‚

‚

2
i

+
1

n
E

h

‚

‚x̂
′ − x̂

‚

‚

2
i

(47)

≤ dSC(R◦) + (σ2
x − dSC(R◦))2

−2R + ε + δ(n), (48)
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where to obtain (47) we have used the orthogonality implied by (42) and (46), and where to obtain (48) we have used
the right-hand inequality in (41) with (39), and (44) with (45).

7 Continuous Sources in the High-Resolution Limit

In this section we show that the 1/2-bit gap bound (35) in the high-resolution limit with a quadratic distortion

measure holds not just for Gaussian sources as developed in Section 6, but in fact for all sources with finite

differential entropy and at least one finite moment. In fact, we believe that the high-resolution limit is the

worst case and that the gap is at most 1/2-bit for all distortions.

First, from [23], we know that the successive refinement rate distortion function is within 1/2-bit of

the regular rate distortion function for this scenario. Thus, it remains only to show that the successive

degradation rate distortion function also lies within 1/2-bit of the regular rate distortion function as well,

which we develop in the sequel.

Our proof considers two separate regimes. For d < 2d◦ we stay within the 1/2-bit bound by avoiding

transcoding altogether, whereby R = RSC(d◦). To see this, note that the rate loss in this case is largest as

d◦ → 0, given by

RSC(d◦) − RSC(d) → 1

2
log

(

d

d◦

)

≤ 1

2
, (49)

where to obtain the limit in (49) we have used the asymptotic tightness of the Shannon lower bound [24]:

lim
δ→0

RSC(δ) = h(x) − 1

2
log 2πeδ, (50)

with h(·) denoting differential entropy.

For the regime d ≥ 2d◦, we use the following argument. First, we let x̂ = x̂
◦ + e where e is a zero-mean

Gaussian random variable with variance d − d◦ that is independent of x̂
◦ and x , so the distortion is, as

required,

E
[

(x − x̂)2
]

= E
[

(x − x̂
◦ + x̂

◦ − x̂)2
]

(51)

= E
[

(x − x̂
◦)2

]

+ E
[

(x̂◦ − x̂)2
]

+ 2E [(x − x̂
◦) (x̂◦ − x̂)] (52)

= d◦ + E
[

e
2
]

+ 2E [(x − x̂
◦) e] (53)

= d◦ + (d − d◦) + 0 (54)

= d (55)

where to obtain (53) and (54) we have used the definition and properties, respectively, of e. Then from (2)
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we see the associated rate is

RSD(d) ≤ I(x̂ ; x̂◦) (56)

= h(x̂) − h(x̂ |x̂◦) (57)

= h(x̂◦ + e) − h(x̂◦ + e|x̂◦) (58)

= h(x̂◦ + e) − h(e), (59)

where to obtain (59) we have used that e and x̂
◦ are independent. In turn, we can bound the rate loss as

d → 0 via

RSD(d) − RSC(d) ≤ h(x̂◦ + e) − h(e) − RSC(d) (60)

= [h(x̂◦ + e) − h(x̂◦)] + [h(x̂◦) − h(x)] + [h(x) − RSC(d)] − h(e) (61)

→ 0 + 0 +
1

2
log 2πed − h(e) (62)

=
1

2
log

(

d

d − d◦

)

(63)

≤ 1

2
, (64)

where to obtain (60) we have used (59), and where to obtain the first and third terms in (62) we have used,

respectively, the continuity of h(·) in [24, Theorem 1], and the high-resolution rate distortion function [24],

and where to obtain (63) we have used that the differential entropy of a Gaussian random variable z of

variance σ2 is h(z) = 1
2 log 2πeσ2.

To obtain that the second term in (62) is zero, it suffices to let x̂
◦ = x + e◦ where e◦ is a zero-mean

Gaussian random variable with variance d◦ that is independent of x , and again exploit the continuity of h(·)
[24, Theorem 1] to conclude

h(x̂◦) − h(x) = h(x + e◦) − h(x) → 0 as d◦ → 0. (65)

Thus, it remains only to check that the conditional distribution associated this definition of e◦ asymptotically

achieves the rate distortion function RSC(d◦). To see this, as d → 0, whence d◦ → 0 since d ≥ d◦ ≥ 0, we
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have

RSC(d) ≤ I(x̂◦, x) (66)

= h(x̂◦) − h(x̂◦|x) (67)

= h(x + e◦) − h(x + e◦|x) (68)

= h(x + e◦) − h(e◦) (69)

=

[

h(x) − 1

2
log 2πed◦

]

+ [h(x + e◦) − h(x)] (70)

→
[

h(x) − 1

2
log 2πed◦

]

+ 0 (71)

= lim
d◦→0

RSC(d◦), (72)

where to obtain (68), (69) and (70) we have used the definition and properties of e◦, where to obtain (71)

we have used the continuity of differential entropy, and where to obtain (72) we have used (50).

8 Embedding in a Quantized Source

When bit stealing is accomplished through rate splitting and successive degradation, the transcoder is given

the freedom to design an entirely new codebook. This requires that the ultimate destination(s) for the

quantized source be informed that transcoding has taken place so that the destination(s) can decode using

the new codebook.

However, in a number of scenarios it may be either impractical or inconvenient to inform the decoder

when bit stealing has taken place. Such is the case, for example, when there is an installed base of legacy

source decoders in a network, or, as another example, when the bit-stealing is be covert, in which case no

cooperation between transcoders and source decoders is possible. In these and other such cases, there is a

need for bit stealing techniques in which the transcoder output lies in the same codebook as its input.

One natural approach to bit stealing with this constraint is based on the use of information embedding

ideas. In this section, we will show that bit stealing systems of this type can, in fact, be as efficient as

those implemented through rate splitting and successive degradation. From this we can conclude that the

transcoder codebook constraint need not incur a loss in performance. To develop this result, it suffices to

restrict our attention to the case where our original source x has been encoded using the classical random

codebook and joint typicality encoding rule.

As depicted in Fig. 6, bit stealing via embedding is implemented as follows. The transcoder embeds

a message m of rate r into the index corresponding to source reconstruction codeword x̂◦, which is the

“host.” A source decoder generates the reconstruction x̂ from the received bits. Recall that informed

source decoders are aware of any transcoding that has taken place — specifically, they know what rate

0 ≤ r ≤ R◦ has been stolen. Informed decoders can exploit this information in reconstructing the source,
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Figure 6: Bit stealing via information embedding: a message m of rate r is embedded into a source quantized to
rate R◦. Source decoder I is the decoder used in the absence of transcoding, or equivalently the uninformed decoder
when transcoding has taken place, in which case it produces reconstruction x̂u at distortion du. Source decoder II
is the decoder that is informed of the rate of any embedding that has taken place, and produces reconstruction x̂ at
distortion d. The message decoder produces a reliable estimate m̂ of the embedded message with high probability.

while uninformed decoders operate as if no embedding had taken place. In the sequel we consider both

informed and uninformed source decoders. A message decoder reconstructs the embedded message bits from

the received bits.

A naive embedding approach would treat the source reconstruction x̂◦ as the host, i.e., as the “dirty

paper” of [25] and use, e.g., the associated random binning code or its constructive counterparts in the form

of quantization index modulation (QIM) [26] [27] [28]. Such approaches fail to exploit that x̂◦ is a codeword

of a finite-rate codebook. However, for embedding approaches that do take such characteristics into account,

the following rate distortion trade-off can be achieved.

In constructing our result, we continue to focus for simplicity on an i.i.d. source — as with successive

degradation — so an instance of the problem continues to consist of the tuple (7), where as before R◦

implicitly defines px̂◦|x , but where, now, R = R◦ − r. And as before px̂◦|x(x̂
◦|x) denotes the conditional

distribution characterizing the rate distortion function at distortion d◦ where R◦ = RSC(d◦).

Theorem 3 For a source x quantized at rate R◦ (via typicality encoding) to a codeword x̂◦ in a codebook

generated randomly according to px̂◦|x(x̂
◦|x), a distortion arbitrarily close to d > d◦ is achievable if r < RIE(d)

where [cf. (2)]

RIE(d) = R◦ − inf I(u; x̂◦), (73)

where the minimization is over all conditional distributions pu|x̂◦(u|x̂◦) and functions f : X 7→ X such that

the Markov constraint x ↔ x̂
◦ ↔ u is satisfied, px̂◦(x) = pu(x), and E [d (x , x̂)] ≤ d, where x̂ = f(u) and u

is an auxiliary random variable with alphabet X.

This theorem applies when the decoder is informed of the embedding, and f(·) can be viewed as a distortion

compensation function. Achievable rates for the case in which the decoder is uninformed are obtained by

constraining f(·) to be the identity function.
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Before proving Theorem 3, we introduce some additional notation. Specifically, dIE(r) is the distortion

rate function corresponding to (73), i.e.,

dIE(r) = inf{d ≥ 0 : RIE(d) ≥ r}. (74)

Furthermore, we let Ru
IE(·) and du

IE(·) denote the corresponding rate distortion and distortion rate functions

for uninformed decoders.

We establish Theorem 3 by construction. In particular, the original source is quantized using the randomly

generated codebook. In particular, the source codebook C◦ consists of 2nR◦ sequences of length-n generated

according to
∏n

i=1 px̂◦(x̂◦
i ). These sequence are labeled x̂◦(1), x̂◦(2), . . . , x̂◦(2nR◦). To encode, we find the

index i such that (x, x̂◦(i)) ∈ Tx,x̂◦ If there is more than one such index, choose any one of them. Transmit

that i. If there is no such index, we declare an encoding failure.

The information embedding is implemented as follows. First, a message code is constructed whereby, for

any ε > 0, we randomly bin C◦ into 2nr subcodes C◦
j where r = R◦−I(u; x̂◦)−ε. Specifically, for each x̂◦(i) we

pick an index j uniformly distributed over {1, 2, . . . , 2nr} and assign x̂◦(i) to subcode C◦
j . On average there

are 2n(R◦−r) sequences x̂◦ in each C◦
j . We re-label the x̂◦ sequences in C◦ as u(j, k) where j ∈ {1, 2, . . . , 2nr}

and k ∈ {1, 2, . . . , |C◦
j |}. This partitioning and labeling is then shared with the message decoder.

Message encoding is accomplished as follows. Given a source codeword x̂◦(i), and a message m = m,

we find the index k such that (x̂◦(i),u(m, k)) ∈ Tx̂◦,u. If there is more than one such index pick any one.

Transmit the index l such that x̂◦(l) = u(m, k). If there is no such index, we declare an embedding failure.

With this encoding and embedding, decoding is straightforward: the source reconstruction is x̂ with

x̂i = f(x̂◦
i (l)), and the message estimate is m̂ = m such that x̂(m, k) = x̂◦(l). It remains only to ensure the

error probability vanishes and the distortion constraint is met, which we verify in the sequel.

That the probability of a source encoding failure goes to zero follows from joint strong typicality, since

R◦ > I(x̂◦; x). The probability of an embedding failure also goes to zero with large n. To see this, first note

that the probability that the original source-quantization vector x̂◦(i) falls into the selected bin m is 2−nr,

which goes to zero for n large. Moreover, conditioned on the event that x̂◦(i) is not in bin m, the codewords in

bin m look like i.i.d. sequences generated independently of x̂◦(i) according to
∏n

i=1 pu(xi). Indeed, C◦
m ⊂ C◦,

and the entries of C◦ are generated independently according to
∏n

i=1 px̂◦(xi), and px̂◦(x) = pu(x). The

probability that at least one such sequence u(m, k) is jointly strongly typical with x̂◦(i) approaches one

because there are 2n(R◦−r) codewords in bin m and, via (73), R◦− r > I(u; x̂◦). The probability that m̂ 6= m

is zero because the decoder has direct access to the embedder output.

To see that the distortion constraint d is met, we first note that (x,u) ∈ Tx,u by the Markov lemma [9].

Indeed, x ↔ x̂
◦ ↔ u, and we have both (x, x̂◦) ∈ Tx,x̂◦ and (x̂◦, x̂◦(l)) ∈ Tx̂◦,u . Hence, by choosing ε small

enough and n large enough, and by exploiting that d is bounded, we can obtain, for any δ > 0,

E [d (x, x̂)] =
1

n

n
∑

i=1

E [d (xi, f(x̂◦
i (l)))] =

∑

x,u

E
[

Tx,x̂◦(l)(x, u)
]

d (x, f(u)) ≤ d + δ, (75)
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which establishes the theorem.

Because of the transcoder output codebook constraint, we have, in general,

RSD(d) + RIE(d) ≤ R◦. (76)

We now develop cases in which (76) holds with a strict inequality, and when it holds with equality.

8.1 Binary-Hamming Case

As we now show by example, constraining the transcoder output codebook to coincide with the input

codebook according to Theorem 3 generally incurs a loss in performance.

To see this, consider again the case of a Bernoulli-p source. In this case, because of the codebook

constraint px̂◦(x) = pu(x), the information embedding test channel is no longer a binary symmetric channel,

but rather

px̂◦|u(0|1) = α (77)

px̂◦|u(1|0) = β. (78)

Moreover, for this binary case we can without loss of generality skip the distortion compensation in Theorem 3

(i.e., let f(·) be the identity function so that x̂ = u). Thus, in a manner analogous to the way we obtained the

successive degradation rate distortion function for this case, we obtain, via (73), that r = R◦−HB (q)+Pr[u =

1]HB (α) + Pr[u = 0]HB (β) and d = d◦ + [Pr[u = 1]α + Pr[u = 0]β] (1 − 2d◦). Defining

q = px̂◦(1) =
p − d◦
1 − 2d◦

, (79)

we incorporate the output codebook constraint pu(1) = px̂◦(1) = q to get

β = α · q

1 − q
, (80)

from which we obtain

RIE(d) = max

{

R◦ − HB (q) + qHB

(

d − d◦
2q(1 − 2d◦)

)

+ (1 − q)HB

(

d − d◦
2(1 − q)(1 − 2d◦)

)

, 0

}

(81)

Comparing RSD(d) in (27) with R◦ − RIE(d) in (81) we see that this embedding strategy is in general

less efficient, it takes a higher residual rate to describe the source to a target distortion level: the transcoder

output codebook constraint exacts a price in performance. The gap for the case p = 2/5 and R◦ = 1/4

(for which d◦ ' 0.2) is depicted in Fig. 7 over the relevant distortion range: d◦ ≤ d ≤ p. Note the step

discontinuity at d = p: when stealing all the rate, so that R◦ − RIE(p) = 0, it suffices for the decoder to

ignore all the received data and reconstruct the all zero sequence.
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Figure 7: Rate distortion loss for bit stealing via information embedding in the case of a Bernoulli-2/5 source and
Hamming distortion measure, with R◦ = 1/4. The progressively lower solid, dashed, and dotted curves correspond
to R◦ − RIE(d), RSD(d), and RSC(d), respectively, i.e, using bit-stealing by embedding with an informed decoder,
using bit-stealing by successive degradation, which doesn’t have the transcoder output codebook constraint, and
using successive refinement (informed encoding).
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Note that in the special case p = 1/2 (whence q = 1/2), no loss of performance is realized, i.e., the

transcoder codebook constraint is not limiting: RSD(d) + RIE(d) = R◦. We now consider another important

situation in which this property holds.

8.2 Gaussian-Quadratic Case

In this section, we show not only that constraining the transcoder codebook to be the same as its input

need not incur a loss in performance vis-à-vis rate-splitting in the Gaussian-quadratic case, but also that

the only additional decoder processing required to ensure there is no loss is simple distortion compensation

in the form of (embedding-rate-dependent) attenuation of the source reconstruction. We further show that

even an uninformed decoder suffers no more than a 3 dB distortion penalty — or equivalently a 0.21-bit rate

penalty — relative to the informed decoder with distortion compensation.

As in Section 6, we let x be a length-n i.i.d. sequence of Gaussian random variables with variance σ2
x
,

and consider the quadratic distortion measure d (a, b) = (a− b)2. In this case, we obtain that the distortion

rate function (74) for informed decoders takes the form

dIE(r)

σ2
x

= 2−2R◦ +
(

1 − 2−2R◦
)

2−2(R◦−r), (82)

and is achieved using distortion compensation of the form

x̂ = f(u) = βu (83)

where

β =
√

1 − 2−2(R◦−r). (84)

In contrast, the corresponding distortion rate function for uninformed decoders takes the form

du
IE(r)

σ2
x

= 1 +
(

1 − 2−2R◦
)(

1 − 2
√

1 − 2−2(R◦−r)
)

. (85)

Eqs. (82) and (85) are obtained from (73) and (74) as follows. First, as in Section 6.1 we generate

the usual conditional distribution for achieving the rate distortion bound for Gaussian sources according to

x̂
◦ = αx + e◦, where α is given by (31), i.e., α = (1− d◦/σ2

x
), and where e◦ is a zero-mean Gaussian random

variable with variance αd◦ that is independent of x . Using [19, Lemma A.3], we know that the optimizing

distribution in (73) is Gaussian. When we further constrain the distribution so that pu(x) = px̂◦(x), we

obtain that it must be of the form (cf. [25]) u = γx̂
◦ + e, where γ ≥ 0 is a parameter and e is a zero-mean

Gaussian random variable with variance (1 − γ2)(σ2
x
− d◦) that is independent of x̂

◦.

Next, it is straightforward to confirm that the optimum distortion compensation f(·) must be the MMSE

estimator for x from u. In turn, since we have concluded these are jointly Gaussian random variables, this

estimator is linear, whence (83).
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It remains only to optimize over the remaining parameters γ and β. In terms of our parameterized

distribution, we have

R◦ − r = I(x̂◦; u) =
1

2
log

(

1

1 − γ2

)

(86)

whence

γ =
√

1 − 2−2(R◦−r). (87)

Thus, the distortion takes the form

d = E
[

(x̂ − x)2
]

= (αβγ − 1)2σ2
x

+ αβ2γ2d◦ + β2(1 − γ2)(σ2
x
− d◦)

= σ2
x

[

β2

(

1 − d◦
σ2

x

)

− 2β

(

1 − d◦
σ2

x

)

√

1 − d◦
σ2

x

22r + 1

]

. (88)

where via (30) we have d◦ = σ2
x
2−2R◦ , and where to obtain (88) we have substituted for α and γ according

to (31) and (87), respectively.

For uninformed decoders, it suffices to substitute β = 1 and into (88) to obtain (85). For informed

decoders, simple optimization of the quadratic (88) with respect to β yields (82) with β given by (84).

The corresponding rate distortion functions are readily obtained from (82) and (85), and take the forms,

respectively,

RIE(d) = max

{

R◦ −
1

2
log

(

σ2
x
− d◦

d − d◦

)

, 0

}

(89)

and

Ru
IE(d) = max

{

R◦ +
1

2
log

[

1 − 1

4

(

1 +
σ2

x
− d

σ2
x
− d◦

)2
]

, 0

}

. (90)

Comparing (29) and (89) we see that (76) holds with equality in the Gaussian case: the transcoder codebook

constraint does not exact a price in performance provided the decoder is informed.

The embedding rate distortion functions (89) and (90) take the form depicted in Fig. 8. As with bit-

stealing by successive degradation, there is a distortion threshold below which no embedding can be performed

and still meet the distortion constraint. One can view this threshold as the minimum amount of distortion

that must be incurred if any embedding is used.7 For informed decoders, this is given by (34) since successive

degradation and embedding have identical performance characteristics in this case. For uninformed decoders,

the threshold is
du
∗

σ2
x

=
du
IE(0)

σ2
x

= 1 +
(

1 − 2−2R◦
)(

1 − 2
√

1 − 2−2R◦
)

. (91)

We quantify the loss in performance suffered by an uninformed decoder relative to an informed one in

terms of both distortion and rate. We look first at the large r regime, where comparing (82) and (85), and

7This threshold is strictly positive because to embed the transcoder must replace codewords it receives to other codewords
in the codebook, and these codewords have some average minimum distance — in fact 2d◦ in the high rate limit — from one
another.
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Figure 8: Comparing the rate distortion function for bit stealing via information embedding. The informed and
uninformed decoder performances are depicted by the solid and dashed curves, respectively. Below the distortion
thresholds d∗ and du

∗ for the informed and uninformed decoders, respectively, no embedding should be used.

consistent with Fig. 8 we see that the loss is largest. Accordingly, we obtain

du
IE(r)

dIE(r)
≤ du

IE(R◦)

dIE(R◦)
= 2 − 2−2R◦ < 2 (92)

which corresponds to a 3 dB gap in the large R◦ limit.8 The corresponding rate loss comes from comparing

(89) and (90), where we see the loss is again largest when r is largest. Thus,

RIE(d) − Ru
IE(d) ≤ RIE(σ2

x
) − Ru

IE(σ2
x
) =

1

2
log

4

3
≈ 0.21 bit, (93)

which we note is independent of R◦.

Turning next to the performance losses in the small r regime, it is straightforward to verify the the

distortion gap du
IE(r)/dIE(r) is small as r → 0 — indeed, it is at most 0.2834 dB, which occurs for R◦ ≈ 0.2528.

At the two extremes in this small stolen rate regime — R◦ = 0 and R◦ → ∞ — the distortion gap is zero.

To compute the associated rate gap, RIE(d)−Ru
IE(d), we begin by noting that there exists a rate threshold

for R◦ below which du
∗ > σ2

x
. In this region Ru

IE(d) = 0. In particular, it is straightforward to verify from

(91) that du
∗ > σ2

x
whenever 0 < R◦ < R∗

◦, where [cf. (93)]

R∗
◦ =

1

2
log

4

3
≈ 0.21. (94)

Thus the gap in the small stolen rate regime below this threshold is RIE(d)−Ru
IE(d) = RIE(d) ≤ RIE(σ2

x
) =

8This gap arises because with r = R◦, the source is completely overwritten by the embedded message. An informed decoder
will ignore the received source codeword, reproducing x̂ = E [x] and experiencing distortion σ2

x
. However, an uninformed decoder

does not know to ignore what it receives, so it experiences an additional distortion of σ2
x
− d◦, the variance of the received

codeword.
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Figure 9: Distortion rate trade-offs for bit stealing in the Gaussian-quadratic case, with R◦ = 1. The progressively
lower dash-dotted, solid, and dashed curves correspond to du

IE(R◦ − R), dSD(R) = dIE(R◦ − R), and dSC(R), respec-
tively, i.e, using information without an informed decoder, using information embedding with an informed decoder
or using successive degradation, and using successive refinement (informed encoding).

R◦, which decreases monotonically to zero as R◦ decreases from R∗
◦ to 0. Above R◦ = R∗

◦, the rate gap is

largest and equals

RIE(du
∗) =

1

2
log

[

21+2R◦

(

1 −
√

1 − 2−2R◦

)]

(95)

which decreases monotonically to zero with increasing R◦. Hence, regardless of R◦ the rate gap is, again, at

most R∗
◦ or 0.21 bits.

The different rate distortion trade-offs for bit stealing in the Gaussian-quadratic case are summarized in

Fig. 9, where normalized distortion is plotted versus residual source coding rate R = R◦−r, for R◦ = 1. The

common distortion for successive degradation and embedding with an informed decoder, i.e., dIE(R◦ −R) =

dSD(R), appears as the solid middle curve. The distortion for embedding with an uninformed decoder, i.e.,

du
IE(R◦−R), appears as the dash-dotted upper curve. Finally, the distortion for successive refinement, which

corresponds to an informed encoder, is the regular Gaussian-quadratic distortion rate function dSC(R) and

appears as the dashed lower curve.
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9 Conclusions

In this paper, we show a variety of results on transcoding. In particular, we show that transcoding with

uninformed encoders and/or decoders need not incur significant losses relative to their informed counterpart

for some meaningful models, at least if not applied repeatedly. In some sense, this means that almost all

good source codes are effectively almost successively refinable even when not designed as such. Thus it may

make sense for system designers to avoid imposing the successive refinement constraint in code design, and

use the associated degrees of freedom in other ways. Of course, while we have argued that the transcoder

performance need not significantly suffer, the complexity of transcoding may be increase. More generally, this

raises interesting questions for future work regarding which transcoding complexity/performance trade-offs

are most attractive in different scenarios.

We further show that information embedding approaches to bit stealing that allow for both informed and

uninformed source decoders can also be quite efficient. In particular, for reasonable models, they do as well

as bit stealing approaches that are not so constrained. When a large fraction of the bits are being stolen, un-

informed decoders can incur a substantial performance loss relative to informed decoders. However, informed

decoders differ only by incorporating distortion compensation in the form of simple post-reconstruction scal-

ing. Thus, for many audiovisual-oriented sources of practical interest, and the associated gain-invariant

distortion measures arising out of human perceptual characteristics, the uninformed and informed source

decoder outputs are equivalently good. In this case, the price for enabling uninformed source decoders is

increased complexity for extracting the stolen bits, at least relative to successive degradation.
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A Proof of Lemma 1

Before proceeding, we need the following Lemma.

Lemma 2 For any event B with Pr[B] > 1/2,

|Pr[A | B] − Pr[A]| < 2(1 − Pr[B]) (96)

Proof:
We begin by upper bounding Pr[A | B] via

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
≤ Pr[A]

Pr[B]
< Pr[A] · (3 − 2Pr[B]) ≤ Pr[A] + 2 (1 − Pr[B]) , (97)

where (97) follows since 1/Pr[B] < 3 − 2Pr[B] if Pr[B] > 1/2.
Next, we lower bound Pr[A | B] via

Pr[A | B] =
Pr[A] + Pr[B] − Pr[A ∪ B]

Pr[B]
≥ Pr[A] + Pr[B] − Pr[A ∪ B] > Pr[A] − (1 − Pr[B]) ≥ Pr[A] − 2 (1 − Pr[B]) .

(98)
Combining these upper and lower bounds establishes (96)

Returning to our proof of Lemma 1, let

Gδ , {(a,b) : D (Ta,b‖pv,u) ≤ δ and Ta,b = Tv(j),u for some j}, (99)

where v(j) is the jth codeword in the quantization codebook, for j = 1, 2, . . . , 2nRδ

. Then

∣

∣E{θ[v,u, g(v)]}−E{θ[w,u, g(w)]}
∣

∣

= |Pr{θ[v,u, g(v)] = 1} − Pr{θ[w,u, g(w)] = 1}| (100)

≤ |Pr{θ[v,u, g(v)] = 1} − Pr{θ[v,u, g(v)] = 1 | Ec}|
+ |Pr{θ[w,u, g(w)] = 1 | (w,u) ∈ Gδ} − Pr{θ[w,u, g(w)] = 1}|
+ |Pr{θ[v,u, g(v)] = 1 | Ec} − Pr{θ[w,u, g(w)] = 1 | (w,u) ∈ Gδ}| (101)

≤ 2 Pr[E] + 2 Pr[E] + 0, (102)

where (100) follows from the fact that θ ∈ {0, 1}, where (101) follows from two applications of the trian-
gle inequality, and where the first and second terms in (102) come from applications of Lemma 2. Note
that to obtain the second term we have used that, in accordance with the dithered quantization rule,
Pr [(w,u) ∈ Gδ] = 1 − Pr[E].

To see that the third term in (102) is zero, note that

Pr{θ[v,u, g(v)] = 1 | Ec}−Pr{θ[w,u, g(w)] = 1 | (w,u) ∈ Gδ}
=

∑

a,b,c

θ[a,b, c]
[

pv,u,g(v)|Ec(a,b, c) − pw,u,g(w)|(w,u)∈Gδ
(a,b, c)

]

=
∑

a,b,c

θ[a,b, c] pg(v)|v(c|a)
[

pv,u|Ec(a,b) − pw,u|(w,u)∈Gδ
(a,b)

]

, (103)

where to obtain (103) we have used the map independence property, which yields the Markov relationships
u ↔ v ↔ g(v) and u ↔ w ↔ g(w). Finally, that the term in brackets in (103) is zero follows immediately
from the way that v is generated from a noisy observation w in the dithered quantization rule when the
quantization is successful.
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B Proof of Proposition 1

If y is the output of the dithering (13) when x is the input, and x̂◦ is the codeword to which y is mapped,
then when encoding succeeds we have

d (x, x̂◦) = d (x, y) (104)

=
∑

x̂◦,x

d (x, x̂◦)Ty,x(x̂
◦, x) (105)

= E [d (x , x̂◦)] +
∑

x̂◦,x

d (x, x̂◦) [Ty,x(x̂
◦, x) − px̂◦,x(x̂

◦, x)] (106)

≤ E [d (x , x̂◦)] + dmax

∑

x̂◦,x

|Ty,x(x̂
◦, x) − px̂◦,x(x̂

◦, x)| (107)

≤ E [d (x , x̂◦)] + dmax

√

2 ln 2 · D (Ty,x‖px̂◦,x) (108)

≤ E [d (x , x̂◦)] + dmax

√
2δ ln 2 (109)

where (107) follows from the triangle inequality and since d (x, x̂◦) ≤ dmax, (108) follows, like (10), from [9,
Lemma 12.6.1, p. 300], and (109) is a consequence of dithered encoding step 2. The remaining steps follow
from simple algebraic manipulations and the definition of types.

Finally, we obtain

Pr
[

d (x, x̂◦) > E [d (x , x̂◦)] + dmax

√
2δ ln 2

]

= Pr
[

d (x, x̂◦) > E [d (x , x̂◦)] + dmax

√
2δ ln 2 | E

]

Pr[E] (110)

+ Pr
[

d (x, x̂◦) > E [d (x , x̂◦)] + dmax

√
2δ ln 2 | Ec

]

Pr[Ec]

(111)

≤ 1 · Pr[E] + 0 · Pr[Ec] (112)

where to obtain the zero in the last line we have used (109), yielding (15) as desired.

C Proof of Proposition 2

First, we need the following lemma, which establishes that for any pair of sequences (y, x) satisfying encoding
step 2, the empirical type Ty,x is about as close to px̂◦px as px̂◦,x is to px̂◦px .

Lemma 3 For any empirical joint type Ty,x where (y,x) satisfies the condition in dithered encoding step 2,

D (Ty,x‖px̂◦px) ≤ I(x̂◦; x) + δ − log
[

(

pmin
x̂◦,x

)3
]√

2δ ln 2, (113)

where the superscript min denotes the smallest nonzero value of the distribution that is its argument, i.e.,
for an arbitrary distribution pw ,

pmin
w

= min
{w|pw (w)>0}

pw (w) (114)

Proof:

Eq. (113) is obtained via

D (Ty,x‖px̂◦px) = I(x̂◦; x) + D (Ty,x‖px̂◦px) − D (px̂◦,x‖px̂◦px) (115)

= I(x̂◦; x) + H(px̂◦,x) − H(Ty,x) −
X

x̂◦,x

[Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)] log [px̂◦(x̂◦)px(x)] (116)
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≤ I(x̂◦; x) + |H(Ty,x) − H(px̂◦,x)| −
X

x̂◦,x

|Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)| log [px̂◦(x̂◦)px(x)] (117)

≤ I(x̂◦; x) + D (Ty,x‖px̂◦,x) −
X

x̂◦,x

|Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)| log [px̂◦(x̂◦)px(x)px̂,x̂◦(x̂, x̂◦)] (118)

≤ I(x̂◦; x) + δ − log
h

(px̂◦px)
minpmin

x̂◦,x

i

X

x̂◦,x

|Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)| (119)

≤ I(x̂◦; x) + δ − log

»

“

pmin
x̂◦,x

”3
–

p

D (Ty,x‖px̂◦,x) 2 ln 2 (120)

≤ I(x̂◦; x) + δ − log
h

(pmin
x̂◦,x)

3
i√

2δ ln 2, (121)

where (117) follows from fact that log px̂◦px ≤ 0, (118) follows from the inequality

|H(Ty,x) − H(px̂◦,x)| =
˛

˛

˛
D (Ty,x‖px̂◦,x) +

X

x̂◦,x

[Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)] log [px̂,x̂◦(x̂, x̂◦)]

˛

˛

˛
(122)

≤ D (Ty,x‖px̂◦,x) −
X

x̂◦,x

|Ty,x(x̂◦, x) − px̂◦,x(x̂
◦, x)| log [px̂,x̂◦(x̂, x̂◦)] , (123)

and (119) follows from successful quantization in encoding step 2 and the following argument. If for some (x̂◦, x)
the marginal product satisfies px̂◦(x̂◦)px(x) = 0 then px̂◦,x(x̂

◦, x) = Ty,x(x̂◦, x) = 0. This is because px̂◦,x must have
at least the same zeros as px̂◦px . In this case Ty,x(x̂◦, x) = 0 since D (Ty,x‖px̂◦,x) cannot be infinite because we
know the dithered encoder succeeded in Step 2. Hence, the largest term in the sum in (118) is log

ˆ

(px̂◦px)
minpmin

x̂◦,x

˜

,
and (119) follows. The remaining two inequalities (120) and (121) follow from analogous arguments in the proof of

Proposition 1, together with the fact that (px̂◦px)
min >

`

pmin
x̂◦,x

´2
.

Next we need a Lemma lower bounding the probability that the encoder could encode to the ith codeword.

Lemma 4 For any empirical joint type Ty,x (and in particular the ones where (y,x) satisfies the condition
in the dithered encoding step 2),

Pr
[

Tx̂◦(i),x = Ty,x

]

≥ 2−n[D(Ty,x‖px̂◦px)+|X|2· log(n+1)
n ]. (124)

Proof:
The desired result follows from the chain of inequalities

Pr
ˆ

Tx̂◦(i),x = Ty,x

˜

= Pr[Tx̂◦(i),x = Ty,x | x = x] (125)

=
Pr

ˆ

Tx̂◦(i),x = Ty,x

˜

· Pr[x = x | Tx̂◦(i),x = Ty,x]

Pr[x = x]
(126)

=
Pr

ˆ

Tx̂◦(i),x = Ty,x

˜

· 2−n·H(Tx)

2−n(H(Tx)+D(Tx‖px ))
(127)

≥ Pr
ˆ

Tx̂◦(i),x = Ty,x

˜

(128)

≥ (n + 1)−|X|2 · 2−nD(Ty,x‖p
x̂◦px). (129)

Eq. (125) follows from the fact that x̂◦ and x are independent since the codewords are generated independently of the
source, and (126) follows from the definition of conditional probability. Eq. (127) follows from [9, Theorem 12.1.2,
p. 281] and the observation that Tx̂◦(i),x = Ty,x implies Tx = Tx. Eq. (128) follows from the fact that relative entropy
is non-negative. Finally, (129) is a consequence of [9, Theorem 12.1.4, p. 285].

Now we are ready to prove Proposition 2. First, we express the dithered quantization failure event E as

E = ED ∪ ET , (130)

where ED denotes the event that the relative entropy D (Ty,x‖px̂◦,x) is too large in step 2 and ET denotes the
event that no sequences exist in the codebook such that Tx̂◦,x = Ty,x in step 3.
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From (130), we obtain, via the union bound,

Pr[E] ≤ Pr[ED] + Pr[ET | Ec
D], (131)

whose components we now bound in turn.
Via [9, Theorem 12.2.1, p. 287], we obtain

Pr[ED] ≤ 2−n(δ−|X|2· log(n+1)
n ). (132)

Hence there exists an α1 > 0 and n1 such that for all n > n1,

Pr[ED] < exp(−nα1). (133)

For example, it suffices to choose α1 = δ/2 and n1 = 4 |X|4 /δ2.
The second term in (131) is bounded by the following chain of inequalities:

Pr[ET | Ec
D] =

∑

y,x

Pr[ET | (x, y) = (x,y), Ec
D ] Pr[(x, y) = (x,y) | Ec

D] (134)

≤
∑

x,y

max
x,y

{Pr[ET | (x, y) = (x,y), Ec
D ]}Pr[(x, y) = (x,y) | Ec

D] (135)

= max
x,y

Pr[ET | (x, y) = (x,y), Ec
D ] (136)

= max
x,y

2nR◦
∏

i=1

(

1 − Pr[Tx̂◦(i),x = Ty,x | Ec
D]

)

(137)

= max
x,y

(

1 − Pr[Tx̂◦(1),x = Ty,x | Ec
D]

)2nR◦

(138)

≤ max
x,y

(

1 − 2−n[D(Ty,x‖px̂◦px )+|X|2· log(n+1)
n ]

)2nR◦

(139)

≤ max
x,y

exp
{

−2−n[D(Ty,x‖px̂◦px )+|X|2· log(n+1)
n ] · 2nR◦

}

(140)

= max
x,y

exp
{

−2n[R◦−D(Ty,x‖px̂◦px)−|X|2· log(n+1)
n ]

}

(141)

≤ exp

{

−2
n

h

R◦−I(x̂◦;x)−δ+log
h

(pmin
x̂◦,x)

3
i√

2δ ln 2−|X|2· log(n+1)
n

i
}

. (142)

where (138) follows from symmetry, (139) follows from Lemma 4, (140) follows from the inequality [9, Lemma
13.5.3, p. 353] (1 − y)n ≤ exp(−yn), and (142) follows from Lemma 3.

Let δmax be the largest value of δ such that

R◦ > I(x̂◦; x) + δ − log
[

(

pmin
x̂◦,x

)3
]√

2δ ln 2. (143)

Note that since R◦ > I(x ; x̂◦) we have δmax > 0. Hence, for every δ ∈ (0, δmax), there exists an n2 such that
for all n > n2

Pr[ET | Ec
D] ≤ exp(−α2n). (144)

for some α2 > 0.
Finally, combining the exponential bounds (133) and (144) with (131) we conclude there exists an n0

such that for all n > n0

Pr[E] ≤ 2 exp[−n min(α1, α2)]. (145)
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D Proof of Proposition 3

For our proof, we require the following lemma.

Lemma 5 If x̂◦ is the output of an admissible encoder and px̂◦ is its distribution, then for all n

Pr[D (Tx̂◦‖px̂◦) ≤ ε0(n)] ≥ 1 − ε0(n), (146)

where ε0(n) is a function satisfying limn→∞ ε0(n) = 0.

Proof:
For admissible encoders we know D (Tx̂◦,x‖px̂◦,x) converges to zero in probability and therefore so does D (Tx̂◦‖px̂◦),
i.e., for every ε > 0 there exists an n0(ε) such that for all n > n0(ε)

Pr[D (Tx̂◦‖px̂◦) ≤ ε] ≥ 1 − ε. (147)

Without loss of generality, we can assume that the function is a mapping of the form n0(ε) : (0, 1) 7→ R and
monotonically increases as ε decreases. As such, it possesses an inverse that is the desired ε0(n) in our lemma.

For our main result, we use proof by contradiction. Suppose that the probability that the dithered
transcoder fails does not converge to 0 with n, but stays above some fixed ε1 > 0. This implies, when
combined with Lemma 5, that there is set of sequences Sn that cannot be transcoded successfully and such
that for all x̂◦ ∈ Sn,

D (Tx̂◦‖px̂◦) ≤ ε0(n). (148)

Since by their construction dithered transcoders treat all inputs in a given type identically, the set Sn

must contain some number of whole type classes. Denote these type classes T1, T2, . . . , TK . Let T∗ denote
the worst of these type classes, i.e.,

T∗ = argmax
T∈{T1,T2,...,TK}

Pr[E | x̂◦ ∈ T], (149)

where E denotes the event that the dithered transcoding fails.
Then T∗ satisfies the following:

ε1 = Pr[E] =
K

∑

i=1

Pr[E | x̂◦ ∈ Ti] Pr[x̂◦ ∈ Ti] (150)

≤
K

∑

i=1

Pr[E | x̂◦ ∈ Ti] (151)

≤ Pr[E | x̂◦ ∈ T∗] · (n + 1)|X|. (152)

where to obtain the last inequality we have used (149) and that there are at most (n + 1)|X| type classes [9,
Theorem 12.1.1, p. 280]. From (152), we obtain

Pr[E | x̂◦ ∈ T∗] ≥
ε1

(n + 1)|X| . (153)

Now let us further suppose that the transcoder input is generated in an i.i.d. manner according to the
distribution px̂◦ , which is a valid output of an admissible source encoder. Then [9, Theorem 12.1.4, p. 285]

Pr[x̂◦ ∈ T∗] ≥
2−nD(T∗‖px̂◦ )

(n + 1)|X| ≥ 2−nε0(n)

(n + 1)|X| . (154)

where to obtain the second inequality we have used (148).
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From (153) and (154), we see that the probability of dithered transcoder failure does not decay exponen-
tially in n, since

Pr[E] ≥ Pr[E | x̂◦ ∈ T∗] Pr[x̂◦ ∈ T∗] ≥
ε1

(n + 1)2 |X| . (155)

where ε0(n) → 0 as n → ∞.
But this contradicts Proposition 2 which states that the probability of a dithered quantization failure

must decrease exponentially in n when the quantizer input is i.i.d.. Thus we conclude that the probability
of dithered transcoder failure must approach zero as n → ∞.
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