LOW COMPLEXITY SIGNAL PROCESSING USING TREE CLASSIFIERS *

Paul D. Fiore!, Richard J. Barron?

!Sanders, A Lockheed Martin Company, Nashua, NH 03061
2 Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT

Common signal processing operations can be per-
formed efficiently through the use of tree classifiers.
Savings in computational complexity are achieved by
exploiting problem specifications, which allows the use
of approximation and replacement of arithmetic by pre-
computation. Precomputed results are stored in a
tree memory structure that is implemented in VLSI,
field-programmable gate array (FPGA), or RAM. In
this paper we show that tree classifiers can be the ba-
sis for efficient, low-power implementations of several
important signal processing operations, including cor-
relation detection-and function approximation.

1. INTRODUCTION

Many signal processing operations can be simplified
if we consider the accuracy requirements of the resulting
outputs. If less accuracy is required, we have the possi-
bility of simplifying the computations while still meet-
ing specifications. A variety of signal processing oper-
ations can be viewed as performing analysis on signal
vectors residing in a highly structured signal space. The
knowledge of the signal space structure lends the prob-
lem to low-complexity, non-arithmetic tree-classifier so-
lutions.

Common signal processing operations can be per-
formed efficiently through the use of tree classifiers,
which use input feature vectors to divide the feature
space into multiple regions. Within each region, a sin-
gle hypothesis or input class is assumed. With this
viewpoint, the tree classifier is seen merely to convert
a feature vector into class number. Tree classifiers are
distinguished mainly by the set of allowable boundaries
used to separate the regions. For example linear and
quadratic boundaries have been well studied [1]. We will
be interested in cases where the boundaries are given by
hyperplanes parallel to the feature space axis.

To illustrate the utility of a tree classifier, an exam-
ple of acoustic gunshot signature detection is presented.
We show that the tree classifier detector requires 1-2

*PREPARED THROUGH COLLABORATIVE PARTICI-
PATION IN THE ADVANCED SENSORS CONSORTIUM
SPONSORED BY THE U.S. ARMY RESEARCH LABORA-
TORY UNDER COOPERATIVE AGREEMENT DAALO01-96-
2-0001

orders of magnitude less energy than conventional tech-
niques.

We have also experimented with estimation algo-
rithms and function approximation. For these tasks,
hybrid architectures consisting of both a tree classifier
and conventional computation are appropriate. In this
paper, we show an example of arctangent calculation.
A tree classifier divides the input space into rectangles.
Each rectangle has an associated bilinear approximation
which is used to compute the arctangent.

2. FPGA IMPLEMENTATION OF A TREE
CLASSIFIER DETECTOR

We wish to detect the occurrence of a template
signal corrupted by Gaussian noise. Let the tem-
plate consist of the vector a = [a1,...ax]’ and let
the data within the correlation window be denoted by
x = [21,...2a]T. Using a correlator for detection, the
correlation output is

C=a"x (1)

A detection is declared when the correlator output is
larger than a threshold. We can define a decision func-
tion H(x;a) such that

. _fi¥czy
H(x’a)’{ 0ifC<n 2)

In this instance, the actual value of the correlation C is
not of interest, only its relationship to the threshold 7.
This scenario is described by following two hypotheses:

Ho:x
Hl:x =

v (3)
a+v (4)

The zero-mean Gaussian noise vector v has covariance
matrix A. If A = o1 where I is the identity matrix,
then a likelihood ratio test decision rule is equivalent to
a correlation receiver operating according to (2).

One generally performs a likelihood ratio test,
which amounts to comparing some function of the in-
put data to a fixed decision threshold [2]. The decision
threshold 7 is chosen to minimize a certain average cost
for making the decision. For any detection rule, there
exist a probability of false alarm Pr and a probability

145

of detection Pp. Pr and Pp are dependent on the con-
ditional densities of the measured data x, and the rule
by which the decision is made.

As an alternative, we can use a binary tree classi-
fier. The classifier examines one bit of the input vector
x at a time. Based on the value of the bit, the classifier
may decide to stop examining the remaining bits and
classify the input, or it may decide to continue exam-
ining bits. In the later case, the value of the bit just
examined determines which of two “branches” that the
classifier will take.

This method will be efficient if the tree is “sparse”.
Sparseness occurs when many decisions can be made
early in the tree expansion. Nodes at which decisions
can be made are not subsequently expanded, thus lim-
iting the number of descendents.

Several straightforward RAM-based implementa-
tions can easily be envisioned for the sparse tree struc-
ture. If one has available general purpose logic resources
rather than large amounts of memory resources, then it
is more economical to lay the sparse tree out in par-
allel. The data would now “snake” down through the
tree from parent to child. The appropriate child would
be chosen according to the data present at the parent
node.

While a RAM-based implementation can handle
larger trees than any single FPGA device, the FPGA
implementation has the advantage that it is extremely
low in power dissipation. This is because the only logic
transitions that occur are on the active tree descent
path. Nodes not on the path never receive a valid data
signal, so they do not generate transitions. We show
an example where the FPGA energy requirements are
several orders of magnitude below what would be re-
quired for either a RAM-based implementation or even
a conventional DSP microprocessor software implemen-
tation.

2.1. Designing the Tree

We now describe a method for designing the sparse
tree. Here we take the approach that the user specifies
the desired Pr and P the template a, the number of
bits in the data b. and the noise level ¢2. For simplicity,
we will assume a fixed bit examination order, which can
be efficiently implemented in the FPGA. Variable exam-
ination orders allow for smaller trees, at the expense of
more complicated node hardware.

In our fixed examination order, bits of the input
vector are examined according to their contribution in
reducing the uncertainty in the output correlation. For
example, the MSB of the input word corresponding to
the template word of maximum absolute value is ex-
amined first. While the bit sequence will in general be
interspersed among many input words, the sequence will
have the property that a bit will not be examined unless
all the bits in the same word of larger weight have been
previously examined.

The algorithm proceeds in an iterative manner. At
each stage, a complete sparse tree is designed, but it
may not meet the Pr and Pp specification. The al-
gorithm first calculates the Pr and Pp that the cur-

Figure 1. Basic Node Schematic and Timing

rent tree will achieve. These quantities can be calcu-
lated by considering each leaf node individually. For
a particular leaf node, the sequence of bits that were
examined and their actual values are known. The val-
ues of many other bits are not known. This knowledge
enables us to confine the actual values to a hyperrect-
angularly shaped region in the space whose axes are
[z1,...7a)7. The probability that we arrive at this leaf
node under each hypothesis Ho and Hi is simply the
volume under the conditional probability density func-
tions (PDFs) px (z|Ho) and px (z|H1) in the hyperrect-
angular region. This volume is easy to calculate because
of the assumption of white noise. In this case, the multi-
dimensional conditional PDFs decompose into products
of univariate Gaussian PDFs.

Now we have the probabilities of arriving at a par-
ticular leaf node under Hy and H). In our algorithm,
a tentative decision is made by choosing the hypothesis
with the larger probability. These calculations are per-
formed for all leaf nodes. Since the leaf nodes represent
mutually exclusive events, it is straightforward to calcu-
lated the overall Pr and Pp of the current sparse tree. If
these values do not meet the system specifications, one
of the current leaf nodes must be expanded. By this we
mean that a leaf node must be transformed into a parent
node, with two children allocated. A particular bit of
the input must also be designated for examination (for
fixed examination orders, this bit is predetermined).

To choose which leaf to expand, we employ a simple
greedy algorithm. The algorithm chooses the leaf node
that contributes the most to the probability of error,
relative to the desired Pr and probability of miss, Pu
(=1 — Pp). Once this leaf is identified, it is expanded.

2.2. Tree Implementation

For our FPGA implementation, each node in the
tree represents a fundamental module. This allows for
the implementation of any given tree through replica-
tion and interconnection of modular nodes. The logic
contained in a node is illustrated in figure 1. Two flip-
flops (Vind; and Vind,) are used to generate the appro-
priate timing for node control signals. Another is used
to pipeline the data, and the remaining flip-flop (Din;)
is used to store the tree branching condition. The OR
gate is used to as a means of passing the classification
result from either Routr or Routl to the root node of
the tree via Rout.

Leaf nodes in the design are simpler than internal
nodes. A leaf node must simply route its Vin signal

146

back to the root node. This will only occur if the leaf
node corresponds to the H; hypothesis. In our imple-
mentation, this is accomplished by routing a leaf node’s
asserted Vin back to the parent node’s Routr or Routl.

A complete tree is constructed by starting with a
single node as the root of the tree with some external
logic piping the data to Din, an enable signal to Vin, and
a clocking signal to Clock. Child nodes are connected to
their parents by linking the datastreams (Din to Dout),
and enable signals (Voutr/Voutl to Vin). Results are
passed back to the parent by linking Rout to either
Routr or Routl. Leaf nodes will directly drive Routr or
Routl from their Vin signal (which is generated by the
parent’s Voutr or Voutl).

2.3. Placement Algorithm

Initially we looked at adapting some of the work
done in optimal layout of full binary trees into VLSI ar-
rays [3]. However, it was unclear how these procedures
could be modified for sparse trees, so we developed an
ad hoc algorithm for this purpose.

To map the sparse tree into the FPGA, a simple
greedy placement strategy was used. The algorithm
first identifies the shortest tree path from the root to
a leaf node. All the nodes along this path are placed
first. Then the next shortest path from the root to
an unplaced leaf node is determined, and every node
along this path is placed next. This sequence proceeds
until all nodes are placed. Within a path, the nodes are
placed starting from the one closest to the root node
and continuing until the leaf node from that path is
placed.

Once it is determined that a particular node is to
be placed mnext, its location must next be determined.
The algorithm starts with the location of the node’s
parent node. From the parent node location, the closest
free locations in the horizontal and vertical directions
are located (there are a maximum of four). If there
are multiple nodes, then the one closest to the tree's
root node is selected. The determination of distance
to the root node is weighted by the basic node aspect
ratio (which is 1x2 in our design). By using a weighted
distance to the root node, the tree remains clustered
around the root node, and the tree will tend to remain
square.

The placement algorithm will be successful if most
of the time it can place a child node adjacent to the par-
ent node. Nodes placed progressively farther away from
their parent will require increased routing resources,
which can quickly make the design unroutable or too
slow. By placing short paths first, more room is left for
the longer paths which have potentially more branches.

2.4. Design Example

Here we use a particular template as an example.
Shown in figure 2, the template consists of 64 samples of
the acoustic signature of an M16 rifle. For this design we
desired a Pr = 1074, Py = 107°, and o2 = 256. This
corresponds to a signal to noise ratio of approximately
10dB. This design required 325 internal nodes, and 326

Figure 2. 64-point Template of M16 Signature

leaf nodes. Figure 3 shows the layout generated by the
above algorithm.

In this particular layout, leaf nodes are not assigned
a node location, because their logic is absorbed into
their parent’s output logic. A line segment represents
a connection from a parent to child node. In some in-
stances, a parent and child are not adjacent, so the line
segment connecting them in the figure is simply drawn
straight through any intervening nodes. The figure is
scaled to the correct node aspect ratio. To calculate
routability of the layout, let the route length be denoted
by the maximum difference in rows or columns between
parent and child node. An ideal layout would thus have
all routes of length one. The layout in figure 3 has an
average route length of 1.074, which indicates that very
few nodes could not be placed adjacent to their parent.
The average route length increases when the tree size
approaches the limit of nodes imposed by the finite size
of the FPGA.

We have written a set of MATLAB routines that
design the tree, determine node placement within the
FPGA, and generate the netlist and placement con-
straint files. The design is then imported into the View-
logic and Xilinx toolsets, where operations such as rout-
ing, back-annotation, and simulation can take place.

Figure 3 also shows a portion of the actual place-
ment and rats nest of the tree in an FPGA. The rats
nest does not look like a typical one because of the suc-
cessful placement algorithm.

Let us now consider the power dissipation of the
design. Each active node generates a maximum of
seven tramsitions. The average number of levels that
are descended under the Hp hypothesis for this tree
is approximately two, for an approximate power dis-
sipation of 3mW/MHz using a Xilinx XC4000 FPGA.
The global clock dissipates 40mW /MHz, for a grand to-
tal of 43mW/MHz/classification, which translates into
43nJ /classification. In contrast, the data sheet of a very
power efficient DSP microprocessor [4] gives a spec-
ification of 303.6mW/66MHz/instruction. Since the
template is 64 samples in length, the energy required
is 64-303.6mW /66MHz/classification, which translates
into 300nJ /classification. This is approximately 7 times
more energy on average than the tree classifier ap-
proach. Elimination of the global clock using an asyn-
chronous logic design would increase this ratio by an-
other order of magnitude.

147

_BEE P BPe! &
E Nl TERD PR §
i B i 0 TN &
i 2N | BB 'Rg:
= = Bl
i _'ﬂiﬁ;ﬂ_af"'—ﬁ :
X i agg‘___i‘g'i%

Figure 3. Tree Layout and Floorplanner Place-
ment Closeup

3. ESTIMATION AND FUNCTION
APPROXIMATION

The preceding detection problem had an efficient
sparse tree solution partly due to the fact that the
variety of possible outputs was restricted to only two
choices. Estimation problems, generally having a mul-
titude of possible outputs, will lead to more compli-
cated boundaries between the output “classes”. Thus,
it seems unlikely that an estimator based solely on a
tree classifier will be an efficient implementation.

We are led to consider hybrid combinations of a tree
classifier and more conventional computational meth-
ods. Since many estimators are simply of the form of a
function evaluation, let us consider an example where
a sparse tree is used to select among different approx-
imations of the desired function. The approximation
will change based upon the hyperrectangle in which the
input vector is located.

We will use the two-input arctangent function as
an example. Arctangents can be calculated a variety
of ways, including CORDIC rotations [5] and lookup
tables. Here, a sparse binary tree classifier divides the
input space into rectangles. Each rectangle has an as-
sociated affine approximation which is used to compute
the arctangent. That is, within rectangle r, the approx-
imation is calculated via

Atans(z,y) = arz +bry +or (5)

Within each rectangle, the coefficients are chosen to
minimize the mean square error of the approximation.
Rectangles are subdivided until the total error is be-
low the desired threshold. Figure 4 shows an example
where the input words consisted of five bits and the out-
put mean-square error was 4.8 x 1077, A total of 41 leaf
nodes were used.

There are several opportunities to further optimize
this design. At each leaf node, some of the bits of z and
y are known and some are not. Let (zi,yx) denote the
values of the known portions and (2., y.) the unknown
portions. Then

a-z+bry+e = (arzr +bry + o) +(arTu +bryu) (6)
Now the values a,zi + bryx + ¢r, ar, and b, are pre-

computed and stored for each leaf node. The multi-
plications that must be performed in real-time are now

Figure 4. Bilinear Arctangent Approximation

simpler than if the entire bits strings of (z,y) were used.
Further improvement can be made with the addition of
normalization logic and octant reflection identities be-
fore the data is input to the tree.

4. CONCLUSIONS AND FUTURE WORK

There are several areas that remain to be explored.
Variations in the basic node architecture are certainly
possible. One variation would be to remove the global
clocking structure, which would reduce power dissipa-
tion. Another would be to allow for variable bit exami-
nation orders. For estimation problems, efficient meth-
ods of storing the estimate could be examined. All of
these involve a tradeoff between tree size and node com-
plexity.

Trees with sizes greater than that which can be
accommodated by a single FPGA device will need to
be partitioned into multiple devices. We are currently
researching the issues of designing the trees subject to
partition size and pinout constraints.

Because of the locality of activity from one node
to the next, the sparse tree structure is ideal for im-
plementation in an adaptive computing environment.
These structures are similar to conventional FPGAs,
but allow for some degree of reprogrammability on a
single clock cycle basis. When node activations hit the
boundary of the array, the array can be reprogrammed
to the correct subtree. Thus, the activations wander
from boundary to boundary until a decision is reached.

REFERENCES

[1] Richard O. Duda and Peter E. Hart. Pattern Clas-
sification and Scene Analysis. Wiley Interscience,
1973.

[2] Anthony D. Whalen. Detection of Signals in Noise.
Academic Press, 1971.

[3] Dan Gordon. Efficient embedding of binary trees
in VLSI arrays. IEEE Trans. on Computers, 36(9),
September 1987.

[4] Motorola Inc. DSP56302 Data Sheet. 1996.

[5] Yu Hen Hu. CORDIC-based VLSI architectures for
digital signal processing. I[EEE Signal Processing
Magazine, July 1992.

The views nnd conclusions contained in this document are those of
the authors and should not be interpreted as presenting the officin]l policies

cither expressed or implied, of the Army Research Laboratory or the U.5.
Government.

148

