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Abstract—This paper provides examples of various synchronous and
asynchronous signal processing systems for performing optimization,
utilizing the framework and elements developed in a preceding paper.
The general strategy in that paper was to perform a linear transformation
of stationarity conditions applicable to a class of convex and nonconvex
optimization problems, resulting in algorithms that operate on a linear
superposition of the associated primal and dual decision variables. The
examples in this paper address various specific optimization problems
including the LASSO problem, minimax-optimal filter design, the decen-
tralized training of a support vector machine classifier, and sparse filter
design for acoustic equalization. Where appropriate, multiple algorithms
for solving the same optimization problem are presented, illustrating the
use of the underlying framework in designing a variety of distinct classes
of algorithms. The examples are accompanied by numerical simulation
and a discussion of convergence.

Index Terms—Asynchronous optimization, distributed optimization,
conservation

I. INTRODUCTION

This paper presents various classes of asynchronous, distributed
optimization systems, demonstrating the use of the framework dis-
cussed in Part I [1]. The design and use of each class of systems is
based upon the following strategy:

1) Write a reduced-form optimization problem, defined in [1].
2) Connect appropriate constitutive relations to interconnection

elements, e.g. from Figs. 2-3 in [1], implementing the associ-
ated transformed stationarity conditions. Delay-free loops will
generally result.

3) Break delay-free loops:
a) For any constitutive relation that is a source element,

perform algebraic simplification thereby incorporating the
solution of the algebraic loop into the interconnection.

b) Insert synchronous or asynchronous delays between the
remaining constitutive relations and the interconnection.

4) Run the distributed system until it reaches a fixed point.
The discussion in Section III, in conjunction with the system
properties in Fig. 3 in [1], provide guidance in determining
when convergence is ensured.

5) Read out the primal and dual decision variables ai and bi by
multiplying the variables ci and di by the inverses of the (2×2)
matrices used in transforming the stationarity conditions.

II. EXAMPLE SYSTEMS

Figs. 2-7 depict various asynchronous, distributed optimization
algorithms implemented using the presented framework, specifically
making use of the elements in Figs. 2-3 of Part I [1]. Figs. 2 and 3 in
this paper illustrate two alternative implementations of systems for
solving the LASSO problem. Figs. 4 and 5 depict two alternative
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implementations of systems for performing minimax-optimal FIR
filter design. Fig. 6 depicts a support vector machine classifier
trained using a decentralized algorithm generated using the presented
framework. Fig. 7 illustrates an example of a nonconvex optimization
algorithm aimed at the problem discussed in [2], in particular that of
designing a sparse FIR filter for acoustic equalization. In Figs. 2-
7, the asynchronous delay elements were numerically simulated us-
ing discrete-time sample-and-hold systems triggered by independent
Bernoulli processes, with the probability of sampling being 0.1.

III. DISCUSSION OF CONVERGENCE

Fig. 1(a) summarizes the overall interconnection of elements
composing the presented class of systems discussed in Part I [1],
with those maps mk(·) corresponding to source relationships being
written separately. Figs. 1(b)-(d) illustrate a set of manipulations
useful in analyzing convergence, with Fig. 1(b) specifically depicting
a solution to the transformed stationarity conditions. The approach is
to begin with the system in Fig. 1(a) and perform the additions and
subtractions of c?i and d?i indicated in Fig. 1(c), obtaining Fig. 1(d)
by identifying that Fig. 1(c) is a superposition of Figs. 1(b) and (d).

Fig. 1. (a) General description of the interconnection of elements used in the
presented systems. (b)-(d) Manipulations performed in analyzing convergence.

There are various ways that the system in Fig. 1(d) can be used
in determining necessary conditions for convergence, a subset of
which we outline here. Generally, arguments for convergence utilizing
Fig. 1(d) involve identifying conditions for which ||dD|| in this figure
is strictly less than ||d′m||, except at 0. Using the definition of a source
element in [1] and the fact that G is a neutral map, i.e. an orthonormal
matrix, we conclude from Fig. 1(d) that

||dD|| ≤ ||c
′
m||. (1)

If, for example, the solution to the transformed stationarity condi-
tions c?i and d?i is known to be unique, and additionally if the collec-
tion of constitutive relations denoted m(·) is known to be dissipative
about d?

m, then from Fig. 1(d) we conclude that ||c′m|| < ||d
′
m||

except at 0, resulting in

||dD|| < ||d
′
m|| (2)
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Fig. 2. Signal processing architecture and numerical simulation corresponding to an algorithm for solving the LASSO problem. An approximation to the
1-norm is used that is quadratic in the close vicinity of 0. The parameters λ and ρ are selected to specify the interval outside of which the 1-norm approximation
is exact and to trade off between the sparsity of the solution and the enforcement of the linear equality constraints, respectively. For the depicted solution λ
and ρ are selected to be large. Note in particular the monotonic convergence of ||dm − d?m||22 to zero. “Asynchronous normalized iteration count” indicates
the number of iterations times the probability of sampling, discussed in Section II.
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Fig. 3. Signal processing architecture and numerical simulation for an augmented-cost LASSO problem, with the cost being augmented similarly to that of
various ADMM formulations.[3] The augmentation parameter is denoted ρ. The parameter λ is selected to trade off between the sparsity of the solution and
the enforcement of the linear equality constraints. For the depicted solution λ and ρ are selected to be large.

except at 0. Eq. 2 implies, for example, that coupling the constitutive
relations denoted m(·) to the linear interconnection elements via
deterministic vector delays, the discrete-time signal denoted d′m[n]
will converge to 0 and so the signal dm[n] will converge to d?

m.
The uniqueness of the stationarity conditions and the property

of the constitutive relations being dissipative used in the preceding
argument are not, however, strictly required. A more general line of
reasoning involves justifying Eq. 2 in the vicinity of any such solution
c?i and d?i , for example by claiming that even if specific constitutive
relations mk(·) are norm-increasing, the overall interconnected sys-

tem results in a map from d′m to dD that is norm-reducing in the
vicinity of that solution.

Arguments for convergence involving essentially Eq. 2 can also be
applied in a straightforward way to systems utilizing asynchronous
delays, modeled as discrete-time sample-and-hold systems triggered
by independent Bernoulli processes. In particular by taking the
expected value of ||d′(m)[n]||, applying the law of total expectation,
substituting in Eq. 2, and performing algebraic manipulations, it can
be argued that E[||d′(m)[n]||] converges to 0. A more formal treatment
of convergence is the subject of future work.
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Fig. 4. Signal processing architecture and numerical simulation corresponding to a minimax-optimal FIR filter design problem, specifically that of lowpass
filter design. The obtained result is compared with a known solution from the Parks-McClellan algorithm.
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Fig. 5. Alternative algorithm for minimax-optimal filter design, obtained by modification of the problem statement in Fig. 4 and intended to demonstrate that
the presented framework can be used in designing a variety of distinct classes of algorithms. The parameter ρ is selected to specify the relative enforcement
of equality between the system variables loosely shared between the two linear interconnection elements. For the depicted solution ρ is selected to be small,
resulting in a very close approximation to the lowpass filter design problem in Fig. 4.
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Fig. 6. Signal processing architecture for a single agent in a connected graph implementing a decentralized algorithm for training a support vector machine
classifier. The numerical simulation depicts a system involving 30 such agents, each having knowledge of a single training vector. The parameter ρ specifies
the relative enforcement of equality for the system variables that are coupled between each agent in the graph. For the depicted solution ρ is selected to be
small, and the graph is known to be connected, with each node as depicted above having exactly four incident connections.
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Fig. 7. Signal processing architecture and numerical simulation corresponding to a nonconvex sparse filter design problem. The parameters ρ and vs are
respectively selected to specify the enforcement of the size of x and the width of the abrupt decrease in cost about 0 for the nonconvex element. ρ+ and ρ−
affect the enforcement of the soft inequality constraints. For the depicted solution ρ and ρ+ are selected to be small and ρ− and vs are selected to be large.
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