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ABSTRACT

This paper is concerned with the inversion of implementations for
systems that may generally be nonlinear and time-varying. Specifi-
cally, techniques are presented for modifying an implementation of
a forward system, represented as an interconnection of subsystems,
in such a way that an implementation for the inverse system is ob-
tained. We focus on a class of modifications that leave subsystems
in the inverse system unchanged with respect to those in the for-
ward implementation. The techniques are therefore well-suited to
the design of matched pre-emphasis and de-emphasis filters, as ap-
proximations due to coefficient quantization in the forward system
are naturally matched in the inverse. In performing the inversion, an
explicit input-output characterization of the system is not required,
although the forward system must be known to be invertible. The
techniques are applied to the inversion of nonlinear and time-varying
systems, as well as to the problem of sparse matrix inversion.

Index Terms— Inverse systems, nonlinear filters, nonlinear sys-
tems, signal flow graphs.

1. INTRODUCTION

In the design of signal processing algorithms, it is often of interest
to implement the inverse of a pre-specified forward system. This
can occur, for example, within the context of system equalization,
where the forward system may consist of or be modeled by an inter-
connection of nonlinear and time-varying elements. In other appli-
cations where the forward and inverse systems are designed jointly,
as for example in applications employing matched pre-emphasis and
de-emphasis filters, an important design criterion is that the imple-
mentations of the forward and inverse systems are true inverses. It is
therefore desirable for approximations made in the implementation
of the forward system to be naturally accounted for in the implemen-
tation of its inverse.

This paper is concerned with the design of implementations for
inverse systems where an implementation of an invertible, generally
nonlinear and time-varying forward system has been specified. We
specifically focus on techniques for finding implementations of in-
verse systems that leave certain of the subsystems unchanged with
respect to the forward system. As such, the methods developed in
this paper are concerned not with the modification of subsystems,
but rather with modifying the way in which they are interconnected.
The presented techniques do not require an input-output characteri-
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zation of the forward system, although the system must be known to
be invertible.

We proceed by introducing a form of system representation
wherein a system is regarded as a set of subsystems coupled to a
linear interconnection. We then present a necessary and sufficient
condition under which an alternative interconnection exists such
that the resulting overall system is inverted. We make use of the
condition in arriving at a graph-based theorem pertinent to inter-
connections implemented as a specific class of signal flow graphs,
and the theorem is applied to the inversion of generally nonlinear
and time-varying systems. In inverting systems having intercon-
nections within this class, a forward interconnection composed of
unity branch gains implies that the inverse interconnection will be
composed of unity branch gains as well, thereby ensuring that any
approximations made in the forward system, e.g. coefficient quan-
tization, affect only the subsystems, resulting in an inverse system
that is naturally matched to the forward system even in the presence
of such approximations. The discussion is focused on discrete-time
systems involving linear interconnections that are memoryless and
time-invariant, as many of the key issues carry over to arbitrary
linear interconnections and continuous-time systems.

2. SYSTEM REPRESENTATION

The inversion techniques presented in this paper are facilitated by a
form of system representation that takes the behavioral viewpoint,
discussed in detail in [1]. We discuss the general problem of system
inversion from a behavioral perspective, and we present a form of
system representation that will lay the groundwork for development
of the presented techniques.

2.1. Inversion from a behavioral perspective

There are potentially many different notions of inversion that can
be used in developing techniques for inverting systems. Some are
discussed in, e.g., [2, 3, 4]. The specific concept of inversion that
forms the basis for this paper is related to the idea that a system can
be viewed as a map that is representative of constraints between sets
of input and output signals, as in [1]. Referring to the forward and
inverse systems in Fig. 1, a forward system M may be regarded as a
map from the set of input signals {c[n]} in its domain to the set of
output signals {d[n]} in its range. For the purpose of this paper, we
will focus on single-input, single-output systems that may be linear
or nonlinear, time-invariant or time-varying, and which may or may
not contain memory.

We adopt the convention that “the behavior” of a system refers
to the entire collection of input-output signal pairs consistent with



Fig. 1. A system and its inverse.

the map M . Formally, we represent the behavior as a set S such that

»

c[n]
d[n]

–

∈ S, (1)

where c[n] and d[n] are signals at the terminal branches connected
to the system.

Referring again to Fig. 1, we regard a system M as invertible if
it implements a bijective map from {c[n]} to {d[n]}, i.e. if M is a
one-to-one and onto map from the set of signals c[n] composing the
domain over which the system is defined to the set of signals d[n]
composing the range over which the system is defined. The inverse
system M−1 in turn implements the inverse map from the set {d[n]}
to {c[n]}, or alternatively from {c′[n]} to {d′[n]}. We conclude that
every input-output signal pair corresponding to an invertible system
M also corresponds to its inverse M−1, in the sense that

»

c[n]
M(c[n])

–

∈ S ⇔

»

M−1(c′[n])
c′[n]

–

∈ S ′, (2)

and we write S = S ′. An invertible system realized as a map M
from {c[n]} to {d[n]} therefore has the same behavior as its inverse
M−1.

2.2. Interconnective system representation

The key emphasis of the paper is on methods for generating imple-
mentations of inverse systems from implementations of forward sys-
tems, where identical subsystems are used in both. The techniques
presented for system inversion therefore focus not on the modifica-
tion of subsystems but rather on manipulating the way in which they
are connected. As such, we discuss a form of system representation
that we refer to as interconnective and that is designed to separate the
behaviors of the subsystems from the relationships that couple them
together. In particular, we view a system as having two parts: con-
stitutive relations, e.g. a set of possibly nonlinear and time-varying
subsystems that are allowed to have memory, and a linear, time-
invariant, memoryless interconnecting system to which the subsys-
tems and overall system input and output are connected.1 As was
mentioned previously, the conditions of memorylessness and time-
invariance are introduced to focus the scope of the discussion, and
many of the subsequent results generalize naturally to systems in-
volving arbitrary linear interconnections. The interconnective form
of system representation is depicted in Fig. 2. As the interconnec-
tion is time-invariant and memoryless, we have dropped the explicit
dependence on n in writing the terminal variables.

We are concerned with describing the behavior of the consti-
tutive relations and the behavior of the interconnection first as un-
coupled systems, with the intersection of their behaviors being that
of the overall system when the two are coupled together. We have

1Willems mentions essentially this representation in his work on dissipa-
tive systems, e.g. in [5]. It forms the cornerstone of various arguments in this
paper, and as such we feel that it is deserving of the special designation.

Fig. 2. A signal processing system in an interconnective representa-
tion.

specified that the interconnection is linear, and its behavior W is
consequently a vector space.

From an input-output perspective, the interconnection can
be represented as a matrix multiplication that maps from the
set of vectors of interconnection input terminal variables c =
[c0, · · · , cNi−1]

T to the set of vectors of interconnection output
terminal variables d = [d0, · · · , dNo−1]

T , where Ni and No de-
note the number of respective input and output terminal branches
directed to and from the interconnection in the uncoupled represen-
tation. That is, the interconnection is represented by an No × Ni

matrix L of coefficients where

d = Lc. (3)

In discussing the behavior of the interconnection, we are in-
terested in the set of all possible values taken on by a vector x =
[x0, · · · , xN−1]

T that contains the N = Ni + No interconnection
terminal variables. Referring again to Fig. 2, elements of x will gen-
erally correspond to both inputs and outputs, and we introduce a
permutation matrix P that encodes the correspondence between c, d
and x:

x = P

»

c
d

–

. (4)

A map from the vector of interconnection input variables c to the
vector containing the entire set of interconnection terminal variables
x may be obtained by combining Eqns. 3-4, resulting in

x = P

»

INi

L

–

c, (5)

where INi
is the Ni × Ni identity matrix. Consequently the set of

allowable vectors x, i.e. the behavior of the interconnection when
uncoupled from the constitutive relations, is the vector space

W = range



P

»

INi

L

–ff

. (6)

3. INVERSION TECHNIQUES

Drawing upon the interconnective form of representation, we de-
velop techniques for system inversion that leave the subsystems im-
plementing the constitutive relations unchanged. The general ap-
proach is to begin with an invertible system in this representation,



Fig. 3. Illustration of the interconnective approach to system inver-
sion. (a) Forward (CF) system. (b) Inverse (CI) system obtained by
replacing the LIF in the forward system with an LII.

whose input c0 = x0 and output d0 = x1 are included in the vector
of interconnection terminal variables x. This system, referred to as
the coupled forward system (CF), is regarded as a map M from x0

to x1. The corresponding uncoupled interconnection is referred to
as the linear interconnection for the forward system (LIF).

The goal in inverting the system is to determine an alternative
interconnection that has the same behavior as the LIF but that has
c′0 = x′

1 as an input and d′

0 = x′

0 as an output, with the directions
of all other interconnection terminal branches remaining unchanged.
The realization of this interconnection is referred to as the linear
interconnection for the inverse system (LII). The coupled system in-
volving the constitutive relations from the CF, coupled to the LII, is
referred to as the coupled inverse system (CI).

The CF implements a map from c0 = x0 to d0 = x1, and the CI
implements a map from c′0 = x′

1 to d′

0 = x′

0. As the behavior of the
LII is equivalent to the behavior of the LIF, the behavior of the CI
is equivalent to that of the CF. The CI consequently implements the
map M−1 that is the inverse of the map M implemented by the CF,
and it does so without requiring inversion of any of the subsystems
implementing the constitutive relations. The strategy for inversion
additionally does not require that the input-output map M is known
explicitly, although M must be known to be invertible. The general
approach is summarized in Fig. 3.

3.1. Equivalence of interconnections

One consideration in employing the previously-mentioned approach
pertains to the question of whether an appropriate LII exists. We
address this issue, presenting a necessary and sufficient condition
for the existence of an LII given an LIF.

Theorem 1. Given an LIF where x0 = c0 is an interconnection
input and x1 = d0 is an interconnection output, an LII having the
same behavior and having x′

1 = c′0 as an input and x′

0 = d′

0 as
an output exists if and only if the gain in the LIF from c0 to d0 is
nonzero, i.e. if and only if the LIF matrix L has the property

L1,1 $= 0. (7)

Proof. We first show that Eq. 7 is a necessary condition for the ex-
istence of an appropriate LII. If L1,1 = 0, i.e. if the gain from c0

to d0 is zero, the map realized by the LIF from c0 to d0 is many-to-
one. Consequently there is no map from c′0 to d′

0 that has the same
behavior, and no appropriate LII exists.

We now show that Eq. 7 is a sufficient condition, i.e. that L1,1 $=
0 implies that there exists an L′ corresponding to an LII having the
same behavior as the LIF. Adopting the convention established pre-
viously, we denote the number of inputs to the LIF and LII as Ni and
the number of outputs from the LIF and LII as No. The behavior W
of the LIF is given by Eq. 6. Similarly, the behavior W ′ of the LII
can be written

W ′ = range



P ′

»

INi

L′

–ff

, (8)

where P ′ is the permutation matrix encoding the correspondence be-
tween the vector x′ containing the entire set of LII terminal variables
and the vectors c′ and d′ respectively containing the LII input and
output terminal variables.

We proceed by showing that if L1,1 $= 0, there exists a full-rank
Ni × Ni matrix A such that

P ′

»

INi

L′

–

= P

»

INi

L

–

A, (9)

where L′ is the resulting LII matrix. Combining Eqns. 8-9 and 6, we
conclude that the existence of such an A would result in equivalence
of the LIF and LII behaviors, i.e.

W ′ = range



P

»

INi

L

–

A

ff

= range



P

»

INi

L

–ff

= W. (10)

It remains to be shown that there exists a full-rank Ni ×Ni ma-
trix A as is required for Eq. 10 to hold. We begin by noting that
P ′−1P is itself a permutation matrix that as a matrix multiplication
swaps elements 1 and (Ni + 1) of a vector, following from the re-
quirement that c′0 = d0 and d′

0 = c0. We consequently show that a
full-rank Ni × Ni matrix A exists such that the following equation,
obtained by multiplying both sides of Eq. 9 by P ′−1, is satisfied:

»

INi

L′

–

=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

L1,1 L1,2 · · · L1,Ni

0 1
...

. . .

0 1
1 0 · · · 0

L2,1 L2.2 · · · L2,Ni

...
...

. . .
...

LNo,1 LNo,2 · · · LNo,Ni

3

7

7

7

7

7

7

7

7

7

7

7

7

5

A. (11)

Under the condition that L1,1 $= 0, standard column reduction
operations can be used to transform the upper partition in the matrix
on the right hand side of Eq. 11 to INi

as desired. A is selected
to encode these operations, and since the standard column reduction
operations are invertible, A is full-rank. Consequently Eq. 10 holds,
completing the proof.



(a)

(b)

Fig. 4. Elements pertinent to Theorem 2 composing (a) the men-
tioned path from c0 to d0 and (b) the path from c′0 to d′

0.

3.2. Obtaining an LII flow graph from an LIF

With the conditions under which a desired LII exists now in place,
we discuss the issue of generating a signal flow graph for an LII
given a signal flow graph for an LIF. The entries of the LIF intercon-
nection matrix L may generally take on any scalar value, and as such
the branches in a flow graph implementation for the LIF may con-
tain non-unity branch gains. The following theorem, which applies
to a class of LIF flow graphs that occur in common signal process-
ing structures, presents a method for generating a flow graph for the
LII, drawing a correspondence between the branch gains in the two
implementations.

Theorem 2. The theorem applies to a signal flow graph for an LIF
consisting of a single path from the input c0 = x0 to the output
d0 = x1 where the interconnection inputs c1, . . . , cNi−1 form in-
cident branches directed toward the path and the interconnection
outputs d1, . . . , dN0−1 form incident branches directed away from
the path, and where each branch gain along the path is nonzero.
Given such a flow graph for an LIF, a flow graph for the LII can be
realized by reversing the direction of all of the branches forming the
path, inverting each of the branch gains along the path, and negating
any incident branches that are directed toward the path, resulting in
a path from c′0 = x′

1 to d′

0 = x′

0. The directions of the incident
branches remain unchanged.

Proof. We begin by noting that the condition for the existence of
an LII as stated in Theorem 1 is satisfied by the requirement that
all gains along the path from c0 to d0 are nonzero. One strategy in
completing the proof involves representing the signal flow graph in
terms of its matrix L as in Eq. 3 and showing that the prescribed
operations result in a new matrix L′ corresponding to an intercon-
nection that has the same behavior. As the proof becomes somewhat
lengthy using this approach, we instead opt to present the proof of
Theorem 2 using a behavioral argument.

Consider a flow graph of the mentioned form that implements
the LIF. The process of reversing the branches along the path from
c0 to d0 modifies the interconnection to be in the input-output con-
figuration desired of the LII. It remains to be shown that the resulting
flow graph has the same behavior as that of the LIF. In illustrating
this, we view the signal flow graph as being composed of the ele-
ments indicated in Fig. 4(a), coupled together by equality constraints
between the branch variables. Fig. 4(b) illustrates the corresponding
elements in the reversed path. Each of the elements in Fig. 4(b) con-
strains its terminal variables in the same way as the corresponding
element in Fig. 4(a), and the elements in each pair consequently have
the same behavior. The connected elements forming the LII there-
fore have the same behavior as the connected elements forming the
LIF.

Given an LIF flow graph of the form required by Theorem 2
whose branch gains along the mentioned path are unity, the corre-

sponding gains in the LII graph will be unity as well. Approxima-
tions such as coefficient quantization that are made in implementing
the CF will therefore be manifest only in the CF constitutive rela-
tions, which are identical to those in the CI. The CF and CI systems
will in this case be naturally matched, even in the presence of such
approximations.

4. APPLICATIONS

In this section, we apply Theorem 2 in the development of inver-
sion techniques that can be directly applied to systems represented
as signal flow graphs. The methods are illustrated through examples
involving known inverse systems and are used to arrive at an efficient
algorithm for computing inverse maps of linear operators for which
the forward map, represented as a matrix multiplication, is sparse.

4.1. A graph-based inversion technique

Direct application of Theorem 2 to a system in interconnective form
may result in delay-free loops that pass through the constitutive re-
lations, complicating implementation of the inverse system. While
the technique in, e.g., [6] may be used in this situation, it would be
desirable to avoid delay-free loops altogether. We present a corollary
to Theorem 2 that addresses this concern, facilitating the inversion
of systems realized as signal flow graphs, without requiring repre-
sentation in an interconnective form.

Corollary 1. The corollary applies to a system realized as an in-
vertible single-input, single-output signal flow graph having a lin-
ear, time-invariant, memoryless path from the input c0 to the output
d0 that is the only (linear or nonlinear) memoryless path from c0 to
d0, and along which each branch gain is nonzero. Given such a flow
graph, a flow graph for the inverse system can be realized by revers-
ing the direction of all of the branches forming the path, inverting
each of the branch gains along the path, and negating any incident
branches that are directed toward the path. The inverse system will
not contain any delay-free loops.

Proof. Viewing the flow graph as being in an interconnective form,
where the LIF contains the mentioned path exclusively, and where
the remainder of the flow graph comprises the constitutive relations,
the proof follows from Theorem 2. The indicated modifications re-
sult in an LII having the same behavior as the LIF and also having
the desired input-output configuration. The CI is therefore the in-
verse of the CF. The presence of a single memoryless path in a sig-
nal flow graph implies that reversal of the path will not result in the
introduction of any delay-free loops.

4.2. Inversion of time-varying linear filters

Fig. 5 illustrates the application of Corollary 1 in the inversion of
a time-varying linear filter, realized in a direct form structure. The
values for the time-varying coefficients bk[n] are assumed to result
in a map from c[n] to d[n] that is invertible in the sense discussed in
Section 2.1. Note that this does not imply that the inverse system will
necessarily be causally invertible. For example in the time-invariant
case where the coefficients bk[n] = bk are constants, the values of
bk can be chosen so that the forward system is not minimum phase
but is still invertible, although the stable inverse will be noncausal.
Alternatively, a causal implementation of the inverse system will be
unstable.

Another consideration regarding the implementation of the in-
verse system relates to the issue of choosing initial conditions. As



Fig. 5. A time-varying linear filter (a) and its inverse (b), determined
using Corollary 1. The delay free path pertinent to Corollary 1 has
been identified in the forward flow graph (a).

an illustrative example, consider the system in Fig. 5(a) for K = 1
and b1[n] = −1/2. Under these constraints, the inverse system in
Fig. 5(b) relates c′[n] and d′[n] according to the following equation:

0 = d′[n] −
1
2
d′[d − 1] − c′[n]. (12)

Having specified only an input signal c′[n], there may be multiple
output signals d′[n] that satisfy Equation 12. For example, both
d′[n] = (1/2)nu[n] and d′[n] = −(1/2)nu[−n − 1] satisfy Equa-
tion 12 given c′[n] = δ[n]. As we assumed that the forward system
in Fig. 5(a) implements a one-to-one and onto map, a single input
signal c′[n] ought to correspond to a unique output d′[n] in the in-
verse system. The specific choice of output will therefore depend
on the initial conditions in an implementation of the inverse sys-
tem. The key point is that although initial conditions are naturally
encoded in the behavior of a system, it is important as a matter of
implementation to match the initial conditions in the inverse system
to those of the forward system.

As another example illustrating the application of Corollary 1 in
inverting a known structure, Fig. 6 depicts its use in the inversion of a
time-varying FIR lattice filter. Note that the topology of the resulting
inverse system is consistent with the canonical IIR lattice structure
as described in, e.g., [7]. Under the assumption that the generally
time-varying reflection coefficients kp[n] take on values that result
in an invertible FIR structure in the sense discussed in Section 2.1,
the time-varying inverse structure depicted in Fig. 6(b) will be the
exact inverse of the FIR structure in Fig. 6(a).

4.3. Sparse matrix inversion

A causal implementation of the system in Fig. 5 can be used to ef-
ficiently realize matrix multiplications involving inverses of lower-
triangular matrices having few nonzero entries, i.e. that are sparse.
We are specifically concerned with matrices having the following
banded structure:

Q =

2

6

6

6

6

6

6

6

6

6

6

6

4

1
b1[0] 1

... b1[1]
. . .

bK [0]
...

. . .

bK [1]
. . .

bK [J − K] · · · b1[J − 1] 1

3

7

7

7

7

7

7

7

7

7

7

7

5

.

(13)

The system in Fig. 5(a) may be regarded as an implementation of
the matrix multiplication r = Qp where the vectors p and r contain
length-(J + 1) input and output time series c[n] and d[n], i.e. p =
[c[0], · · · , c[J ]]T and r = [d[0], · · · , d[J ]]T .

An appealing property of sparse matrices is that matrix mul-
tiplication can be performed efficiently due to the relatively few
number of nonzero matrix entries. In Fig. 5(a) this translates to
multiplications by 0 for certain of the time-varying coefficients at
various times, which need not be computed. However, the num-
ber of nonzero entries in a sparse matrix may be significantly less
than the number of nonzero entries in its inverse, and consequently
the inverse map, implemented as a matrix multiplication, may incur
greater computational cost. Alternatively, realizing the inverse map
using the system in Fig. 5(b) results in a recursive implementation
requiring the same number of multiplications as in the implemen-
tation of the forward map, as the time-varying coefficients in the
inverse implementation are identical to those of the forward imple-
mentation.

In addition to a potential reduction in computational cost due to
implementation of the inverse map as in Fig. 5(b), there is an addi-
tional efficiency in arriving at the implementation of M−1, in that
the matrix inverse Q−1 need not be computed explicitly. It should
also be noted that care must be taken in implementing the inverse
system, as applying Corollary 1 to a map between sets of truncated
signals implies that the inverse system implements the inverse map
only between those sets, having unspecified behavior for longer sig-
nals.

4.4. Generalization to nonlinear interconnections

In applying Corollary 1, it may be possible that a single delay-free
path from the input to the output exists but that one or more of the
branches along the path is nonlinear. It may additionally be of in-
terest to invert systems having interconnections that contain mixers
(modulators) or other nonlinear junctions. In this section, we gen-
eralize the graph-based inversion method of Corollary 1 to apply
to certain nonlinear, memoryless interconnections. Again a single
memoryless path from the input to the output is required, as a matter
of avoiding delay-free loops. Along this path, any non-unity branch
functions must be inverted, and for incident branches directed to-
ward multiplicative junctions, the multiplicative inverse of the signal
on the incident branch must be taken.

Corollary 2. The corollary applies to a system realized as an in-
vertible single-input, single-output signal flow graph having a mem-
oryless path from the input c0 to the output d0 that is the only mem-
oryless path from c0 to d0, and where the path is composed of the
elements in Fig. 7(a) such that each of the branch functions along
the path is invertible. Given such a flow graph, a flow graph for the
inverse system can be realized by substituting the appropriate corre-
sponding element in Fig. 7(b) along the mentioned path. The inverse
system will not contain any delay-free loops.

Proof. We follow the same line of reasoning as in the proof of Corol-
lary 1, which draws upon Theorem 2, but we allow for a more gen-
eral set of elements, listed in Fig. 7, composing the flow graph. Re-
ferring to this figure, the elements in each pair have the same behav-
ior, and consequently the mentioned steps associated with the rever-
sal of the path from c0 to d0 result in an overall flow graph that has
the same behavior as the original and thus implements the inverse
map.



Fig. 6. A time-varying FIR lattice filter (a) and its inverse (b), determined using Corollary 1. The delay free path pertinent to Corollary 1 has
been identified in the forward flow graph (a).

Fig. 7. Elements pertinent to Corollary 2 composing (a) the men-
tioned path from c0 to d0 and (b) the corresponding path in the in-
verse system.

Fig. 8. A nonlinear flow graph (a) and its inverse (b), determined
using Corollary 2. The delay free path pertinent to Corollary 2 has
been identified in the forward flow graph (a).

4.5. Nonlinear system inversion

Corollary 2 may be used to invert nonlinear systems or system mod-
els. Fig. 8 illustrates its use with a known example involving the
system representation discussed in [8]. In that article, the forward
system is described by an equation of the form

d[n] = g(c[n])h(c[n− 1], d[n− 1])+ f(c[n− 1], d[n− 1]), (14)

where g(·), h(·, ·) and f(·, ·) are causal, nonlinear operators.
Fig. 8(a) depicts a realization of Eq. 14 as a nonlinear signal flow

graph. Applying Corollary 2 results in the signal flow graph for the
inverse system that is depicted in Fig. 8(b). From this, we write

d′[n] = g−1

„

c′[n] − f(d′[n − 1], c′[n − 1]
h(d′[n − 1], c′[n − 1])

«

, (15)

consistent with the main result of Theorem 1 in [8]. The presented
approach applies to higher-order nonlinear models as well.
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