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Abstract

Chaotic signals and systems are potentially attractive in a variety of signal modeling
and signal synthesis applications. State estimation algorithms for chaotic sequences
corresponding to tent map dynamics in the presence of additive Gaussian noise, inter-
symbol interference, and multiple access interference are developed and their perfor-
mance is evaluated both analytically and empirically. These algorithms may be useful
in a wide range of noise removal, deconvolution, and signal separation contexts. In the
additive Gaussian noise case, the previously derived maximum likelihood estimator
in stationary white noise is extended to the case of nonstationary white noise. Useful
analytic expressions for performance evaluation of both estimators are derived, and
the estimators are shown to be asymptotically unbiased at high SNR and to have an
error variance which decays exponentially with sequence length to a lower threshold
which depends on the SNR. An estimator for the colored noise case is also suggested.
In the intersymbol interference case, three new iterative algorithms are developed and
their performance is evaluated empirically, considering the effects of sequence length,
noise, and initialization. Finally, in the multiple access interference case, an optimal
maximum likelihood estimator for the separation of superimposed tent map sequences
is derived, along with the associated Cramer-Rao bound on the error variance. The
estimator is asymptotically unbiased at high SNR and has an error variance which
depends on the particular tent map sequences.

As an example of a potential application of chaotic signals in communication, a
new paradigm for exploiting chaos in the modulation or coding of analog sources
is explored in which the source data is encoded in the initial value of a tent map
sequence. It is shown that this so-called tent map coding system can be interpreted
as a twisted modulation system, and its performance is analyzed in this context. Also,
this coding system is shown to outperform linear modulation codes and M-ary digital
codes in a range of power-bandwidth regimes.

Thesis Supervisor: Gregory W. Wornell
Title: Assistant Professor of Electrical Engineering





Acknowledgments

First, of course, I would like to thank my advisor, Prof. Greg Wornell, for his patience,

guidance, helpful insights, and useful advice during both the research and writing

phases. Greg, thanks for taking the time to read the entire manuscript - over your

holiday, no less! I hope it wasn't too painful.

I also gratefully acknowledge the Office of Naval Research and the National De-

fense Science and Engineering Graduate Fellowship Program for their financial con-

tributions.

I would also like to recognize my instructors at MIT. Much of the background for

the work in this thesis was taught to me by the professors and TAs in my courses

here. I thank all of you for your dedication to teaching.

I would like to acknowledge my fellow graduate students at MIT, especially the

students of the Digital Signal Processing Group, for the many perspectives and in-

sights gained through informal conversations. Let me also thank the members of

"thepack@mit" for the welcome social relief from the day-to-day rigors of graduate

student life.

I would also like to acknowledge the professors at my undergraduate institution,

the University of Michigan. You helped me get started in electrical engineering and

taught me the fundamentals. Go Blue!

Finally, and most importantly, I would like to thank my family for all of their help

and support. Nancy, thanks for leading the way and showing me the ropes. Mom,

thanks for all the loving care that only a mother can provide. Your Thanksgiving

and Christmas dinners kept me going all year long. Dad, you're not only a gentleman

and a scholar, but also my role model, confidant, and most trusted advisor - a true

hero.

5



6



To any brave souls

who actually read this thesis from start to finish.

I salute you.



8



Contents

1 Introduction

2 Estimation of Tent Map Sequences

2.1 The ML Estimator in White Gaussian Noise . .

2.2 ML Estimator Derivation .............

2.2.1 Separation of Filtering and Smoothing

2.2.2 Filtering ..................

2.2.3 Smoothing. ................

2.3 Error Analysis . . . . . . . . . . . . . . . . . .

2.3.1 Filtering Error ..............

2.3.2 Smoothing Error ............

2.4 Empirical Simulation Results ..........

2.5 Comments on the Colored Gaussian Noise Case

15

19

. . . 19

. .. 20

. . . 21

. . . 22

... 26

... 26

. . 26

. . 28

. . . 32

* . . 34

3 Tent Map Coding for the AWGN Channel 35

3.1 Problem Formulation, Coding for the AWGN Channel ......... 36

3.2 Tent Map Twisted Modulation and Coding ............... 37

3.2.1 Twisted Modulation ....................... 37

3.2.2 Tent Map Coding. .................. ........ .. ... 40

3.3 Linear Modulation Codes ......................... 41

3.4 An Information Theoretic Perspective ................. ........ . 43

3.4.1 Optimal Coding of a Uniform Source ............. ...... . 43

3.4.2 Tent Map vs. M-ary Coding ................... 50

9

-



3.4.3 Distortion Bounds for the AWGN Channel ...........

4 Deconvolution of Tent Map Signals

4.1 Deconvolution Algorithms ...........

4.1.1 The Dynamics Matching Algorithm . .

4.1.2 The Alternating Projections Algorithm

4.1.3 The Supex Algorithm. .........

4.2 Performance. ..................

4.2.1 Performance Measures .........

4.2.2 Test Channels ..............

4.2.3 Convergence Curves ..........

4.2.4 Sequence Length Effects ........

4.2.5 Behavior in Noise ............

4.2.6 Initialization and Convergence ....

4.3 Coding for the ISI Channel ...........

4.3.1 Decoding Algorithms .........

4.3.2 Simulation Results ..........

5 The Multiple Access Channel

5.1 Problem Formulation ........

5.2 Estimator Derivation ........

5.3 Error Analysis ...........

5.4 Recursive Estimation ........

5.4.1 Recursive Filter ......

5.4.2 Covariance Matrix Updating

5.5 Simulation Results ........

6 Conclusion

10

55

. . . . . . . . . . . . .56

. . . . . . . . . . . . . .56

. . . . . . . . . . . ... .61

. . . . . . . . . . . . . .63

. . . . . . . . . . . . . .68

. . . . . . . . . . . . . 68

. . . . . . . . . . . . . 69

. . . . . . . . . . . . . 70

. . . . . . . . . . . . . 72

. . . . . . . . . . . . . 74

. . . . . . . . . . . . . 76

. . . . . . . . . . . . . 78

. . . . . . . . . . . . . .79

. . . . . . . . . . . . . .80

85

86

87

90

93

94

96

96

99

51

................

................

................

................

................

................

................



List of Figures

2-1 Sign Error Probability ......................... .......... . 33

2-2 Error Variance Threshold . . . . . . . . . . . . . . . . . . . . . . . . 33

3-1 Joint Source-Channel Coding of a Uniform Source over an AWGN

Channel ............................................ . 36

3-2 Joint Source Channel Coding with the Symmetric Tent Map .... . 37

3-3 Signal Loci for Linear and Twisted Modulation Systems ....... .. . 39

3-4 Tent Map Coding vs. Linear Modulation Coding ........... ..... . 42

3-5 Separation of Source and Channel Coding ............... 43

3-6 Tent Map Coding vs. M-ary Coding ................... 51

3-7 Distortion Bounds at SNR of 20 dB ................... 53

3-8 Distortion Bounds at SNR of 30 dB ................ 53

4-1 Convolutional Distortion and Equalization ............... 55

4-2 Selection Criterion of the Alternating Projections Algorithm .... . 62

4-3 Downsampling and Supex for Equalization ............. 67

4-4 Deconvolution Performance on the FIR Channel ........... ..... . 71

4-5 Deconvolution Performance on the All-Pole Channel ............. . 71

4-6 Deconvolution Performance on the All-Pass Channel ............. . 72

4-7 Effect of Sequence Length on Dynamics Matching Algorithm .... . 73

4-8 Effect of Sequence Length on Alternating Projections Algorithm . . . 73

4-9 Effect of Sequence Length on Supex Algorithm ............. 74

4-10 Effect of Noise on Dynamics Matching Algorithm .......... . 75

4-11 Effect of Noise on Alternating Projections Algorithm ........ . 75

11



4-12 Effect of Noise on Supex Algorithm ................... 76

4-13 The Dynamics Matching Objective Function for 2-tap Equalizer . . . 77

4-14 Improvement over Baseline in ISI ................... ......... . 81

4-15 Improvement over Baseline in Distortion ............... ....... . 81

4-16 Performance of the Recursive Dynamics Matching Algorithm .... . 83

5-1 Mean Square Error after Filtering for the Two-User Multiple Access

Channel ............................................ . 97

5-2 Mean Square Error after Smoothing for the Two-User Multiple Access

Channel ............................................ . 97

12



List of Tables

4.1 Normalized Cumulants .......................... 67

13



14



Chapter 1

Introduction

Chaotic systems are potentially attractive in a variety of signal modeling and signal

synthesis applications. In many of these applications, the chaotic signals of interest

need to be recovered from corrupted signals which have undergone various forms of

distortion. Thus, the work in this thesis involves developing estimation algorithms for

chaotic sequences in the presence of additive Gaussian noise, intersymbol interference

(ISI), and multiple access interference. In certain contexts, these algorithms may

also be referred to as noise removal algorithms, deconvolution algorithms, and signal

separation algorithms, respectively.

Although these algorithms may have many different applications, this thesis ex-

plores more thoroughly the application of chaotic signals and systems for communi-

cation. As an example of such an application, this thesis examines the potential role

of discrete-time chaotic systems in coding and modulation and in deconvolution. In

each of these applications, the underlying deterministic structure of the sequences

generated by chaotic systems is exploited to achieve noise or ISI reduction.

The systems of interest in this thesis are one-dimensional dynamic systems whose

state evolutions correspond to iterated maps. In particular, they have a single state

variable x[n] whose behavior is governed by a mapping from the previous state to the

current state, i.e.,

x[n] = F(x[n- 1]), (1.1)

15



where F(.) represents a chaotic mapping with sensitivity to initial condition, i.e.,

small perturbations in the initial state x[0] lead to divergent state trajectories x[n]

[7]. While, in general, the output of a dynamic system may be a complicated function

of its state, in all of the applications in this thesis, the output of the chaotic system

is simply the state variable x[n] itself.

Much of the thesis focuses on the class of chaotic systems whose state evolution

corresponds to the so-called symmetric tent map. The chaotic mapping in these

systems is

F(x) = - -,3Ixl, 1 < < 2. (1.2)

The piecewise linearity of this map makes this class of chaotic systems particularly

amenable to analysis. The sequences x[n] generated by such systems are referred to

as tent map sequences, and tent map sequences in the 3 = 2 case have a natural

interpretation as quantizers of their initial states. More precisely, if the initial state

x[0] is in the interval [-1, 1], the sign of x[n] represents the (n + 1)th most significant

bit in the quantization of x[0], and the real number x[n] represents the position of

x[0] within the particular quantization region. This thesis often specializes results to

the special case = 2.

Throughout the thesis it is necessary to view chaotic sequences as deterministic

in some situations and random in others. Clearly, given an initial condition x[0], any

sequence of the form (1.1) is completely determined. However, due to the sensitivity to

initial condition characteristic mentioned above, iteration of the map (1.2) using finite-

precision calculations quickly leads to unpredictable results. Thus, it is sometimes

useful to treat these sequences as sequences of random variables. One can associate

with these sequences an invariant density, the probability density such that if the

initial condition is randomly drawn from this density, the subsequent x[n] will all

also have this density. For example, tent map sequences in the case = 2 have an

invariant density which is uniform on the interval [-1, 1]. Furthermore, for almost all

initial conditions in this interval, the sequences are ergodic and uncorrelated [5].

The first part of the thesis examines the application of chaotic sequences to com-

16



munication over the additive white Gaussian noise (AWGN) channel. Chapter 2

extends the maximum likelihood (ML) estimator for tent map sequences in station-

ary AWGN [5] to the case of nonstationary AWGN and analyzes the performance

of the estimators in both cases analytically and empirically. Chapter 3 explores a

paradigm for exploiting tent map sequences in the modulation or coding of analog

sources for transmission over the AWGN channel and analyzes the performance of

this coding system relative to linear modulation codes and M-ary digital codes.

The second part of the thesis examines the application of chaotic sequences to

communication over nonideal channels, i.e., channels such as ISI channels and mul-

tiple access channels which corrupt the input signals with more than simple AWGN.

Chapter 4 deals with deconvolution or equalization in which the underlying determin-

istic structure of chaotic sequences is exploited to reduce ISI. This chapter develops

three deconvolution algorithms, analyzes their performance, and examines these al-

gorithms in the context of decoding for the ISI channel. Finally, Chapter 5 develops

the ML estimator for tent map sequences that have been transmitted over a multi-

ple access channel. This algorithm is motivated in a multiple access communication

context, but may be more generally applicable in other signal separation problems as

well.

17
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Chapter 2

Estimation of Tent Map Sequences

To fully exploit chaotic sequences for the communications applications in this thesis,

algorithms for the estimation of these sequences in the presence of noise are needed.

Papadopoulos and Wornell have developed the ML estimator for tent map sequences

in the the presence of stationary AWGN [5]. This chapter extends their work to the

more general case of nonstationary AWGN and suggests an approach which may also

be useful for the general colored Gaussian noise case. An analysis of the relationship

between signal to noise ratio (SNR) and the mean square estimation error in the case

of stationary AWGN is also presented.

2.1 The ML Estimator in White Gaussian Noise

This section considers the estimation of tent map sequences in the following scenario.

A sequence of length N, denoted by

x[0], x[], x.,[N- 1] (2.1)

is generated via (1.1) with (1.2). The estimator observes a noise-corrupted version of

this sequence, denoted y[O], y[1], .. , y[N - 1] where

y[k] = x[k] + w[k] (2.2)

19



and w[k] is a sequence of jointly Gaussian random variables with a diagonal covariance

matrix Kw, i.e.,
Kw,, diag(a 2 UW[0]' ... a 2 23

= diag(<], W, w[N-11)] (2.3)

Based on observation of the y[k], the estimator produces the optimal estimate of x[n]

under the maximum likelihood criteria.

Such an estimator for the special case where Kw = cra2I is derived in [5]. In

the more general case where KwW is some arbitrary diagonal covariance matrix, the

estimator has a similar form. Specifically, the estimator can be decomposed into a

recursive filtering stage followed by a smoothing stage. The next section derives the

ML estimator for this more general case.

2.2 ML Estimator Derivation

The derivation of the ML estimatior involves three main components:

1. Proof that filtering and smoothing can be separated.

2. Derivation of filtering stage.

3. Derivation of smoothing stage.

The following function and its inverse used in [5] aid in the general derivation:

F,(x) = -1- sx (2.4)

and

FS(_l)(x) = a x . s. (2.5)

Also, F(k.,S-k ) and F ( k ) () denote the k-fold iteration of (2.4) and (2.5),
$1,-",$k-1 ,$k( n 1 $2 ...... k

respectively, i.e.,

F ®k) r(x) = Fsk Fskl o ... o Fs, (x) (2.6)

and

F(- k) ) = Fs( o F? ...o F(-)(x). (2.7)
S1,S2,'",Sk S 82

20



These definitions imply

F(x) = Fsgn (x)

and

n] = Fn],s[n+l], s[n+ml](x[n m])

= Fs[n-m],s[n-m+l],...,s[n- ]( ) 

(2.8)

(2.9)

where sn] = sgn x[n] and m > 0. In particular, letting m = N- 1 -n, one finds

that

s[],s[1], -- , s[N - 2],x[N- 1] (2.10)

is an equivalent representation for (2.1) obtained through the nonlinear transforma-

tion (2.9).

2.2.1 Separation of Filtering and Smoothing

This section demonstrates that the ML estimator in AWGN for sequences whose

dynamics correspond to the so-called tent map can be decomposed into a filtering

stage followed by a smoothing stage.

ML estimation is invariant to invertible nonlinear transformations, so

-[ - 1] F lN]-n-([NN2N](N-lN-1))).~[jN 1]=, Fs[nlN-l],gtn+11N-l],...,g[N_21NX](i[N - 1IN - 1]), (2.11)

where [n k] denotes the best estimate of x[n] based on observation of y[0 ], -, y[k].

Also, for any m > 0, F(n+m)(x) = F(n+m)(-x), so the probability density of y[n + m]

does not depend on s[n]. Thus,

9[nlN- 1] = §[nly[0], y[1], , y[N- 1]]

= 9[nly[0],y[1], -- , y[n]]

= [nln]

= sg-n x[nln]
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=- sgn [nln] =_ [n], (2.12)

i.e., the estimates [n] can be obtained causally. Therefore, the ML estimator can

be decomposed into two stages. The first stage finds the filtered estimates x[nln] for

0 < n < N- 1, and the second stage produces the smoothed estimates i[nJN - 1]

through (2.12) and (2.11). Specifically,

,[nJN - 1] F n N
1

))1!1][ I.1QN - I1IN - 1)_ -- 1] Us[nlN-l],[n+illN-],...,s[N-21N-][- -

= Fsgn([nln])([n+ llN -1). (2.13)

2.2.2 Filtering

The ML filtering criterion involves jointly maximizing the likelihood function of the

observations

argmax lnp(y[O],...,y[n]ls[O],.. .,s[n-1],x[n]) (2.14)
s[O],--.-,s[n-l],x[n]

over the arguments s[O], s[1], . , s[n- 1], x[n]. Since y[n] is independent of s[k] for

k < n, by induction one can perform the maximization (2.14) over the s[k] separately

from the maximization over x[n]. The induction proceeds as follows.

1. If one is given the s[O], --- , [n - 1] which maximize the likelihood of the obser-

vations y[O], .. , y[n- 1], one can maximize the likelihood of the observations

y[0], ... , y[n] over only x[n].

To see this, first introduce the following vectors for notational convenience:

Sn-1 = [s[O] ... s[n- 1]](2.15)

Yn = [y[O] -.. y[n]]. (2.16)

Then,

n

lnp(ynlsnIls , x[n]) = lnp(y[k]lsn,-l x[n])
k=0
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n-1

= lnp(y[n]lx[n]) + E lnp(y[k] Sn-l,x[n])
k=O

= lnp(y[n]|x[n]) + lnp(yn_1 IS-1 , x[n])

and, thus,

argmaxlnp(ynsn-1 , x[n]) = {§n-l, argmaxlnp(ynl§n-l, x[n])}.
Sn _i,xZ[n] x[n]

2. Initialize the induction with

s[0] = sgn 5[O 0] = sgn y[0].

(2.17)

(2.18)

(2.19)

Thus, the filtering problem reduces to maximizing the likelihood function over the

single unknown x[n]. The following identity is useful in performing the maximization:

a-F(-1)(b)= _s F(a) - b s = +1.

By repeatedly applying this identity, one obtains

(2.20)

(y[i]_ si- n-] 2~~~(-Tn)
=( 1) 2(n-i)

(2.21)

= argmaxlnp(yn j§n-1 ,x[n])
x[n]

n

= arg mm i
x[n] i=o

nl

= arg min 
x[n] i=O

(y[i] - F(i] 1]n)s ] (x[n])

ao [i]

( 2(n-~)[i] -) (F[],,[n-l] (y[i]) - x[n])2

23

Then,

x[njn]

2

J
(2.22)

(F,(n - i) _ X[n])2
[n - 1] (Y I'D

II
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The minimization (2.22) is equivalent to minimizing a suitably weighted norm of the

error e in the following system of equations:

1

1
x[n] + e.

1

1

(2.23)

In particular, the norm to be minimized is Ie 2 = eTSne, where

Sn = diag(so,n, sl,n,' , sn,n)

and where
1

Si,n - 2(n-i)2 

wThen, the ML filtered estimate is [3]
Then, the ML filtered estimate is [3]

i[njn] = argmin Iy' - lx[n]j 2
x[n]

= (TSnl)-l lTSny

En 2 (- r,-i)
En 1
_l'--0 o2 [i 2(n-i)w[i]

(2.24)

(2.25)

(2.26)

A convenient recursion for the filtered estimates exists and is derived below. Defin-

ing the following quantities aids in the derivation. Let

(2.27)Si,n
ain = 0n

Ej=o Smn

Note that for any n, En'o ai, 1 = so that [5]

n-1

ai,n-1
i=O

(2.28)

24
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Next, define

ai,n_/ = (2.29)
ai,n-1

n-1
Si,n 'j=o Sjn-1

Si,n-1 _j=o S,n

/~--2 Fn--1
, j=o Sj,n-1

n-1 -
j=o j,n + Snn

n--1Ej=o j,n (-0
n-1 (2.30)

Ej=O j,n + Sn,n

where the third equality arises from the fact that ' = /n-2 for i < n. Then, finally,
Si,n- 1

the recursion for the filtered estimates :[nln] is

n

x[nIn] = z n(-i)
i=O

n-1

=- y E ai,n-lF9[n-1] (F([7i..,) 2](y[i])) + an,ny[n]
i=O

n-1 

=- 'YF[n-1] ai,n-lF(] ,1 [2]([i]) + an,ny[n]
i=O

= yFs[n-,](.[n - ln - 1]) + an,nY[n]

- yF(:[n- 1in - 1]) + an,ny[n]
n-1

MO S - ~~~~~~~~Sn,n
- Z i7 o',n F(x[n- lIn - 1]) + n- y[n], (2.31)

Ei=O Si,n + Sn,n ZEi=O Si,n + Sn,n

with the initialization [010] = y[0]. The second line follows from the definition of

7y (2.29), the third from (2.28), and the final line from (2.30). As a final remark,

note that the filtered estimate in (2.31) does not use the a priori knowledge that

x[n] E [-1, - 1] for all n as long as x[0] [-1,3 - 1]. Therefore, one should

amplitude limit the estimates i[nIn] given by (2.31) to this interval.
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2.2.3 Smoothing

Recall, the smoothed estimates [nlN- 1] are given in Subsection 2.2.1 by (2.13).

For convenience, this expression is repeated here:

]= F )N- 1]
F g[nNi],[n+ IN],(N N- l)1])

_ wsg(-1n) (.%In + 1 IN- 1]) (2.32)

2.3 Error Analysis

This section analyzes the filtering and smoothing errors for the estimates given by

(2.31) and (2.13). Useful approximate expressions for the mean square estimation

error are derived. In the case where the noise is stationary, these expressions are

compared to associated Cramer-Rao bounds and experimental results.

2.3.1 Filtering Error

One can compute good approximations to the error variance of the ML filtered esti-

mates directly from (2.31). Denote the filtering errors by e[nln] = :[njn]- x[n] and

denote their variances by a2 [nln].

Bias

If the SNR is high enough such that 9[n] = s[n] with high probability, one can show

by induction that the ML filtered estimates (2.31) are approximately unbiased.

1. Assume that e[n- lin- 1] has zero mean. Then,

E{x[nln]} = E {(1 - an,n)F([n - 1n- 1]) + an,ny[n]}

= E {(1 - a,n)F[n-l] (x[n - 1] + e[n - ln -1])

+ an,(x[n] + wi[n])}

= E{(1-an,n)(3-1-/3[n-1]x[n-1]

- [n- l1]e[n - n - 1])} + an,nx[n]

26



. (1 - ann)Fs[.-l](x[n- 1]) + an,nX[n]

- (1 - an,n)os[n- 1]E{e[n - 11n- 1]}

= (1 - an,n)x[n] + an,nX[n]

-= x[n]. (2.33)

The approximation in the fourth line arises from substituting s[n- 1] for s[n- 1].

Thus, if e[n- I n- 1] has zero mean at high SNR, so does e[nn].

2. To complete the induction, note that

E{e[0o10]} = E{w[0o]} = 0. (2.34)

As a final note, the above claim is supported by experimental results in [5] for the

case of stationary AWGN.

Variance

One can compute the approximate error variance by making the same assumptions

as above, namely that the SNR is high enough such that [n] - s[n].

a2[nln] = E{(m[nln]-x[n])2 }

= E {[(1 - a,n)(F([n- ln-1])- x[n]) + a,n(y[] -x[n])]2}

- E{[(1 - an,n)(- /3s[n- 1]e[n - in- 1]) +an,nW[n]]2}

2 2= (1 - an,n)2 232a2[n - ln- 1] + 2 (2.35)

Thus, one can recursively compute the error variances with the initialization a2 [0 0] =

a 2 .In the case of stationary noise, where u 2
-= = j

2 for all n,w[0. In the case of stationary noise, where [n] w

2 = nn =2 1 - -2 2
a [nln] = anv= i - 3-2(n+l) w' (2.36)

This approximate expression, which can be verified by direct substitution into (2.35),

equals the Cramer-Rao bound derived in [5] for the case of stationary AWGN. Also
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in [5], this bound is shown experimentally to be tight at high SNR. One should note

that the Cramer-Rao bound is not a true lower bound at low SNR, since it neglects

the fact that the sequence x[n] is known a priori to lie in the interval [-1,/3- 1].

In particular, the error variance does not grow to infinity in the limit of large or2 as

suggested by (2.36).

2.3.2 Smoothing Error

In view of (2.13) and (2.5), one might try to approximate the error variance of the

smoothed estimates in the following way:

2 [ rN - 1] 2 [n + 1IN- 1] a 2[N- 1N- 1] (2.37)
/32 /02(N-1-n)

In the case of stationary AWGN, this reduces to

2 - I _1 -/ - 2 2 02[n-(N-1)]
a2 [nN - 1] 1 - a -3 (2.38)1 - 032N /

Indeed, this expression equals the Cramer-Rao bound derived in [5]. However, Pa-

padopoulos and Wornell found experimentally that this bound is not met for large

N - 1 - n. Instead, an error threshold exists which depends on the SNR. The actual

error variance as a function of N agrees with (2.38) for small N- - n until levelling

out at the error threshold.

To find a more accurate expression for the smoothing error variance, one must

account for the fact that §[n] $ s[n]. Such an expression is derived below for the case

of stationary AWGN and = 2.

For notational convenience, let £n denote the event that 9[n] s[n] and let Pb[n] =

Pr{£n}. The following simplifying assumptions allow one to derive an expression for

the error threshold which closely agrees with experimental data.

1. Assume that Si is independent of i and £j for i # j. Thus, Pb[n] = Pb, and one

can completely characterize the probability of sign errors by Pb, a steady-state

probability.
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2. Assume that when £n occurs, the estimator produces a fairly good estimate of

-x[n] rather than x[n], independent of n, i.e.,

a- = E {([nlN- 1]- x[n])2Sn) } E {-4x2[n]l n. (2.39)

Under these assumptions the smoothing error is given by

r2[nlN- 1] = E {(:[nN - 1]- x[n]) £nn+l ... N £N-2} (1 - Pb) N - -

N-2-n

+ E E {(n[nN - 1 -x[n] 'nl)2 **n+k-1n+k} (1-Pb)Pb
k=O

= (1 - Pb) N-- [N- 1IN - 1 ]-2(N-1-n)
N-2-n

+ E ui2 2k( -( Pb)Pb
k=O

= (1- ) [- - 1] - 2(N - 1- n)
2 -- 2(N-l-n)(1 - pb)( N - l - n )

+ EPb1
- 2 - Pb) (2.40)1_ 3- 2 (1-pb)'

where En is the complement of En. As expected, (2.40) reduces to the Cramer-Rao

bound (2.38) in the limit as Pb approaches zero. The only parameters needed to

obtain a more accurate expression in the case of nonzero Pb are Pb and ac2 . These are

calculated below.

Steady-State Probability of Sign Error (Pb)

The steady-state probability of sign error Pb is roughly inversely proportional to the

square root of SNR, where

SNR=_ E{x2[n]}
SNR

(2.41)

One can arrive at this conclusion in the following manner.

Under the same assumptions made in the calculation of the filtering error, one

can approximate the residual filtering errors e[nln] as Gaussian with zero mean and

variance a 2 [nln]. Empirical results in later sections of this chapter seem to agree with

the analytical results which follow from this approximation. Although (2.36) shows
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that the variance of e[nn] depends on n, for large n, i.e, in the steady-state,

2 a2 1 - 2.
Ore U l (2.42)

2Assuming that e[n] is Gaussian with zero mean and steady-state variance ae,

Pb[l] Q (I ]) (2.43)

where

Q(x) = v e-t2/2dt. (2.44)

The dependence on n in (2.43) arises from the deterministic view of x[n]. If one

chooses the stochastic view, one can obtain the average steady-state probability over

all tent map sequences parameterized by a given by integrating (2.43) over the

invariant density of x[n]. In the case where /3 = 2, x[n] is uniform on the interval

[-1,1] so by exploiting the even symmetry in (2.43), one finds that

Pb = Q (XIpx[n](x)dx

= AjQ (-) dx

f or,

er e Q(u)du, = x/Ue. (2.45)

The average signal power in this case is 1/3 so that (2.42) can be simplified to e

Gym Also, for SNR > 1 ( dB)

1/Ge 00 1 (2.46)] Q()du Q(u)du (2.46)

Thus, by substituting these approximations into (2.45), one can write the steady-state

sign error probability as

1 1 1 Ad d d240.2
Ab m ~ v/~ ~ m ~. (2.47)
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Hence, the steady-state sign error probability is approximately inversely proportional

to the square root of SNR.

Calculation of cr

The mean square error in [nlN- 1] conditioned on En is roughly inversely propor-

tional to the SNR. One can arrive at this conclusion through the following argument.

Recall, the assumption that the effect of En is to produce a fairly good estimate

of-x[n], i.e.,

2 E{4X2[nlnUE E{4x [n] 14}j. (2.48)

Note that as :- E{4x 2[n]} since sign errors are more likely to occur when x2[n] is

small than when it is large. Instead,

= J 4x2px[n] (x l En)dx, (2.49)

where Px[n] (x 1n) is the probability density of x[n] conditioned on En.

Bayes' Rule gives the desired density:

(2.50)Px[n](xIEn) = Pr{Enx[n ] = X}px[](X)Pr{E)

Equation (2.43) gives Pr{£nlx[n] = x}, and Pr{£n} is Pb by definition. Thus,

x Q ( X p [n] (x)dx.
\ael

(2.51)

Again, in the case /3 = 2 one can invoke the approximation Ue . Also, for

SNR > 1 (0 dB)

J I/O-e

0
(2.52)u 2Q(u)du - u 2 Q(u)du = 1-- 0.27.

These approximations, along with (2.47) and (2.51) imply

2 = 1 (-) 
-Pb J0 aX d
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4 Acd3 l/e 2Q(u)du-Pbf
2 1

3SNR
0.67

0SNR.67~~~~~ ~(2.53)
SNR'

Hence, the mean square error in samples where sign errors have occured is roughly

inversely proportional to the SNR.

Error Variance Threshold for the ML Estimator

As stated earlier in this chapter, there exists a lower threshold, which will be denoted

by a2h, for the error variance of the ML estimator for tent map sequences in AWGN.

One can find this threshold by taking the limit of (2.40) as (N- 1-n) goes to infinity.

Taking this limit and assuming Pb < 1, one obtains

r2 D
2 _ _ _ __I _

'th .:"I -g>b(2.54)1 - l-2'

For the case / = 2, substituting the expressions for Pb and ci from (2.47) and (2.53)

into the above expression for a2h leads to the following result:

2? 4 1 1 0.18
Uth 9 V/ (SNR) 3/ 2 (SNR) 3/ 2 (2.55)

Thus, the error variance lower threshold is inversely proportional to SNR3/2 .

2.4 Empirical Simulation Results

To test the expressions for Pb and at2h in (2.47) and (2.55), the sign error probability

and error variance threshold were empirically measured from the ML estimates of

1000 sequences of length 50 at SNRs between 0-60 dB. The initial condition x[0] for

each of the sequences was randomly generated from a uniform distribution between -1

and 1, consistent with the invariant density for the = 2 case. The noise sequences

were randomly generated from a Gaussian distribution.
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Figure 2-1: Sign Error Probability (Pb). Empirically measured data are marked with
"X". Theoretically predicted results are represented by the dotted line.
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Figure 2-2: Error Variance Threshold (aU2h). Empirically measured data are marked
with "X". Theoretically predicted results are represented by the dotted line.
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Figures 2-1 and 2-2 present the results. The dotted lines in each of the figures

correspond to (2.47) and (2.55). The empirically measured sign error probabilities are

marked with "X" in Figure 2-1 and are taken over all ensembles and times. The error

variance threshold, however, is the mean square error averaged only over the first 40

time samples. The last 10 samples were thrown away to remove the transient effects,

i.e., the decay of the error variance to the threshold. These empirically measured

variance thresholds are marked with "X" in Figure 2-2.

2.5 Comments on the Colored Gaussian Noise

Case

The extension of the preceding algorithms and analysis to the colored noise case is less

straightforward. In particular, because the y[n] are all dependent, it is not true that

[nn + m] = [nln ] for m > 0. Therefore, the estimates [nIn] are not really the signs

which should be used in the smoothing stage of the ML estimator (2.13). Instead,

the optimal estimator would use s[nN - 1]. However, if one restricts the estimates of

the s[n] to be causal, i.e., [n] [njn], then the resulting filter and smoother for the

colored Gaussian noise case have the same form as in the white noise case. One still

obtains the filtered estimates :[nln] by minimizing lejl2 in (2.23), but the Sn matrix

is given by

l( , -in1 ) n-n1 S = diag {-) -I [k] K-, diag (- 3) lI.[l]} (2.56)k-i l -- Ij

The smoothing step (2.13) remains the same. The effect of restricting the estimates

of the s[n] to be causal remains an open issue to be explored.
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Chapter 3

Tent Map Coding for the AWGN

Channel

A wide range of codes have been developed for use with communication channels

having fixed and known SNR. There are many instances, however, where such condi-

tions are not met. For instance, on a broadcast channel, SNR typically differs from

receiver to receiver so there is no single SNR figure for the system. Likewise, on a

time-selective fading channel, SNR is not fixed but rather fluctuates with time. In

still other point-to-point channels, the transmitter may not have knowledge of the

SNR even when it is fixed. When a channel code is designed for a fixed SNR that is

different from the true SNR, the resulting mismatch typically results in performance

degradation. If the true SNR is lower than expected, the distortion is higher than

expected. Conversely, if the true SNR is higher than expected, the code often does

not achieve as small a distortion as that achievable by some other code. This chapter

considers the problem of efficient coding for AWGN channels with unknown, multiple,

or variable SNRs. More specifically, this chapter explores the potential application of

the tent map for joint source-channel coding of analog, discrete-time data.

A traditional digital approach to this problem has been to quantize the source

data and encode the quantized data using some suitable channel code so that the

quantized data can be recovered with arbitrarily low probability of error. In the

absence of channel errors, then, the only distortion results from the quantization.
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w[n]

Figure 3-1: Joint Source-Channel Coding of a Uniform Source over an AWGN Channel

However, such an approach, with a finite number of quantization levels, can never

achieve arbitrarily small distortion, even when the SNR is arbitrarily large, i.e., such

approaches are "quantization error-limited" at high SNR. Thus, for channels with

unknown or variable SNR, where the proper number of quantization levels cannot be

determined, analog codes or digital-analog hybrids can be used to obtain SNR-limited

performance over a broad range of SNR.

This chapter proposes a joint source-channel code based on tent map sequences.

Exploiting results from Chapter 2, it is shown that for the AWGN channel and a

uniformly distributed source, there exist certain SNRs and bandwidth constraints

such that this code always results in a lower mean square error distortion than any

code with a finite channel alphabet size. Unlike quantization approaches, this tent

map code is not quantization error-limited at high SNR.

3.1 Problem Formulation, Coding for the AWGN

Channel

Figure 3-1 illustrates the problem considered. A source letter x0 having a uniform

density on the interval [-1, 1] is mapped into a sequence x[n] of length N, i.e., the

encoder is constrained to expand the bandwidth by a factor of N. The average power

P of x[n] is constrained the to be the same as that of an uncoded sequence, i.e.,

I N-1

P = - i x[n] = Ex} = 1/3. (3.1)
N --

n=O
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w [n]

Figure 3-2: Joint Source Channel Coding with the Symmetric Tent Map

This sequence passes through an AWGN channel where the noise win] has mean

zero and variance 2 The SNR is defined as in Chapter 2 to be the ratio of the

average signal power to the noise variance. Finally, the decoder estimates x from

y[O],. - , y[N- 1], the channel output. The distortion measure is mean square error,

E(o - x 0)2}. For simplicity, only real-valued baseband channels are considered.

Extensions to more typical complex equivalent baseband channels are straightforward.

Then, the source-channel coding problem considered is to find a code with small

distortion while keeping power and bandwidth fixed.

3.2 Tent Map Twisted Modulation and Coding

This section suggests a method of using the symmetric tent map to address the coding

problem described above. The tent map can be used to transmit data over AWGN

channels through a method which can be interpreted as a form of twisted modulation

[8]. After examining the tent map in this context, it is shown below that a twisted

modulation system based on the symmetric tent map is equivalent to a joint source-

channel code.

3.2.1 Twisted Modulation

Wozencraft and Jacobs [8] considered the transmission of data through the modulation

of a set of orthonormal waveforms. A brief explanation of some of their work is

provided below, but only enough to connect their work to the tent map coding system

considered in this chapter. For a more detailed explanation of twisted modulation

systems, the reader is encouraged to consult [8].
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Wozencraft and Jacobs considered transmitting the signal,

N-1

x[n] = E aZ(xo)[n], (3.2)
i=O

where the set {0i[n]} is a set of orthonormal sequences, and the ai(xo) represent

functions of the source letter. If x[nJ is transmitted over a stationary AWGN channel,

the receiver observes

y[n] = x[n] + w[n]. (3.3)

One can represent the sequences y[n], x[n], and w[n] as vectors using the orthonormal

set {i[n]} as a basis. Because w[n] is stationary AWGN, the noise vector using this

basis is a Gaussian random vector with covariance matrix or2, I. Using this basis, one

can represent x[n] by the vector

x = [ao(xo) a (xo) ... aN-1 (x0)]T . (3.4)

Wozencraft and Jacobs restrict the class of functions ai(xo) to those which have the

following property:

dx N- tdai(xo) 2 L
IIl dxl i tdl -dax° 2 - independent of x0, (3.5)dxo \= dxo 2

where is the usual Euclidean 2-norm. Under this constraint a differential change

in x0 leads to a proportional change in x, and the constant of proportionality is the

same for all x 0. If the a(xo) are linear functions of x0, the system is called a linear

modulation system. Otherwise, the system is called a twisted modulation system.

For example, pulse-position modulation systems are twisted modulation systems, as

explained in 8]. The i-fold iterations of the tent map, F(i)(xo), also satisfy the

constraint (3.5), and thus, may modulate the i[n] in a twisted modulation system

with ai(x0) = F(i)(x 0). Figure 3-3 shows the locus of possible signal vectors x for

a linear modulation system and for a (tent map) twisted modulation system for the

case N = 2.
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Linear Modulation Twisted Modulation

Figure 3-3: Signal Loci for Linear and Twisted Modulation Systems

The maximum likelihood receiver for such systems in stationary AWGN simply

projects the received signal vector y onto the signal locus, and maps the points on

the locus uniformly onto theinterval [-1,1]. From (3.5), the locus will have length L.

Thus, for linear modulation systems, mapping onto an interval of length 2 will scale

the noise variance by a factor of (2) . The same result applies for arbitrary twisted

modulation systems in high SNR regimes and can be derived by linearization around

x [8]. For the N-dimensional tent map twisted modulation system,

dai(xo) = d F(')(xo)
dxo dxo

d = d F (F('-)(xo))
dxo

d
= _3-d F(-)(Xo)

dxo

- (-)i. (3.6)

Therefore, in the high SNR (weak noise) regime

( 2
- xo)2} - ~~(L)2
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2

N-1 (da_(xo) 2
i=0 k dxo )

U)2

- N-1 /32i
E~i=0 -

_ 2 1 2
- r

/2N-l0 w

_ -2(N-1) 1 _ -2 (3 7)
1 -3 - 2N %'W.(37

This expression is the same as the Cramer-Rao bound discussed in Chapter 2 for

the smoothed error variance (2.38) in estimating x[O], the initial value of a tent map

sequence.

Equation (3.7) is accurate in the weak noise regime since the signal locus is linear

near x. However, as the noise power grows so does the probability that the received

vector y will be closer to a region of the signal locus which does not contain x. In

the context of Figure 3-3, this event corresponds to the event that the q0 components

of y and x have different signs. Wozencraft and Jacobs call this event a catastrophic

error. The results in Chapter 2 showed how to compute the actual error variance,

taking catastrophic errors into account. Specifically, catastrophic errors lead to a

lower threshold on the error variance. An approximation for this threshold is given

by (2.55).

3.2.2 Tent Map Coding

From the above discussion one can observe that twisted modulation systems are a

class of coding systems. Indeed, one can view the coding problem as defined in Section

3.1 as designing a generalized twisted modulation system, one where the functions

ai(xo) are not constrained by (3.5). Without the constraint (3.5), however, one would

not expect the distortion to be independent of xo.

Thus, the tent map twisted modulation system described above represents a joint

source-channel code. Specifically, the encoder maps xo onto the sequence x[n] =

F(n)(xo) where F(n)(.) is the n-fold iteration of the tent map with the parameter

/ = 2. As explained in Chapter 1, the code sequence x[n] can be interpreted as

40



representing the quantization of the source x0. The decoder for the tent map code is

the ML estimator described in Chapter 2 followed by a sampler which samples the

estimator output at n = 0, giving the ML estimate of x0 .

The results from Chapter 2 provide expressions for the distortion resulting from

tent map coding for the AWGN channel. In particular, (2.55) implies that for high

bandwidths,
0.18

Dtent SNR3 /2 (3.8)

For low bandwidths the Cramer-Rao bound, or equivalently the weak noise error

estimate, provides a good estimate for the distortion,

2~~~~~32
Dtent = ( (1; -( ) 1-2N < _ N , /3 = 2. (3.9)

In practice, Dtent is effectively the maximum of (3.8) and (3.9).

3.3 Linear Modulation Codes

Based on the earlier analysis of linear modulation and twisted modulation systems,

one can immediately compare the performance of the tent map code with any linear

modulation code, i.e., codes which involve modulating a signature sequence of length

N with the source letter x0. The simplest example of a linear modulation code is the

repetition code, in which the source letter is simply repeated N times.

The expected distortion for any linear modulation code for the AWGN channel is

_ 1/3
Dlin= aN N/3 (3.10)

N N SNR'

Comparison of (3.8) and (3.9) with (3.10) allows one to find the region in the power-

bandwidth plane where the tent map code results in lower distortion than linear

modulation codes. In particular, since (3.9) is always less than (3.10) for N > 1, the
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Figure 3-4: Tent Map Coding vs. Linear Modulation Coding. The experimentally
determined region in the power-bandwidth plane where the tent map code resulted
in lower distortion than the repetition code is marked with X's. The region where
the repetition code resulted in lower distortion is marked with O's. The dashed line
is the theoretically predicted boundary.

nontrivial condition is that (3.8) be less than (3.10). This condition is equivalent to

SNR > 0.29N 2. (3.11)

Figure 3-4 shows the region in the power-bandwidth plane where the tent map

code results in lower distortion than linear modulation codes. A source sequence of

1000 uniformly distributed random variables on the interval -1,1] was encoded using

both the tent map and repetition codes with 2 < N < 15 and 0 < SNR < 25 dB, and

the resulting distortion in the decoded sequence was measured. The dashed curve

(--) represents the theoretically predicted boundary given by (3.11). Looking at

the figure, one can see that the tent map code is better than the repetition code in

high power or low bandwidth regimes.
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Figure 3-5: Separation of Source and Channel Coding

3.4 An Information Theoretic Perspective

This section examines the tent map code in the context of what is achievable from an

information theoretic point of view and shows that there exist power and bandwidth

regimes where the tent map code results in smaller distortion than any code with a

finite channel alphabet size, e.g., an M-ary code transmitting the quantization of the

source. First, optimal coding for unknown SNR channels is considered, along with

the short-comings of M-ary coding. Next, the tent map code discussed in Section 3.2

is compared to the best possible M-ary codes. Finally, the tent map code is compared

to the best possible (digital or analog) codes.

3.4.1 Optimal Coding of a Uniform Source

In the optimal coding for transmission over a stationary AWGN channel, the separa-

tion theorem allows a two-stage cascade of the source encoder and channel encoder

without loss of optimality. Thus, the system in Figure 3-5 can perform as well as

any joint source-channel coding scheme. The source encoder is a quantizer which

represents each source letter with k bits, on average, such that k < C where C isN-

the capacity of the channel. The channel coder maps the k bits onto a sequence of

length N, denoted x[n], which meets the power and bandwidth constraints mentioned

before. When an M-ary code is used, x[n] can take one of only M possible values. Fi-

nally, yn] is the channel output. The best possible performance of such a two-stage

encoder is also the best possible performance of any joint encoding scheme. More

43



precisely, one can state the separation theorem in the following compact form:

R(D) k <NC, (3.12)

where R(D) is the rate-distortion function and C is the channel capacity. These

inequalities can be used to find the minimum possible distortion.

Rate-Distortion Function for a Uniform Source

The rate-distortion function R(D) is the minimum quantization rate needed to achieve

an expected distortion of at most D. For the quantizer in Figure 3-5, R(D) is the

minimum k such that E{(o0 - xo) 2} < D when each source letter is reconstructed

from k bits, on average. From rate-distortion theory [2],

R(D) = min I(xo; xo), (3.13)
p(oIxo):E{(o-xo)2 <D

where p(xoixo) is the conditional density of io given x0 , and I(xo; O) is the mutual

information between x0 and io. Specifically,

I(xo; o) -- h(xo) - h(xo Io), (3.14)

where h(xo) is the entropy of random variable xo, and h(xolo) is the conditional

entropy of xo given Xo.

A standard method for lower bounding I(xo; -o) in (3.14) involves defining a new

variable z = xO -o. After the derivation of the lower bound using this so-called test

channel method, an argument showing that the bound is met with equality follows.

By the distortion constraint,

E{z2} = E{(xo )2} < D. (3.15)
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Since xo is uniform on the interval [-1, 1], h(xo) in (3.14) is fixed. In particular,

h(xo) = - f pXo(X) log2p (x)dx = 1 bit. (3.16)

Thus, finding a lower bound on I(xo; o) in (3.14) only requires finding an upper

bound on h(xolio). The following steps give the desired bound.

h(xoIS.o) = h(z + So :o)

= h(zio)

< h(z)
1

< - log 2 2reD. (3.17)

The first line follows from the definition of z. The second follows from the fact that

entropy is translation invariant. The third line reflects the fact that conditioning

can only decrease entropy. Equality occurs if and only if z is independent of 0o.

The final line is true because the Gaussian density maximizes entropy subject to the

second moment constraint in (3.15). Note that the upper bound on h(xolto) given by

Equation (3.17) is met with equality if and only if there exists a p(5olxo) such that z

is Gaussian and independent of 5o. Such a density may not always exist. Regardless,

(3.17) always gives an upper bound and when combined with (3.13), (3.14), and

(3.16), gives the desired lower bound on R(D):

R(D) > 1 - log2 2reD = log2 D (3.18)
2 2 ireD'

Inverting (3.18) yields the distortion as a function of the number of bits k = R(D).

D > 2 2-2k (3.19)
7re

The above distortion bound assumes vector quantization, i.e, it is the distortion bound

when p source letters are quantized jointly with kp bits in the limit of infinitely large

p. With scalar quantization, the distortion increases by a factor of [1] so that the
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bound becomes
-2kD > 32 (3.20)

One can show that (3.20) is met with equality by considering the uniform scalar

quantization of x0 where the quantization regions are all the same size and is

chosen to be the center of the quantization region. Since x0 is uniform on the interval

[-1,1] (an interval of length 2) and there are 2 k quantization regions specified by k

bits, the length I of each quantization region is

2= (3.21)

Furthermore, the probability density of x0 conditioned on the event that x0 falls

within a given region is uniform on that region. Therefore, the expected distortion

is equal to the variance of a random variable uniformly distributed on an interval of

length . Specifically,

Ds=3(2) =3-2k. (3.22)3s= 2 § 3
Thus, (3.20) is met with equality. Since vector quantization decreases the distortion

by ', (3.19) and (3.18) are met with equality also. Thus, recalling (3.12), one can

determine that the optimal code results in a distortion of

D = 2-2 2 (2 2)-NC (3.23)
7re 7re

Note that (3.23) depends only on the channel capacity.

Optimal Coding for the Unknown SNR Channel

The capacity of an AWGN channel is well-known to be

1
CAWGN = - log 2 (1 + SNR). (3.24)2

If the SNR is known at the time of transmission, one can determine C and, thus,

determine k. However, if the SNR is variable, an optimal code must still transmit
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NC bits in the quantization of each source letter, where C varies with the SNR. Each

source letter can be represented in the following way:

X0 ++ s[0], s[], -- , s[ksNR- 1 , S[kmax- 1], (3.25)

where s[i- 1] is the ith most significant bit in quantization of x0 and kmax = NCmax

is the number of bits per source letter which can be transmitted reliably when the

SNR is SNRmax, the maximum possible SNR. Similarly, kSNR is the number of bits

per source letter which can be transmitted reliably at the actual SNR. An optimal

code must have the following two properties.

1. All of the bits in (3.25) must be recoverable from the (uncorrupted) transmitted

sequence. Otherwise, the code would be suboptimal when SNR SNRmax.

2. At the actual SNR, the ksNR most significant bits must be recoverable from the

(corrupted) transmitted sequence.

A code satisfying these properties may be difficult to find, especially if SNRmax is

infinite or unknown, and it will be shown below that when the SNRmaX is infinite,

the optimal channel code will not be purely digital (M-ary). Furthermore, even if

the SNR is known and a purely digital optimal code for that SNR exists, one can

construct a digital-analog hybrid which is more robust to uncertainties in the SNR.

Claim 1 If the SNRmax is infinite, no optimal purely digital code exists.

Proof. A purely digital code, by definition, draws from a finite alphabet of size M.

The channel capacity when the channel input is restricted to one of M levels is upper

bounded by

CM = maxI(X;Y)

-= maxH(X)-H(XIY)

< max H(X)

= log2 M (3.26)
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with equality if and only if the input can be determined from the output with no

uncertainty. Then, at most, an average of N log2 M bits can be transmitted per

source letter. But, kma, is infinite when SNRmax is infinite. Thus, since M and N are

finite, a purely digital code can not be optimal.

n

The difficulty in applying M-ary coding to channels with unknown SNR lies in

determining the proper k, the number of bits per source letter in the quantization.

The symmetric tent map provides a means to transform an M-ary code which is

optimal at some fixed SNR into a digital-analog hybrid code which sends all the

bits in the quantization of each source letter. This hybrid code is more robust to

uncertainties in the SNR. An M-ary code which is optimal at a known, fixed SNRopt

can transmit reliably, on average, the kpt most significant bits of a source letter in

N uses of the channel, where

kopt = N2 log2 (1 + SNRpt). (3.27)

One can construct a digital-analog hybrid in the following way:

1. The optimal digital code sends the first kdig = kpt(N- 1)/N bits of the quan-

tization of x0 in the first N - 1 channel uses per source letter.

2. The Nth channel use per source letter is used to send the (kdig + 1)th element

of the tent map sequence generated from x0 , i.e., x[N- 1] = F(kdig)(x 0 ). This

real number contains information about bits S[kdig], S[kdig + 1], ....

Then, one can make the following statements about the performance of this digital-

analog hybrid.

Claim 2 The digital-analog hybrid code performs better than the M-ary code with

vector quantization if the SNR is greater than (SNRopt + 1) . The digital-analog

hybrid code performs better than the M-ary code with scalar quantization if the SNR

is greater than (SNRPpt + 1).
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Proof. Since SNR > SNRopt, the hybrid code transmits the first kdig most significant

bits in the quantization of each source letter with arbitrarily low probability of error.

Then, the decoder is

o = stO] ]...skdi1](y[N- 1]), (3.28)

and the distortion is

/1 \kdig

Dhyb Crw 2

= (lAkopt(N-1)/N

2 -~~~~~

P ( 2 kopt2-kopt/N

_ 12-2k.pt 1 + SNRopt (3.29)
3 SNR '

where the last line makes use of (3.27). From (3.23), the distortion of the digital code

for SNR > SNRopt is

2di =--2koptDdig- 2 -2 -2kt (3.30)
re

Thus, the digital-analog hybrid is better than the digital code whenever SNR >

(SNRopt + 1) Z so the claim is proved. Also, if only scalar quantization is allowed, the

distortion of the digital code increases by a factor of so the hybrid code becomes6

better at SNR > SNRopt + 1.

[

Corollary 1 When the SNR is exactly SNRopt, the hybrid code is worse than the

optimal digital code, but is only worse by - 1.53 dB at high SNRopt when vector

quantization s allowed. Furthermore, when only scalar quantization is allowed, the

hybrid code is asymptotically as good as the optimal digital code at high SNRopt.

Proof. From the proof of Claim 2, when only scalar quantization of the source is

allowed and the SNR is SNRopt,

lim Dhyb = lim 1 + = 1. (3.31)
SNRopt-+oo Ddig SNRopt-+oo SNRopt
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Thus, the hybrid code is asymptotically as good as the digital code in the case of

scalar quantization. If vector quantization is allowed, the hybrid code is worse by

only ' = 1.53 dB at high SNRopt.
6

[]

Finally, the two codes can be expected to perform similarly at SNRs much lower

than SNRopt since the most significant bits are encoded with the same (digital) chan-

nel code. The distortion will be determined by how well these bits can be recovered.

3.4.2 Tent Map vs. M-ary Coding

Having seen the short comings of purely digital coding for channels with unknown

or variable SNR, one might expect that analog codes (such as the tent map code

in Section 3.2) may perform better in certain scenarios. This section compares the

expected distortion resulting from the tent map code to that of the smallest achievable

distortion using a channel code with a finite alphabet size M. For any finite M there

always exists some power and bandwidth such that the tent map code yields smaller

expected distortion. Sufficient conditions on SNR and N under which this statement

is true are derived below.

Combining the upper bound for the M-ary channel capacity (3.26) with (3.23)

yields a lower bound on the distortion of the best possible M-ary code,

DM _Ž 2 (M 2)-N. (3.32)
Dm e (3.32)7re

This bound is met with equality only at infinitely high SNR where the channel input

can be resolved with zero probability of error. Comparison of (3.8) and (3.9) with

(3.32) yields sufficient (but not necessary) conditions under which the tent map code

is guaranteed to result in smaller expected distortion than any M-ary code:

SNR > (-0.762 + 10N log 0 M2 ) dB (3.33)~~~~~~~~3. 3
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Figure 3-6: Tent Map Coding vs. M-ary Coding. Regions in power-bandwidth plane
where the tent map code results in lower expected distortion than any M-ary code.
The regions in which the tent map code results in lower distortion lie above the curves,
i.e., high SNR and low bandwidth.

and

SNR > (7.55 + 10Nlog1 o0 ) dB. (3.34)

The conditions (3.33) and (3.34) define a region in the power-bandwidth plane. In

regions corresponding to high power (SNR) and low bandwidth (N), tent map coding

results in smaller distortion than any M-ary code. The boundaries for the regions

corresponding to M = 2, M = 4, and M = 8 are plotted in Figure 3-6.

3.4.3 Distortion Bounds for the AWGN Channel

This section examines the performance of the tent map code in the context of what

is achievable by any code, digital or analog. The distortion bound (3.23) expresses

the smallest possible distortion as a function of the channel capacity, given by (3.24)

in the case of an AWGN channel. Thus, by examining how various coding strategies

constrain channel capacity, one can gain some insight into the potential performance

of such strategies.

The symmetric tent map code produces a channel input with the same density as
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the source, namely, uniform on the interval [-1, 1]. The channel capacity when the

input is constrained to have a uniform distribution is

CUNI = I(X; Y)

= h(Y)-h(YIX)

= h(Y)-h(W)

= h(Y) - log 227re 2 ,
2~~~~

= - py(y) log2 py(y)dy - log 2 27re2 (3.35)

where py(y) is the convolution of a uniform density with a Gaussian density, viz.,

(2) Q(Y )QY ) (3.36)

The distortion bounds for the unconstrained and uniform input constrained sta-

tionary AWGN channel, along with the distortion curve for the tent map code, are

plotted in Figures 3-7 and 3-8 for SNRs of 20 and 30 dB, respectively. The distortion

curves for the repetition code and the best possible binary code are included also.

For the binary code (M = 2), the exact capacity is given by

CBSC = - H(E), = Q (SNR) (3.37)

Note that the bounds for the unconstrained AWGN channel and the uniform input

constrained AWGN channel are quite close. The decrease in channel capacity result-

ing from the uniform input restriction is quite small. Thus, the uniform channel input

constraint inherent in the use of the tent map code does not limit performance to any

significant extent. Also, at high bandwidths this tent map code does not trade-off

bandwidth for smaller distortion. Papadopoulos and Wornell explain this threshold

behavior as resulting from the sensitive dependence characteristics of chaotic dynam-

ics [5]. The digital-analog hybrid code mentioned earlier partially addresses this issue,

although finding a pure tent map code or other nonlinear code which is bandwidth
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Figure 3-7: Distortion Bounds at SNR of 20 dB. The dotted (...) curve corresponds
to the unconstrained AWGN channel, and the dash-dot (- -) curve corresponds to
the uniform input constrained AWGN channel.
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Figure 3-8: Distortion Bounds at SNR of 30 dB. The dotted (...) curve corresponds
to the unconstrained AWGN channel, and the dash-dot (- - -) curve corresponds to
the uniform input constrained AWGN channel.
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scalable remains an open problem.
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Chapter 4

Deconvolution of Tent Map

Signals

Previous chapters considered channels which only added noise to the input signal.

However, dispersion in the form of convolutional distortion is often encountered as

well. These channels cause intersymbol interference (ISI) which must be removed

through a deconvolution/equalization process. This chapter deals with the removal

of ISI when chaotic signals are transmitted over unknown ISI channels. The chaotic

signal may be a signal used to probe the channel, for example, or the chaotic signal

may be the signal of interest which one wishes to recover.

Figure 4-1 illustrates a proposed structure for the estimation of a tent map se-

quence in the presence of ISI. The tent map signal x[n] is convolved with the unknown

channel impulse response h[n]. The received signal r[n] is a noisy version of the

channel output. A linear equalizer, a filter with impulse response g[n], produces an

estimate of x[n], denoted ~[n]. For reasons such as simplicity of implementation, the

r[n] Equalizer x[nl Noisen]
)3 gn] Removal >[n]

win]

Figure 4-1: Convolutional Distortion and Equalization
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equalizer is constrained to be an FIR filter. Further processing attempts to remove

residual noise from [n]. The approach taken in this thesis uses the ML estimator in

AWGN for noise removal, although this approach may be suboptimal since there is

no reason to believe that [n] is well-modeled by x[n] plus AWGN. The remainder

of this chapter explores three algorithms for choosing the filter taps of the M-tap

equalizer when the channel input is a tent map sequence of length N.

4.1 Deconvolution Algorithms

This section derives the three algorithms for selecting the equalizer taps. The first two

algorithms make explicit use of the known, deterministic structure of chaotic signals,

while the third algorithm exploits the sensitivity to initial condition characteristic of

chaos.

4.1.1 The Dynamics Matching Algorithm

This section describes an algorithm for selecting the equalizer taps based on a criteria

suggested by Isabelle [4]. Although this chapter focuses on the deconvolution of

tent map signals, the dynamics matching algorithm can be applied more generally to

sequences whose dynamics correspond to a piecewise linear map. In particular, the

algorithm can be applied whenever x[n] in Figure 4-1 has the following form:

x[n] = F(x[n- 1]), (4.1)

where

F(x) = ms(x)x + bs(x). (4.2)

Each linear region of the map is known as a symbol, and the sequence x[n] may be

represented by the sequence of symbols s[n], the sequence of regions in each of the

x[n] fall. Such a representation is known as the symbolic dynamics representation.

The m,(x) and b(~) in (4.2) represent the slope and y-intercept of the line in symbol

s. The tent map is a piecewise linear map with s = sgn(x), m-1 = 3, ml = -f, and
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bs =f- 1.

Isabelle's Criteria

The dynamics matching algorithm selects the equalizer taps

g = [[] [1] ... [M- 1]]T (4.3)

based on the dynamics matching criteria suggested by Isabelle. Isabelle has shown

that an FIR filter whose input and output both follow the same map is a simple delay

[4]. He conjectures, then, that any (IIR or FIR) LTI filter for which the input and

output maps are identical must be a simple delay. Because the channel and equalizer

in cascade act as a single LTI filter, the appropriate equalizer is the one whose output

obeys the same map as the input. Therefore, the desired equalizer produces an output

such that

:[n] = F(x[n- 1]). (4.4)

Solving (4.4) to find the equalizer taps is known as dynamics matching.

Of course, due to noise and non-invertibility of the channel, (4.4) may not be

solvable exactly. Isabelle suggests finding the least-squares solution to (4.4). In

particular, Isabelle's dynamics matching criteria is to select the g such that

N-1

= argminJ(g) = argmin E ( [n]- F( [n- 1]))2, (4.5)
g g n=l

where

M-1

i[n] = £ g[k]r[n-k] (4.6)
k=O

M-1

i[n-1] = a g[k]r[n-1-k]. (4.7)
k=O
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The Algorithm

This section derives an algorithm based on Isabelle's dynamics matching criteria

described above. Although the algorithm is not guaranteed to find the least squares

solution to (4.4), it finds a solution which meets a necessary condition on the least

squares solution to (4.4), provided the algorithm converges.

By substituting (4.6) and (4.7) into (4.4), recalling (4.2), and rearranging terms,

one can show that

M-1

g[k] (r[n - k] - mfn-,l]r[n - 1 -k]) = bs[n-1] (4.8)
k=O

1< n < N-1, (4.9)

where s[n- 1] is the symbol associated with [n- 1]. One can write (4.8) as the

matrix equation,

Rs(g)g = bs(g), (4.10)

where for 1 <i < N - 1 and 1 <j < M

[Rs]ij = r[i- (j - 1)]- ,[i-]r[i- - (j - 1)], (4.11)

[bs]i = bs,[i-l], (4.12)

[g] = g[j- 1] (4.13)

and where the vector

s = [s[0] ... s[N- 2]]T (4.14)

is a function of g through (4.6) and (4.7). If one is given an estimate of s, denoted

by , then the least squares solution to (4.10) given is

g = (R§TR)-R Tbg. (4.15)
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This solution corresponds to the minimum of the objective function

(4.16)
N-1

Jg(g) = Z (.[n]- Fg[n-l(.[n-1])),
n=1

Fs(x) = msx + b

where

(4.17)

so that F,(x) = F(x) when s = s(x). One should note that the solution defined by

(4.15) is not necessarily a global minimum of J in (4.5) since

(g, s) = (arg minJ(g),s(g)) = argmin J(g),
\g (gs):s=s(g)

(4.18)

and g minimizes Js(g) only for a particular s = §. Also, one does not know that

§ = s(gg). A necessary condition for gg = g is that

= argmin Js(go)(g).
g:s(g)=s(g§)

(4.19)

This necessary condition suggests the following iteration, which will be referred to as

the dynamics matching algorithm,

1. Guess a solution g(i1).

2. Calculate [n- 1] from (4.7) for 1 < n N- 1 to find = s(g(i-1)) and the

resulting Ra and bg.

3. Find a new solution g(i) from (4.15). Iterate between steps 2 and 3 until g(i-1) =

g(i)

If the above algorithm converges, then

(4.20)g(i) = argmin Js(g(i))(g).
g

This condition is sufficient to guarantee that g(i) meets the necessary condition

(4.19).
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A Recursive Implementation

The block dynamics matching algorithm described above produces outputs only after

receiving entire blocks of data, i.e., the entire tent map sequence. A recursive imple-

mentation of the dynamics matching algorithm is developed below which produces a

new sample of output each time a new input sample is received.

Suppose the set of taps

gN-1 = [§[0N- 1] ..--. [M- 1N -1]]T (4.21)

represents a "good" equalizer based on observation of r[O], , r[N- 1] in the sense

that it is the least squares solution to

Ri_-g = bN_, 1 (4.22)

where

§N-1 = [[00] S[1111 s[N - 2IN - 2]]T (4.23)

and where s[nlm] is the symbol corresponding to the I[n] computed from the filter

taps gin, i.e.,
M-1 

s[nlm] = symbol E [km]r[n - 1-k] . (4.24)
k=O

The recursive deconvolution problem is to refine the equalizer taps after receiving a

new data sample r[N].

The new data sample defines a new row of R and b, denoted rT and bN, i.e.,

[r']j = r[N - (j - 1)]- m[N-1N-1]r[N - 1 - (j - 1)] (4.25)

bN = bs[NIlN-11. (4.26)

Therefore, a reasonable way to refine the equalizer taps is to select the least squares
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solution to

[ TN ] g bN1= (4.27)
rN bN

SRN b§N

Equation (4.15) in turn gives the solution for the equalizer taps. One can update

(RTRg) - 1 and RTbg recursively via

RaNRT N = RN _ RN1 + rNr T (4.28)

and

R'NbgN = RTN_ bN_1 + rNbN. (4.29)

Thus, (4.28) and (4.29), along with (4.15), give the recursive implementation of the

dynamics matching algorithm. With this implementation, one needs only to store

RTNRIN (an M x M matrix) and RTNb§N (an M x 1 vector) rather than RN (an

N x M matrix). Other well-known methods to recursively solve (4.27) exist. Some

of these can be found in [3].

4.1.2 The Alternating Projections Algorithm

The alternating projections algorithm selects the equalizer taps to minimize the mean

square distance between the equalizer output and the closest tent map sequence of

length N. It performs the minimization by alternately projecting onto the set of

equalizer outputs and onto the set of tent map sequences.

If T is the set of all tent map sequences, then the channel input is in T,

Xtrue E T = {X []i = F([x]i-)}. (4.30)

The equalizer output set () is the set of all possible outputs from an M-tap equalizer

given the equalizer input r[n],

= {: = Rg, g E M}, (4.31)
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Figure 4-2: Selection Criterion of the Alternating Projections Algorithm. The goal is
to minimize the mean square distance between the equalizer output and the closest
tent map sequence.

where

[R]ij = r[i- j] (4.32)

and therefore, Rg is the convolution of r[n] and g[n].

The goal of the alternating projections algorithm is to jointly estimate the channel

input and equalizer taps such that

(, g) = arg min fix-Rglj2, (4.33)
(x,g):xET

where l1 l is the usual Euclidean 2-norm. This selection criterion is depicted in Figure

4-2.

The alternating projections algorithm iteratively performs the minimization de-

scribed above, alternating between minimization over x and over g.

1. Guess a set of equalizer taps g(i1)
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2. Find the tent map sequence closest in a least squares sense to Rg(i- l)

X(i) = arg min Ix- Rg(i-1)l (4.34)
x:xET

3. Project x(i) onto the column space of R to find g(i),

g(i) = argmin Ji) - Rgjj 2 = (RTR)lRT(i). (4.35)
g

4. Increment i and return to step 2. Continue iterating until (i) - (i-1) I < ,

where e is some termination tolerance.

This algorithm has several convenient features. First, the iterative minimization

described above converges monotonically to a local minimum, i.e., each iteration finds

a pair of sequences which are at least as close as the previous pair. The proof of this

statement is given in Section 4.2.

The second convenient feature is the ML estimator from Chapter 2 for tent map

sequences in AWGN can perform the minimization specified in step 2. Step 2 is

equivalent to finding the ML estimate of x when Rg(i-' ) is x plus AWGN. Thus, a

computationally efficient minimization routine exists.

Finally, note that the matrix inversion in step 3, the only step where the number of

computations depends cubically on the number of equalizer taps, does not need to be

performed more than once since the matrix R does not change with each iteration.

4.1.3 The Supex Algorithm

The supex algorithm, developed by Shalvi and Weinstein [6], finds the equalizer

taps when the channel input satisfies certain second and fourth-order whiteness con-

straints. For example, sequences of independent random variables are guaranteed to

satisfy these constraints. With each iteration of the supex algorithm, the impulse

response of the cascaded channel and equalizer approaches a delay. Specifically, the

largest tap of the cascaded system grows exponentially relative to all the other taps.
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Clearly, neither tent map sequences in particular, nor chaotic sequences in general,

are sequences of independent random variables since each element is a deterministic

function of the previous element. However, given the sensitivity to initial condi-

tion characteristic of chaos, one might expect that downsampling chaotic sequences

makes them more amenable to equalization using the supex algorithm. Indeed, a

downsampled tent map sequence is more white than the original sequence. Thus, a

downsampler is an approximate whitener for these sequences.

Whitening of Tent Map Sequences through Downsampling

The simplest implementation of the supex algorithm requires that x[n] satisfies certain

second and fourth-order whiteness properties. For zero-mean random variables, the

second and fourth-order cumulants are defined as

cum(xl; x2) = E{xzx2 } (4.36)

and

cum(xl;x 2;x 3;x 4) = E{xlX2X3X 4}

- cum(xl; X2 )cum(x 3; x 4)

- cum(xl; x3 )cum(x 2; x 4)

- cum(xl; 4)cum(x 2 ; X3). (4.37)

For independent random variables, these cumulants are guaranteed to be zero. For

convenience, one can define the following second and fourth-order generalized auto-

correlation functions for fourth-order stationary random processes,

C(2)[k] cum (x[n]; x[n + k]) (4.38)

and

C(4)[kl, k2, k3] _ cum (x[n]; x[n + kl]; x[n + k 2]; x[n + k 3]). (4.39)
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Then, the whiteness requirement for the supex algorithm is that

C(2)[k] = 0, k 0 (4.40)

and

C(4)[kl, k2, k3 = 0, (kl,k 2, k 3) 0 (0,0,0). (4.41)

For the case / = 2, if the initial condition x[0] is drawn from a uniform distribution

on the interval [-1, 1], sequences generated by the tent map are uncorrelated and each

x[n] has the same distribution as x[0] [5]. Thus, for these sequences

C(2)[k] = 36[k] (4.42)

as required by (4.40). Here, 6[k] is the usual unit sample function. However, the

following argument shows that (4.41) is not satisfied. Without loss of generality,

one can assume that 0 k < k2 < k 3. Then, from the definition of fourth-order

cumulant,

C(4)[k1, k 2, k 3 = E {x[n]x[n + kl]x[n + k2 ]x[n + k 3]}

- (6[kl]6[k3 -k 2] + 6[k2]6[k3] + 6[k3]) (4.43)
9

Also,

E {x[n]x[n + kl]x[n + k2]x[n + k 3]} } JxF(kl )(x)F(k2)(x)F(k3)(x)dx, (4.44)

where F(k)(x) is the k-fold composition of the symmetric tent map. The function

F(k)(x) is even for all k > 0, and F(k)(x) = x is odd for k = 0. There are three

separate cases to consider in verifying (4.41).

1. k # 0, k2 0, k3 0.

The integrand in (4.44) is odd, so the integral is zero. By (4.43),

C(4)[kl, k 2, k 3] = 0. (4.45)
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2. k = 0, k 2 0,k 3 0.

The integrand in (4.44) is even, so the integral is nonzero. Then, when k2 - k3,

it is guaranteed that

C(4)[0, k 2, k 3] 0. (4.46)

3. k = 0, k2 = 0, k 3 0.

The integrand in (4.44) is odd, so the integral is zero. By (4.43),

C(4) [0, 0, k3] = 0. (4.47)

Therefore, the tent map sequence does not satisfy the fourth-order whiteness con-

straint in Case 2.

However, the supex algorithm depends on fourth-order whiteness only to the ex-

tent that Cx(4)[k1 , k 2, k 311 < I Cx(4)[0, 0, 0] 1. Numerical calculations indicate that tent

map signals satisfy this approximate whiteness constraint except in the case where

k = 0, k2 = 1, and k 3 = 2. Table 4.1 shows normalized numerically calculated

ICx(4) [0, k2, k 3]| with k2, k 3 : 0. To calculate these cumulants, the integral in (4.44)

was numerically evaluated using the trapezoid approximation, with a trapezoid width

of 0- 4. The ratio of IC(4)[0, k2, k3]l to IC(4)[0, 0, 0][ is displayed in the table. The

values for k2 increase across rows of the table, and k3 increases down columns. For

example, the second entry in the third row is C(4) [0,2, 3]/Cx(4)[0,0,0]].

The boldface numbers in Table 4.1 correspond to fourth-order generalized auto-

correlations of the form Cx(4)[0, 2k 2, 2k3] . These cumulants are much smaller than

IC(4) [0, 0, 01]. If Xd [n] represents a downsampled by two version of x[n], i.e., Xd[n] =

x[2n], then

|C(4) [, k2, k3]| = IC.4)[0, 2k2 , 2k 3]do

<< Ic4) [o, o, o]j

= |C( [0, 0 o]

- |C(4)[O, k2, k3] I < I C(4)[O, O 0][. (4.48)
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Table 4.1: Normalized Cumulants. The table gives numerically calculated normalized

cumulants: C.,4 [Ok2,k31[C( 4) [0k2'~ ]

. [n]

Figure 4-3: Downsampling and Supex for Equalization.
processed over parallel, non-interfering channels.

Even and odd phases are

Thus, downsampling tent map sequences by two approximately whitens their fourth-

order spectra. Similar results apply for xd[n] = x[Mn], where M > 2. Therefore, the

map

x[n] = F(M)(x[n - 1]), (4.49)

generates fourth-order quasi-white sequences, so that the supex algorithm can be used

in their deconvolution.

Supex Deconvolution of Whitened Tent Map Sequences

Figure 4-3 illustrates a system using the supex algorithm for deconvolution. A down-

sampler whitens the tent map sequence x[n], separating it into even and odd phases.
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k2

1 2 3 4 5 6
1 0.1667
2 0.6250 0.0417

k3 3 0.1563 0.1563 0.0104
4 0.0391 0.0391 0.0391 0.0026
5 0.0098 0.0098 0.0098 0.0098 0.0007
6 0.0024 0.0024 0.0024 0.0024 0.0024 0.0002



The even numbered samples pass through the upper channel and the odd numbered

samples pass through the lower channel. The upper and lower channels represent two

non-interfering or decoupled channels. For example, the even and odd phases could

be sent at two different frequencies so that hi [n] and h2 [n] could be the impulse re-

sponses of two channels with non-overlapping frequency responses, the sum of which

is the frequency response of the overall channel h[n]. The supex algorithm separately

examines the two received sequences, r[n] and r 2[n], to find the equalizer filter taps,

91[n] and g2[n]. After equalizing the two phases separately, the system recombines

the two phases to obtain the estimate of the full original sequence.

4.2 Performance

This section examines the performance of the block deconvolution algorithms pre-

sented in the previous section. The recursive dynamics matching algorithm is not

discussed here, but it's performance in the context of decoding tent map encoded

data is discussed in Section 4.3. Two performance measures, intersymbol interference

and mean square error, are used to evaluate the algorithms. The effect of variables

such as noise, initialization, signal length, and channel impulse response are consid-

ered.

4.2.1 Performance Measures

Two performance measures are used to evaluate the deconvolution algorithms, inter-

symbol interference (ISI) and mean square error (MSE). ISI measures how closely the

equalizer removes the effect of the convolutional distortion caused by the channel. In

particular, if sn] = h[n] * g[ni is the impulse response of the cascaded channel and

equalizer,

ISI = E s [ -max , s[n] (4.50)MaXn S [n]

Thus, ISI is an "interference to signal ratio" where the signal is an impulse of height

max {s[n]} and the interference is the difference between this signal and sn]. ISI
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is a useful performance measure when the chaotic sequence is used for probing the

channel or training the equalizer since it measures how well the equalizer combats

convolutional distortion.

The MSE measures how closely the estimate of the signal i[n] matches the actual

signal x[n]. Specifically,

1
MSE = N Z (x[n]- x[n])2, (4.51)

Nn

where i[n] is the result of processing the equalizer output i[n] with the ML estimator

for tent map sequences in AWGN. (See Figure 4-1.) MSE is a useful performance

measure when the chaotic sequence is the signal of interest which one wishes to

recover.

4.2.2 Test Channels

The following channels are used to test the algorithms. The constants, K, in each

case are chosen so that the channel has unit energy.

* The FIR channel

HFIR(Z) = KFIR (. 4 + z -1 - 0.7z- 2 + 0.6z-3 + 0.3z 4 - 0.4z 5 + O.1z - 6) (4.52)

* The all-pole channel

Hape e(Z)- =Kaple (4.53Hape(Z) = 1 + 0.78z - 1 + 0.58z-2 - 0.04z -3 - 0.11z -4 - 0.0882z - 5 53)

* The all-pass channel

1 + 0.78z- 1 + 0.58z-2 - 0.04z 3- 0.11z- 4 - 0.0882z-5
Hapss- = Hapss -0.0882 - O.11z-1 - 0.04z- 2 + 0.58z- 3 + 0.78z- 4 + Z- 5 (4.54)

The FIR channel is the test channel, normalized to unit energy, used by Shalvi and

Weinstein [6]. The all-pole and all-pass channels are the same test channels, nor-
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malized to unit energy, used by Isabelle [4]. In all experiments testing the supex

algorithm, the same channel distorts the even and odd phases, i.e., h[n] = h2 [n] in

Figure 4-3.

4.2.3 Convergence Curves

Figures 4-4, 4-5, and 4-6 illustrate the convergence behavior of the three algorithms

for the three test channels described above. Each of the curves represents average

ISI and MSE at each iteration. White Gaussian noise at a SNR of 20 dB was added

to filtered tent map sequences of length 1024. For the supex algorithm, there were

actually two sequences of length 1024, the even and odd phases of a length 2048 tent

map sequence. Each of the three algorithms was tested on the noisy, convolutionally

distorted tent map sequences, and the ISI and MSE for 50 trials were measured. The

initial guess for the equalizer was a 16-tap filter, z - 3. Any trial with MSE < 0.1

was considered a success. Only the successful trials were kept for the algorithm with

the least successes, and the same number were kept for the other two algorithms.

For example, if the algorithm with the least number of successess was successful 45

out of the 50 trials, the top 45 trials in terms of lowest MSE were kept for each of

the algorithms. These trials were averaged together, and the results are plotted in

Figures 4-4, 4-5, and 4-6.

Because the dynamics matching and alternating projections algorithms make ex-

plicit use of the deterministic structure of the tent map sequences, one might expect

that they converge more quickly than the supex algorithm. Indeed, Figures 4-4 and

4-6 support this hypothesis in the cases of the FIR and all-pass channels. However, in

the case of the all-pole channel (Figure 4-5), the experimental data does not support

the hypothesis. The reason for this counter-intuitive result is not known at this time.

Finally, the three algorithms seem to perform most poorly on the all-pass chan-

nel. It is unclear whether this phenomenon is related to the fact that the all-pass

channel has a flat magnitude spectrum since the three algorithms are all derived and

implemented in the time domain.
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Figure 4-4: Deconvolution Performance on the FIR Channel. The solid, dashed,
and dotted curves represent the performance of the dynamics matching, alternating
projections, and supex algorithms, respectively. SNR = 20 dB. N = 1024.
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Figure 4-5: Deconvolution Performance on the All-Pole Channel. The solid, dashed,
and dotted curves represent the performance of the dynamics matching, alternating
projections, and supex algorithms, respectively. SNR = 20 dB. N = 1024.
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Figure 4-6: Deconvolution Performance on the All-Pass Channel. The solid, dashed,

and dotted curves represent the performance of the dynamics matching, alternating
projections, and supex algorithms, respectively. SNR = 20 dB. N = 1024.

4.2.4 Sequence Length Effects

Figures 4-7, 4-8, and 4-9 demonstrate the dependence of algorithm performance on

sequence length (N). As one might expect, longer sequences lead to lower ISI and

MSE, although there appears to be a lower limit on these performance measures in

the case of the dynamics matching and alternating projections algorithms.

Once again, the three algorithms were tested on 50 noisy, convolutionally dis-

torted tent map sequences at SNRs of 10, 20, and 30 dB, and sequence lengths of

100, 200,- ,1000. The same initialization as before (16-tap, -3 ) was used, and the

channel was the FIR filter used above. In this experiment, however, no trials were

discarded before averaging the ISI and MSE. The average ISI and MSE after 10 it-

erations is shown in Figures 4-7, 4-8, and 4-9 for the dynamics matching, alternating

projections, and supex algorithms, respectively.

The figures show that ISI and MSE both decrease with longer N. However, in the

case of the dynamics matching and alternating projections algorithms, the ISI and

MSE curves seem to become flat after reaching a lower limit. This phenomenon is

not very surprising in light of Chapter 2, which calculated a lower threshold for MSE

in the case where AWGN, but not convolutional distortion, was present.

Curiously, Figure 4-8 seems to imply that for some sequence lengths (200 < N <
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Figure 4-7: Effect of Sequence Length (N) on Dynamics Matching Algorithm. The
channel is the FIR channel.
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Figure 4-8: Effect of Sequence Length (N) on Alternating Projections Algorithm.
The channel is the FIR channel.
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Figure 4-9: Effect of Sequence Length (N) on Supex Algorithm. The channel is the
FIR Channel.

400) the alternating projections algorithm performs better when the SNR is 20 dB

than when the SNR is 30 dB. The reason for this anamolous result is not known at

this time.

4.2.5 Behavior in Noise

This section relates the performance of the three algorithms to the SNR. The experi-

ment was similar to the one in Subsection 4.2.4 above, except that SNRs of 0, 5, -, 40

dB and sequence lengths of 256 and 512 were used. The other parameters were the

same as in Subsection 4.2.4. Figures 4-10, 4-11, and 4-12 show the results of the

experiment.

Although higher SNRs usually correspond to lower ISI and MSE, the curve for

N=256 in Figure 4-10 again demonstrates an anamoly where the performance of the

dynamics matching algorithm is better with an SNR of 25 dB than with an SNR

between 30 and 40 dB. Recall, Figure 4-8 in Subsection 4.2.4 demonstrated this same

anamoly for the alternating projections algorithm. The curves in Subsection 4.2.4 and

in this subsection suggest that this anamolous effect occurs only for short sequence

lengths, i.e., sequences with N < 400.
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Figure 4-12: Effect of Noise on Supex Algorithm. The channel is the FIR Channel.

4.2.6 Initialization and Convergence

An important issue in considering the performance of an iterative algorithm is the

question of whether the algorithm will converge under a given initialization and

whether it converges to the correct solution. This subsection examines the conver-

gence of the three deconvolution algorithms and describes the effect of initialization

on each.

Dynamics Matching and Local Minima

As stated in Subsection 4.1.1, the dynamics matching algorithm converges to the

global minimum of Jg(g) rather than the global minimum of the ultimate objective

function J(g). Since s(g) = s(g + d) if 6 is chosen small enough, the global minimum

of J(g) is actually a local minimum of J(g). However, this objective function has

several local minima, in general. Figure 4-13 illustrates this point.

Figure 4-13 is a plot of J(g) when the equalizer is a 2-tap FIR filter, the channel

has only a single pole at z = -0.5, and there is no noise. Note that the globally

minimum point A = [1 0 .5 ]T is not the only local minimum point. Thus, the dynamics

matching algorithm is not guaranteed to converge to the global minimum of J(g).
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Figure 4-13: The Dynamics Matching Objective Function
The channel has only a single pole at z = -0.5, no noise.

J(g) for 2-tap Equalizer.

Alternating Projections and Non-convexity

The iterative minimization in the alternating projections algorithm converges to a

global minimum if both the equalizer output set () and the set of tent map sequences

(T) are convex. However, T is not convex. One can, however, show that the algorithm

converges monotonically to a local minimum.

Claim 3 The alternating projections algorithm converges monotonically to a local

minimum of lix - RgJl2 .

Proof. Step 2 of the alternating projections algorithm implies that

xk(i) - Rg(i-) 112 < lix - Rg(i-1) 112, Vx E T. (4.55)

Step 3 implies that

I(i) - Rgi)I112 < I (i) - Rgll 2 , Vg. (4.56)

Thus,

i(i-l) _ Rg(j-) 112 > IlI(~)-Ra(-)1 12

> Iikn) - Rg() 112
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Hence, Jj - Rill2 is monotonically non-increasing with each iteration.

Since 11 112 > 0, eventually {R(i) - Rg(-1 )112 =- lkx(i)- Rg(i)l2. Then, since 9(i)

uniquely minimizes [[.(i) - Rg[12, one can conclude that g(i) = g(i-). Therefore, the

algorithm converges to some (, g) where

l[- R [2 < ljx - Rgl 2, Vx E T. (4.58)

and

R- RgI12 < fl l- Rgll 2, Vg. (4.59)

Therefore, the gradient of lix- RgjI2 is zero at (, g), i.e., the algorithm converges

monotonically to a local minimum of ix - Rgj12.

[]

Supex

When the channel input is a sequence of random variables satisfying the second and

fourth order whiteness constraints (4.40) and (4.41), the impulse response of the

cascaded channel and equalizer approaches a delay with each iteration of the supex

algorithm, regardless of the initialization [6]. Hence, the ISI should decrease with

each iteration. However, when the supex algorithm was used on tent map sequences,

there were many instances where the ISI did not decrease with each iteration, and

the supex algorithm did not yield a "good" equalizer. Apparently, the approximate

whitening performed by the downsampler is not sufficient in some cases.

4.3 Coding for the ISI Channel

Slight modifications to the deconvolution algorithms in this chapter yield decoding

algorithms for tent map encoded data which has been transmitted over an unknown

ISI channel with AWGN. In particular, suppose xo[0], xo[1], --- , xo[L-1] is a sequence

of independent random variables uniformly distributed on the interval [-1,1] repre-
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senting the source data. The encoded sequence x[n] is a concatenation of L length-N

sequences, each of which corresponds to one of the xo[k]. Formally,

L-1 (k+l)N-1

x[n] = E E F(n-kN)(xo[k])6[n-1], (4.60)
k=O =kN

where F (.) is the n-fold composition of the symmetric tent map. The decoder for

such sequences consists of the equalizer-noise removal structure in Figure 4-1 followed

by a sampler which samples at integer multiples of N. These are the samples of ~[n]

that correspond to the source data xo[k], and any delay in the cascaded channel-

equalizer system is assumed to be known so that one knows the points at which to

sample.

4.3.1 Decoding Algorithms

The algorithms for choosing the equalizer taps when the signals have the form (4.60)

are very similar to the deconvolution algorithms from earlier parts in this chapter.

The modifications which are needed are given below.

Dynamics Matching Decoding

Concatenated tent map sequences of the form given by (4.60) satisfy (4.1) for all

n 4 kN, where k is an integer. Thus, the only required modification to the block

dynamics matching algorithm presented in Subsection 4.1.1 is to remove the rows of

the matrix Rs which correspond to n = kN. In the recursive implementation, the

recursion (4.28) and (4.29) occurs only when the new data does not correspond to

these removed rows. The rest of the algorithms remain the same.

Alternating Projections Decoding

To use the alternating projections algorithm for concatenated tent map sequences, one

needs only to replace the set of tent map sequences () with the set of concatenated

tent map sequences (Tcat), the set of all sequences of the form (4.60). Then, to find

79



the x(i) in Tcat which minimizes lIx - Rg(- 1 ) 112 (Step 2 in the alternating projections

algorithm), one must parse Rg(i- l) into L sequences of length N and filter and smooth

the individual parsed sequences with the ML-AWGN estimator from Chapter 2.

Supex Decoding

The supex algorithm works on any sequence satisfying the second and fourth order

cumulant whiteness constraints (4.40) and (4.41). Downsampled concatenated tent

map sequences approximately satisfy the whiteness constraints at least as well as

single tent map sequences. Thus, the supex algorithm with downsampling discussed

earlier requires no modification to work on concatenated tent map sequences.

4.3.2 Simulation Results

The section presents the experimental results when the tent map code was used in

the transmission of a uniform source over an ISI channel with AWGN noise.

Block Decoding

The three block decoding algorithms discussed above were tested on a source data se-

quence of 1024 independent, identically distributed (IID) random variables uniformly

distributed on the interval [-1, 1]. Each of these variables was mapped onto a tent

map sequence of length N, and L such sequences were concatenated together to form

a block of length NL = 1024. (For the supex algorithm, L was chosen to make

NL = 2048 so that each phase had length 1024 after downsampling.) Each algorithm

was run on all of the blocks, and the average ISI across all blocks was calculated, as

was the mean square error distortion (D) in estimating the 1024 source data vari-

ables. The performance of the supex algorithm on uncoded source sequences serves

as an arbitrary but useful baseline. The improvement in ISI and distortion over this

baseline is shown in Figures 4-14 and 4-15, respectively. The SNR and N were chosen

to correspond to points in the power-bandwidth plane where tent map coding beats

repetition coding for transmission over the AWGN (no ISI) channel. (See Figure 3-4.)
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If one quickly glances only at Figure 4-14, one might conclude that tent map

coding offers only moderate improvement in residual ISI over the baseline of using

the supex algorithm on an uncoded sequence. Indeed, one would expect zero ISI gain

for the case N = 2 when supex decoding is used since the even and odd phases are

in fact IID sequences. However, if one examines Figure 4-15, one will notice that

tent map coding offers substantial improvement in minimizing distortion over the

baseline case, especially if dynamics matching or alternating projections decoding is

used. Thus, if one interprets residual ISI as a kind of noise, one could say that just

as tent map coding can reduce distortion caused by AWGN, it can reduce "residual

ISI noise" as well. Furthermore, that the gain in distortion reduction increases with

SNR, even at fairly high SNR, suggests that the results demonstrating the superiority

of tent map coding to M-ary coding at high power in the AWGN channel case may

also apply to the ISI channel case.

Recursive Dynamics Matching Decoding

To test the performance of the recursive dynamics matching algorithm on concate-

nated tent map sequences, an IID sequence of 1024 random variables uniformly dis-

tributed on the interval [-1, 1] was encoded onto 1024 concatenated tent map se-

quences of length 4. The concatenated sequences were filtered by the FIR channel

used in previous sections and noise at an SNR of 20 dB was added. Recall from

Chapter 3 that for N = 4 and SNR = 20 dB the tent map code beats any linear

modulation code and any code with a binary channel alphabet.

Note that the recursion defined by Equations (4.28) and (4.29) can only begin

after R1 has more rows than columns. (This condition is necessary for RsTRg to be

invertible.) Thus, to initialize the algorithm, the (non-recursive) dynamics matching

algorithm was run on a distorted tent map sequence of length 2M, where M was the

number of equalizer taps. The resulting R 2M_, and g2M-1 were used to initialize the

recursive algorithm.

Figure 4-16 shows the performance, measured in terms of ISI, of the recursive

dynamics matching algorithm on the concatenated tent map sequence. Note the
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Figure 4-16: Performance of the Recursive Dynamics Matching Algorithm. N = 4,

SNR = 2O dB.

improvement in ISI over time. For comparison, in the experiment used to generate

Figure 4-14 when N = 4 and SNR = 20 dB, the ISI for the block dynamics matching

algorithm is 0.0060. The ISI after 1024 samples (n = 1023) for the recursive algorithm

is 0.0073.
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Chapter 5

The Multiple Access Channel

In some communications applications, such as in wireless communications, many users

send messages over the same channel. Such a channel is called a multiple access chan-

nel, and one may view any particular user's message as multiple access interference

'which hinders the recovery of some other user's message. The receiver for these chan-

nels observes the superposition of all the users' messages and must be able to separate

them to obtain the message or messages of interest. Therefore, if one wishes to use

chaotic signals in a communications context, it is helpful to have algorithms for their

estimation in the presence of multiple access interference. Although the work in this

chapter has been motivated by the communications applications mentioned above, it

should be emphasized that signal separation algorithms may be useful in a variety of

other contexts as well. For example, in a remote sensing context, the superimposed

signals may represent signals from multiple objects or targets.

This chapter considers the separation of superimposed tent map sequences. The

maximum likelihood estimator for the joint estimation of tent map sequences that

have been transmitted synchronously over a multiple access channel with additive

white Gaussian noise is developed. Such an estimator could be a decoder for tent

map encoded data, for example.
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5.1 Problem Formulation

The problem considered is the following: one observes the superposition of m tent

map sequences of length N in AWGN,

m

y[k] - Zxi[k] + w[k], k=O,..., N -1 (5.1)
i=1

Kw,~,, = diag(02 a2[ 0,.., o*[N-l])

and wishes to obtain estimates i[k] that are optimal under the maximum likeli-

hood criterion. The reader should note that this problem considers only perfectly

synchronized signals with uniform amplitudes. The asynchronous case with multiple

amplitudes is reserved for future work.

For the same reasons as in Chapter 2, one may decompose the ML estimator into

a filtering stage followed by a smoothing stage, and in the filtering stage, one may

perform the maximization of the likelihood function over the signs separately from

the maximization over the xi[n]. Specifically,

{:ri[nln]}i = argmaxlnp(yn{§i[O : n- ]}i,x[n]), (5.2)
{x i[n]}j

where {.}i denotes a set whose elements are indexed by i, e.g.,

{x[n]}i = {x[n],X2[n],- -,.[n]}

{si [0: B-1] }i = {Sl [0 :T,--1] ,', S[0 :B--1] },

and where

si[k: n] = [si[k] ... si[n]]T (5.3)

yn = [y[O] --. y[n]] (5.4)
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Then, the ML filtering problem reduces to the following minimization,

n 1
Jii[njn]}i = argmin E 2

{xj[nj~i k=O wt[k]
(5.5)

m2M ~2y[k] EFsitk:n _I](xi[n=)Z=o

As in the single-user case (Chapter 2), once this solution is obtained, one can proceed

forward through the data since

si[n] = sgn i[nlIn].

After filtering, one can smooth the estimates via

Xi[nN- 1] = F(n-(N-1)) (i[N
§i[n:N-2]

- 1IN- 1]).

5.2 Estimator Derivation

The minimization of (5.5) is facilitated by introducing the following auxiliary function:

F{s,...,,m}(Y) (S1 + 2 + -- + Sm )(, - 1) - Oy, Si = ±41. (5.8)

One can also denote the k-fold iteration of this function as

(k)- 
S1d}i,{S2i,},,{ Ski}i (Y) F{s} o/0_ 0 Fo.-.o} (y) (5.9)

This auxiliary function is related to the tent map through the following two identities:

m

= E [( - 1) - Oxi]
i=1
m

= ZSi [( - 1) - six]
i=1
m

= ZsiF (xi)
i=1
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(5.6)

(5.7)

M
P{si} Xi2



and

m m - 1 -b
a- sF(- ')(bi) = a- Es'si ·

i=O i=O 3

= - E sisi (3-1)- a- sisibi
==O -3[{ii ()i=O

= I b (a) - Z(s'si)bi]
- I~~2i= (5.11)

Thus, the function F{Si}, () connects the sum of tent map sequences at a given time

to a combination of their sums and differences at some later time. In particular, by

repeatedly applying the identity (5.11), one obtains

m
F(k-n)

y[k] - F [] (xi n])
i--0

Therefore, the minimization (5.5) can be written as

n

{xi[nln]) i = argminE
{xi[n]}i =

m n-1

-E H
i=l l=k

( 1 ) [ {y][k]} k [k])
f2(n-k).2 - k (.3

~[k] _ t~ij,{j r,,k± ]} .. ,%Ik]} (
2

9i [1] xi In] , ~ ~~~~~(5.13)

which is equivalent to minimizing ell2 = eTSne in

(n)-I

F{SZo]},,l~o sIl }~,-.-,(I,%7 SI~l), ®

{I'[LiMl= ] 111 1=0 s,[t]}i-(n-1)

Fsi[n-l]ji(y[n - 1])

y[n]

n-1
lo §1[ ]

fl-l ~[/]

1[n- 1]

1

n-1

. -1g

... 1

A
(5.14)
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with S, the same as in Chapter 2, i.e.,

Sn = diag(On, Son , sn,n), (5.15)

where
_ 1

Si,n = d"" ' (5.16)- 032(n-i).2 (.6

Therefore, the ML estimates {[nn]}i are the elements of the vector

x[nin] = ( T SnA)-1A T Sn. (5.17)

This solution has a similar form to the single user solution (2.26). In the single user

case, one uses F (-) to transform noisy observations of x[k] into estimates of x[n] which

are linearly combined to form i[nIn]. In the multiple user case, one uses F{ij)(.) to

transform noisy observations of the sums of {xj[k]}i into estimates of the sums and

differences of {xi[n]}i which.are combined to form {ii[njn]}i.

One complication in the multiuser case that does not occur in the single user case,

though, is that (ATSnAk)- exists only when A has linearly independent columns. In

the single user case A is a single column vector 1, so this condition is always met. In

the m = 2 case the columns of A are independent as long as 1 [0: n-1] §2 [: n - 1].

One way to guarantee this condition in a tent map coding scenario, for example, is to

set s[0] s2[0] and to encode the source data in the second sample of each tent map

sequence instead of the first. The signal sequences are generated with both backward

and forward iteration of the tent map. Specifically, if xl and x2 are the two source

letters,

F( - ' ) n x 
{xi[n]}i = J F~o(i) n (5.18)

F(n-1) (xi), n~ > 

One could presumably use a similar strategy for m > 2, i.e.,

{Xi[n]}i = si[O:/b-l](Xi), n < lb (5.19)
F(n-lb) (Xi), n > lb,
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although the best back propagation signs {si[0: lb - 1]}i and minimum back iteration

length lb are not known at this time. Alternatively, one might avoid these issues

by developing estimation algorithms for the case when A does not have linearly

independent columns. In this case there are many x[nln ] that minimize 1lell12 in

(5.14), so one would have to develop other criteria for selecting one of the minimizing

solutions.

5.3 Error Analysis

One can compute the Cramer-Rao bound for the error variance on the filtered esti-

mates {xi[nln]}i by considering the observations to be a random vector y, the sum

of a vector function of the unknown parameters {xi[n]}i and a Gaussian noise vector

W,

y = f(x) + w, (5.20)

where the ith element of each vector is

yi = [i]
m

i = F[i 1 (Xk[n]),
k=l

Wi = Or2,' 
Wi = w[i], aw[i] =

for i = 0,.. , n. The Cramer-Rao bounds for the error variances are given by the

diagonal elements of the inverse of the Fisher Information matrix

IxY= E { Ia np(ylx)] [aa Inp(ylx)] (5.21)

In this case,
&9 (y _f) af,

- lnp(ylx) = ( - fi(5.22)
19X/ 0'? '9X'i=O Ox2'

where
a i _(_ )i-n I Skl.(

O = (_13) f~ifl Sk[l]. (5.23)
OXk l i

90



Then, the elements the Fisher Information matrix are

n (k -k) ak (l- A) afl1,Yixyi =EE 2 _X2
L^XyzJ -k=O , 1 =0 aXj|

= E WkW &f ak &fl

n Ifk 9fk

k-O k X Xj

= aTSnaj, (5.24)

where ai is the ith column of the matrix A with the estimates of the signs si[l] replaced

by the actual signs si[l]. Therefore, if A denotes the matrix whose ith column is a,

Ixy = ATSnA, (5.25)

and the Cramer-Rao bounds on the error variances are

Kj_ > (ATSnA). (5.26)

One may also arrive at this expression by making the high SNR approximation invoked

in the error analysis of Chapter 2, namely that {§i[0O : n- 1]} {si[0O n- 1]}i.

Under this approximation A = A and the solution to (5.14) which minimizes eTSne

is unbiased and has a covariance matrix

E {(x - x)( - x)T} = (ATSnA) - l (5.27)

since K,,ee = Sn 1.

Example: Two users with stationary AWGN and > /2.

This example examines the case where m = 2, r2 = a 2 , and > . Then, the
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Fisher Information matrix (5.25) becomes

IX~ [ := (5.28)
Lb a ~,

where
1 _-/3-2n

a= aTSai = + 2n (5.29)
21

and

b= aTSa 2

-1 + , [al]k[a2]k

k=O
n-1

E '32(n-k)
k=O

= 1- 2 >0, > A2. (5.30)

The Cramer-Rao bound matrix is the inverse of the Fisher Information matrix,

1 a2
IXY = a 1 (b)2 (5.31)xy

The diagonal entries of this matrix are lower bounds on the error variances of 1[nIn]

and 52[nin]. These are minimized at n = oo when a is maximum and b is minimum,

a < 2 1 (5.32)

b>2- > 1-2, -2 . (5.33)
a

Then,

var {;i[ntn]} -. (5.34)

For the case when fi = 2, therefore, the minimum possible error variance after filtering

is equal to the noise variance. This example also illustrates that Ixy depends on the
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data x since the tightness of the lower bound on b (5.30) depends on how unalike al

and a 2 are. Specifically, the bound assumes that each entry of a, is the opposite of

the corresponding entry of a 2 , except for the last entry, which is always equal to 1 for

both.

[]

5.4 Recursive Estimation

Based on the results of Chapter 2 and their close similarity to the results in this

chapter, one might conjecture that a recursive form of the ML estimator exists for

the multiple user case, just as it does for the single user case. This conjecture is made

even more plausible if one recalls that xi[n- 1] represents the state at time n- of

the dynamic system generating the ith tent map sequence and is all that is needed to

predict xi[n]. Furthermore, the optimal estimate ii[n - 1 1n- 1] contains everything

in {y[O],.- , y[n - 1]} that is relevant to estimating xi[n- 1]. Therefore, since all the

noise samples are independent, it appears reasonable to assume that i[n- 1 In- 1]

contains everything in {y[O], -, y[n- 1]} that is relevant to estimating ii[n].

Motivated by the above conjecture, this section derives a recursive filter for the

multiple access channel in the two user (m = 2) case. Specifically, the estimator is

given the unbiased estimates l[n- 1In- 1] and 2[n- 1in- 1], their covariance

matrix

Kj,[n- 1] = -1(5.35)
L a12[n -1] U2[n -]J 

and an observation

y[n] = xl[n] + x 2[n] + w[n] (5.36)

with noise variance ,2. Based on this information, the estimator finds iix[nln] and

:x2 [nln]. It is unclear whether the recursive filter derived below yields the same esti-

mates as the optimal ML filter (5.17).
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5.4.1 Recursive Filter

The strategy of the estimator is the following:

1. Use Jl[n- 1in - 1] and i 2 [n- lin- 1] to estimate the sum and difference of

x1 [n] and x2[n] and calculate the uncertainty in these estimates.

2. Combine the estimates from step 1 with the observation y[n] to obtain :[nln]

and :X2 [njn].

In the first step one could also estimate x[n] and x2 [n] instead of their sum and

difference, but the estimates of the sum and difference have uncorrelated errors, pro-

viding a diagonal covariance matrix for step 2. The best estimate of the sum and

difference is

X1 [nn - 1] ;2[nn- 1] = F 1(1 1[n - 1n - 1]) F(x2[n - n - 1 ]), (5.37)

where si = sgn ii[n- 1n - 1]. If Ai denotes the estimation error in ii[n - n - 1]

and e and e2 denote the estimation error in the sum and difference, respectively,

el = F,(.Ii[n- ln-1]) +Fs2 (- 2[n- Iln- 1]) - (xl[n] +X 2[n])

/ -i-/Sl(Xl[n-1] + A1) +/-I-,s2(X2[n-1] + A2)-xl[n]-X2[n]

= -/(slAl + s2 A 2), (5.38)

where the approximation is the usual high SNR approximation si Si. Similarly,

e2 -,3(slAil - s2A 2). (5.39)

Since the estimates ii [n- 1 In - 1] are assumed unbiased, e and e2 have zero mean.

The covariance matrix of the Ai is Ki [n- 1], so

E{e } = 2)32(or[n- 1] + sls2 cr12 [n- 1]) Kl[n], (5.40)

E{e2} = 2,32 (o.[n- 1]- s 1s 2c 12 [n- 1]) K 2[n], (5.41)
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E{eIe2} = 0.

The uncertainty in the observation y[n] is, of course,

E{w2 [n]} = 2 K 3 [n]

Therefore, step 2 involves solving the matrix equation

±l[nln- 1] + x 2 [ni n-

£i[nln- 1]- 2[nln-

y[n]
y

1] 1 1 el

1] = 1 -1 x[nln]+ e2

1 1 w[n]
_ J ~ J ~ ·- 

A e

Kee =

K 1 [n] 0 0o

o K 2[n] 0

0 0 K 3[n]

(5.45)

A natural quantity to minimize here is ell2 = eTK-le, and the minimizing solution

is

x[nln] = (ATKe-A) lATK-ly (5.46)

or

1

xI[nn] = i K ] 1 ([nn- + 
1 1

K1 [n] + K3 [n]
1

+ ([nln- 1] - 2[nln- 1]),

x2lln]
1

2 1 1 ( [ln- 

2K- + n] K3 [n]
-2 ([nln - 1] -x2[fl

1] + x 2[nln-1]) +

- 1]).

1
K3 [n] y[]

1 +
Ki [n] K3 [n]

(5.47)

1 
K3[n] " [n]

1 + 1KIfn] K 3 [n]J

(5.48)
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5.4.2 Covariance Matrix Updating

To keep the recursion going, one needs to update the covariance matrix KE [n], which

will be used to estimate xi[n + 11n + 1]. From (5.47) and (5.48), the :i[nln] are

unbiased. Since the elements of e are all uncorrelated,

1 _ K~n1 2 /2
a[n] =-var{i[njln]} = I [] K + (1K3[]) K 3 + K 2]

Ki [nK K3[n3 Ki [n + K3

(5.49)

and

_ _ 2 / 1 2q ,1

(72 1[] 1 K + ( I 1 K3 -K2 . (550)
K= [n] + K3 [n] K1[n] K3

Finally, for completeness,

K;-j [n] ~~~~~~~~~~(5.51)Ki[n]= ['[n] 2[n] 3 (5.51)
0o12[n] a[n]

5.5 Simulation Results

To demonstrate the dependence of estimator performance on the actual sequences,

the mean square filtering and smoothing error were empirically measured from the

ML estimates for two different cases. One of the signals, x 1 [n], was the same for both

cases. In the first case, x2[n] was chosen so that its signs alternated between being

the same as and different from the signs of x 1[n], i.e., s[n]s2[n] = ()n - l . In the

second case, x2[n] was chosen so that its signs were as close as possible to being the

same as those of x 1 [n] while still satisfying the requirement that A have full column

rank, i.e., s1[n] = s2[n] for n $/ 0, but s[0] V s2 [0]. Figures 5-1 and 5-2 show the

averaged results of 100 Monte Carlo simulations for each of the two cases. The noise

variance in each case was 2, which corresponds to an SNR of 20 dB, if one defines

the signal power to be the sum of the powers of x 1 [n] and x 2 [n].

As can be seen from the figures, the two cases lead to large differences in per-
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Figure 5-1: Mean Square Error after Filtering for the Two-User Multiple Access
Channel. The first user's signal is the same for the two cases shown. The curve
marked "Alt" represents the case where the signs of the second user's signal alternates
between being the same as and different from the first's. The curve marked "Sim"
represents the case where the signs of both users' signals are the same, except for the
first sign.
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a) 10-2
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Figure 5-2: Mean Square Error
Channel. "Alt" and "Sim" have

after Smoothing for the Two-User Multiple Access
the same meaning as in Figure 5-1.
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formance. The curve marked "Sim" corresponds to a worst case situation, one in

which the cross-correlation b (See the example on page 91.) is maximum, given the

constraint that s[0] 4 s2[0]. Indeed, in the limit of large n, b approaches a in this

case and the Fisher Information matrix becomes singular. Thus, the mean square

filtering error (Figure 5-1) for this case increases with n. The curve marked "Alt"

corresponds to a better case, i.e., lower cross-correlation, but the lower bound on b

(5.30) is still not met. It is unclear whether one can construct an example of a case

that meets the bound (5.30) for all n. The reader should recall that b represents the

cross-correlation of the a, and that the entries of the a, correspond to running prod-

ucts of the si[n], not to the si[n] themselves. In any event, the results in this chapter

are preliminary, and their implications about the potential for chaotic systems in

multiple access communications remains an area to be explored in future work.
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Chapter 6

Conclusion

Chaotic systems have many potential communication applications. In many of these

applications, however, the chaotic signals of interest need to be recovered from cor-

rupted signals which have undergone various forms of distortion. To this end, the

work in this thesis involves developing estimation algorithms for chaotic sequences in

the presence of additive Gaussian noise, intersymbol interference, and multiple access

interference. In addition to developing these algorithms, which may be applicable in

many different contexts, this thesis also contains more thorough investigations into

the specific application of chaotic systems for modulation and coding of analog source

data. Indeed, the applications and algorithms complement each other in the sense

that the applications motivate the development of many of the algorithms, while the

existence of robust, efficient algorithms suggest which applications may be feasible.

Much of the thesis focuses on the particular chaotic system whose state evolution

is governed by the symmetric tent map. As is demonstrated by this thesis, such

systems are particularly amenable to analysis since the piecewise linearity of the map

can be exploited in state estimation and in performance analysis. Furthermore, in

the / = 2 case tent map sequences have a natural interpretation as a quantization of

the initial state x[O].

A major portion of the thesis is devoted to examining tent map sequences and

the additive Gaussian noise channel. From the perspective of developing estimation

algorithms, Chapter 2 extends the work in [5] to derive a recursive algorithm, which
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is optimal under the maximum likelihood criterion, for estimating the state variable

x[n] in the presence of nonstationary additive white Gaussian noise. The development

of this algorithm also suggests a reasonable estimator for the colored Gaussian noise

case as well. The performance of this ML estimator is evaluated both analytically

and empirically, the main results being that the estimator is asymptotically unbiased

at high SNR and has an error variance which decays exponentially with the sequence

length before levelling out at a lower threshold.

The existence and performance of the ML state estimator in AWGN suggests a

coding or modulation system in which the source data is encoded into the initial

state of the chaotic system. This coding system is the subject of Chapter 3, which

interprets the system as a twisted modulation system and examines some information

theoretic aspects related to its performance. The results in this chapter, although

preliminary, demonstrate the potential applicability of chaotic systems, in particular

systems whose dynamics correspond to the tent map, to the coding of analog sources.

Specifically, the tent map coding system proposed in Chapter 3 outperforms linear

modulation coding and optimal M-ary digital coding at high SNR and low bandwidth

and is particularly attractive for scenarios in which the SNR is variable or unknown

or in which there are multiple SNRs. Hybrid codes combining the tent map and

digital codes are also mentioned in this chapter, the exploration of which represents

a possible direction of future research.

Motivated by positive results for the AWGN channel, the remainder of the thesis

explores the transmission of chaotic signals over the intersymbol interference and

multiple access channels. From the perspective of algorithm development, Chapter 4

and Chapter 5 develop state estimation algorithms for tent map sequences which

have been corrupted by intersymbol interference and multiple access interference,

respectively.

In the ISI case, Chapter 4 presents three algorithms, two of which make explicit

use of the deterministic structure of chaotic systems and one of which exploits the

sensitivity to initial condition characteristic of chaos. The performance of these al-

gorithms is evaluated empirically, considering the effects of sequence length, noise,
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and initialization. Although the empirical results provide some general insight into

the performance of the algorithms, more work, either empirical or analytical, could

provide more thorough characterization of performance and possibly lead to better al-

gorithms. From the applications perspective, Chapter 4 also develops decoders based

on the three state estimation algorithms and empirically measures the performance

of tent map coding for transmission over the ISI channel.

In the multiple access case, the state estimation algorithm in Chapter 5 is op-

timal under the maximum likelihood criterion, although the synchronous, uniform

amplitude scenario considered is a simplified one. The performance of this algorithm

is evaluated both analytically and empirically, including a derivation of the Cramer-

Rao bound on error variance. The performance analysis indicates that the estimator

is asymptotically unbiased at high SNR and has a variance which depends on the

particular tent map sequences. The implication of this dependence in the context of

coding applications is not well understood at this point and represents a potentially

important direction for future research. Finally, a recursive estimator for the two-user

multiple access channel is also developed. It is not known if this estimator is optimal

under any meaningful criterion, and this question is also left for future investigations.

Thus, this thesis contains a variety of algorithms for state estimation in the pres-

ence of various forms of corruption. These algorithms are potentially useful in many

signal modeling and signal synthesis applications, particularly those relating to com-

munication. The application of chaotic systems to coding and modulation is specif-

ically explored, and the results are promising, indicating that although many open

questions remain, future work in this area could potentially prove fruitful.
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