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Abstract

In a variety of applications, there is a need to authenticate a source that may have been de-
graded, transformed, edited, or otherwise modified, either intentionally or unintentionally. We
develop a formulation of this problem, and identify and interpret the associated information-
theoretic performance limits. The results are illustrated through application to binary sources
with Hamming distortion measures, and to Gaussian sources with quadratic distortion measures.
In each case, the associated systems are shown to perform substantially better than frequently
proposed approaches based on combinations of source coding and information embedding tech-
niques. Finally, efficient layered authentication systems are introduced as a natural extension
of the basic results, and illustrated in the Gaussian-quadratic case.

Index Terms—multimedia, authentication, tamper-proofing, traitor-tracing, transaction-tracking,
digital watermarking, anti-spoofing, digital signatures, information embedding, rate-distortion
coding, coding with side information

1 Introduction

In traditional authentication problems, the goal is to determine whether a received message is an

exact replica of what was sent. Digital signature techniques [1] are a natural tool for addressing such

problems. However, in many emerging applications the message may be an audio or video waveform,

and before being presented to a decoder the waveform may experience any of a variety of possible

perturbations, including, for example, degradation due to noise or compression; transformation

by filtering, resampling, or transcoding; or editing to annotate, enhance, or otherwise modify

the waveform. Moreover, such perturbations may be intentional or unintentional, and benign or

malicious. Methods for reliable authentication from such perturbed data are important as well.
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One motivating example involves the authentication of drivers’ licenses. In such applications,

one is interested in marking or otherwise modifying the pixels of the photograph to enable a decoder

to determine whether — even in the presence of smudges, scratches or other artifacts of routine

handling — the photograph is authentic and not a forgery. Such an encoding process can be viewed

as a generalization of the current practice of imprinting holograms for such purposes. Frequently,

one is constrained to keep the encoding distortion small, i.e., to choose the added markings to be

effectively imperceptible so that the marked photograph can be useful even without an appropriate

decoder (this is desirable e.g., for legacy systems). When a decoder is available, another goal is to

use the added markings to produce a high fidelity authentic reconstruction.

An increasingly important class of motivating scenarios includes authenticatible content editing

and transaction-tracking applications involving audio, video, and even text. Needs in this area

arise as a result of the ease with which such content can be modified and distorted for either

legitimate or fraudulent purposes. In this case, the creator of some content seeks to publish an

encoding of it for editors. An editor seeks to modify the published version to enhance its value to

the end-user. For the edited version to be of value to the user, it must be authenticatible, i.e., the

user must be able to confirm whether it was indeed generated from what the creator published,

and reliably and accurately assess what modifications were made by the editor. This requires that

any signature applied during encoding survive the editing process. At the same time, for what the

creator publishes to be useful to the editor, the encoding cannot differ significantly from the original

content. Systems of this type can be used to facilitate authenticating scientific data, photographic

images, and voice recordings in forensic and other contexts.

Researchers have proposed a variety of approaches to such problems based on digital water-

marking, cryptography, and content classification [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

[15] [16] [17]. Ultimately, the methods developed to date implicitly or explicitly attempt to balance

the competing goals of robustness to benign perturbations, security against tampering attacks, and

encoding distortion. Some researchers [6] [13] [4] [12] propose authentication schemes which protect

a signal by embedding what is referred to as a “fragile” watermark known to both encoder and

decoder. The decoder extracts a watermark from the received signal and compares to the known

watermark which was inserted by the encoder. The difference between the extracted watermark

and the known watermark is then interpreted as a measure of authenticity. As an alternative, other
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authors [3] [10] [14] propose a “robust” watermarking strategy, whereby the important features of

the signal are extracted, compressed and embedded into the signal by the encoder. The decoder

attempts to extract the watermark from the received signal and authenticates by comparing the

features encoded in the watermark to the features in the received signal. This strategy is sometimes

termed “self-embedding.”

Despite the growing number of proposed systems, many basic questions remain about 1) how to

best model the problem and what we mean by authentication, 2) what the associated fundamental

performance limits are, and 3) what system structures can and cannot approach those limits.

More generally, there are basic questions about the degree to which the authentication, digital

watermarking, and data hiding problems are related or not.

While information-theoretic treatments of authentication problems is just emerging, there has

been a growing literature in the information theory community on digital watermarking and data

hiding problems, and more generally problems of coding with side information, much of which

builds on the foundation of [18] [19] and [20]; see, e.g., [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]

[31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] and the references therein. Collectively, this work

provides a useful context within which to examine the topic of authentication.

Our contribution is to propose one possible model for the authentication problem, and rigorously

examine its implications. In terms of performance limits, we assess the inherent trade-offs between

security, robustness, and distortion, and develop the structure of systems that make these trade-offs

efficiently. As we will show, these systems have important distinguishing characteristics from those

proposed to date. We also see that under this model, the authentication problem is substantially

different from familiar formulations of the digital watermarking and data hiding problems, and has

a correspondingly different solution.

A detailed outline of the paper is as follows. We begin by briefly defining our notation in

Section 2. Next in Section 3, we develop a system model and problem formulation, quantifying

a notion of authentication. In Section 4, we characterize the performance limits of such systems

via our main coding theorem. Section 5 contains the associated achievability proof, identifies the

structure of good systems, and a converse. In Section 6 the results are applied to the case of binary

sources with Hamming distortion measures, and in Section 7 to Gaussian sources with quadratic

distortion measures. Section 8.1 then evaluates authentication techniques based on self-embedding
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Figure 1: Authentication system model. The source Sn is encoded to create the channel input Xn,
incurring some distortion. The channel models benign degradations due to routine handling and
processing, transformations due to intentional editing, as well as tampering by a malicious attacker.
The decoder produces from the channel output Y n either an authentic reconstruction Ŝn of the
source to within some fidelity, or indicates that authentication is not possible.

in the context of our problem model and system structure, and shows that self-embedding can be

quite inefficient in typical regimes of interest. Next, Section 9 generalizes the results of the paper to

include layered systems that support multiple levels of authentication. Finally, Section 10 contains

some concluding remarks.

2 Notation

We use standard information theory notation (e.g., as found in [42]). Specifically, E[A] denotes

expectation of the random variable A, H(A) and I(B;C) denote entropy and mutual information,

and A ↔ B ↔ C denotes the Markov condition that random variables A and C are independent

given B. We use the notation vj
i to denote the sequence {vi, vi+1, . . . , vj}, and define vn = vn

1 .

Alphabets are denoted by uppercase calligraphic letters, e.g., S, X. We use |·| to denote the

cardinality of a set or alphabet.

3 System Model and Problem Formulation

Our system model is as depicted in Fig. 1. To simplify the exposition, we model the original source

as an independent and identically distributed (i.i.d.)1 sequence S1, S2, . . . , Sn. In practice Sn could

correspond to sample values or signal representations in some suitable basis.

The encoder takes as input the block of n source samples Sn, producing an output Xn that

1Our results do not depend critically on the i.i.d. property, which is chosen for convenience. In fact, the i.i.d.
model is sometimes pessimistic; better performance can often be obtained by taking advantage of correlation present
in the source or channel. We believe that qualitatively similar results could be obtained for more general settings
(e.g., using techniques from [43], [44]).
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is suitably close to Sn with respect to some distortion measure. The encoded signal then passes

through a channel, which captures the effects of routine handling and editing as well as any tam-

pering, producing the channel output Y n.

The decoder either produces, to within some fidelity as quantified by a suitable distortion

measure, a reconstruction Ŝn of the source that is guaranteed to be free from the effects of any

tampering by an attacker, or declares that it is not possible to produce such a reconstruction. We

term such reconstructions “authentic.”

Determining or predicting the realized channel for the authentication scenario of Fig. 1 is often

difficult or even impossible. For example, an honest editor or a malicious attacker can always

choose to modify the signal in an unexpected manner invalidating whatever channel model is

selected. Hence we deliberately avoid choosing a channel model to try and represent the exact set

of degradations likely to be encountered.

Instead, we treat permissible editing operations differently than tampering or other unantic-

ipated modifications (e.g., more scratches, compression, or other routine degradations than ex-

pected). When the latter occur, the decoder may declare an authentication failure or even produce

an authentication reconstruction, but should not be fooled into producing a reconstruction which

is not authentic. For permissible editing, however, the decoder should almost always produce an

authentic reconstruction.

To characterize what constitutes permissible editing, we define a “reference channel” as a prob-

ability distribution, p(Y n|Xn), which describes the relationship between the channel input and

output for all benign and malicious perturbations we desire the system to overcome. For exam-

ple, an authentication system for a binary source might be designed to allow a fraction p of the

source samples to be flipped in order to highlight important regions and account for changes in

compression format. In this case, the reference channel would be the familiar (memoryless) binary

symmetric channel with cross-over probability p. When the reference channel is in effect and the

received signal Y n is generated from the encoded source Xn according to the reference channel dis-

tribution, the decoder must produce an authentic reconstruction. But if Y n is generated according

to a distribution incompatible with the reference channel (e.g., due to tampering by an attacker),

then the decoder may instead declare an authentication failure.

Since the reference channel is a design parameter we naturally assume that it is known to the
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encoder and decoder as well as any attackers even though the realized channel may be unknown. To

properly interpret the technical results and apply them to design, model, and evaluate authentica-

tion systems we believe the reference channel view is valuable and hence we adopt this terminology

throughout the paper. We will focus on memoryless, probabilistic reference channels so the analysis

when the reference channel is in effect follows traditional approaches. The main conceptual differ-

ence is that while a classical channel typically defines the complete input-output relationship, the

reference channel only describes the input-output relationship for permissible editing operations;

potentially arbitrary tampering is not modeled directly but handled through a different mechanism.

Considering the motivating examples at the outset of the paper, given a particular reference

channel, the goal of the system designer is to make the encoding distortion small, so that the

what the creator publishes is a faithful replica of the original source, and to make any authentic

reconstructions produced by the decoder of high fidelity, so that the user can accurately assess

directly from the edited content how it differs from the original source. In general, these are

conflicting objectives, and in the sequel we explore the fundamental trade-offs involved. 2

3.1 Defining “Authentic”

Many notions of authentication are possible. The one used in digital signatures is perhaps the

simplest: a received signal is authentic if and only if it is exactly the same as the encoded signal.

Of course, as discussed in the introduction, this definition is too restrictive to be useful for the

scenario considered in Fig. 1. When perturbations to the encoded signal are allowed, no canonical

definition has yet emerged. We propose the following definition and briefly discuss other notions

of authenticity and their shortcomings in Section 8.2.

Definition 1 A reconstruction Ŝn produced by the decoder from the output Y n of the channel is

said to be authentic if it satisfies the Markov condition below:

Ŝn ↔ {Sn, Xn} ↔ Y n (1)

For example, this condition will be satisfied if Ŝn is a deterministic or randomized function of Sn.

2Similar trade-offs are present in joint source-channel coding problems with uncertain channels [45] [46] [47].
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Of course, the decoder may fail to successfully decode Ŝn from the channel output Y n. To

avoid confusing security and decoding error, however, our security requirement is defined in the

case that decoding succeeds and we deal with the probability of decoding error separately. The

advantage of this approach is that if an authentication system produces a reconstruction satisfying

(1), then a user can be completely confident that he will be unaffected by any actions of a malicious

adversary.3

As our main result, in Section 4 we characterize when authentication systems are possible, and

when they are not. Specifically, let De denote the encoding distortion, i.e., the distortion experi-

enced in the absence of a channel, and let Dr denote the distortion in the reconstruction produced

by the decoder when the signal can be authenticated, i.e., when the channel transformations are

consistent with the reference distribution p(y|x). Then we determine which distortion pairs (De, Dr)

are asymptotically achievable.

3.2 An Example Distortion Region

Before developing our main result, we illustrate with an example the kinds of results that will

be obtained. An illustrative achievable distortion region is depicted in Fig. 2. This example

corresponds to a problem involving a symmetric Bernoulli source, Hamming distortion measures,

and a binary symmetric reference channel with crossover probability p. Note that at the point

(De, Dr) = (p, p), the decoder completely eliminates the effects of the reference channel when it is

in effect: the minimum achievable reconstruction distortion Dr is the same as the distortion De at

the output of the encoder. Observe, too, that the case p = 0 corresponds to the traditional scenario

for digital signatures where there is no noise. In this case, as the figure reflects, authentication is

achievable without incurring any encoding distortion nor reconstruction distortion.

3A disadvantage is that this definition may be unnecessarily strict; a different definition may capture a satisfac-
tory notion of authentication with fewer limits on system design. We defer further comments on other notions of
authenticity to Sections 8.2 and 10.
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Figure 2: An achievable distortion region for a symmetric Bernoulli source transmitted over a
binary symmetric reference channel with crossover probability p. Distortions are with respect to the
Hamming measure. The case p = 0 corresponds to traditional digital signatures. If authentication
was not required, the point (De = 0, Dr = p) could be achieved.
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4 Characterization of Solution: Coding Theorems

An instance of the authentication problem consists of the tuple

{S, p(s),X,Y, p(y|x), de(·, ·), dr(·, ·)} . (2)

We use S to denote the source alphabet—which is finite unless otherwise indicated—and p(s) is

its (i.i.d.) distribution. The channel input and output alphabets are X and Y and p(y|x) is the

(memoryless) reference channel law. Finally, de(·, ·) and dr(·, ·) are the encoding and reconstruction

distortion measures.

A solution to this problem (i.e., an authentication scheme) consists of an algorithm that returns

an encoding function Υn, a decoding function Φn, and a secret key θ.4 The secret key is shared only

between the encoder and decoder; all other information is known to all parties including attackers.

The secret key θ is a k-bit sequence with k sufficiently large. The encoder is a mapping from

the source sequence and the secret key to codewords, i.e.,

Υn(Sn, θ) : Sn × {0, 1}k 7→ Xn.

The decoder is a mapping from the channel output and the secret key to either an authentic

source reconstruction Ŝn (i.e., one satisfying (1)) or the special symbol ∅ that indicates such a

reconstruction is not possible; whence,

Φn (Y n, θ) : Yn × {0, 1}k 7→ Sn ∪ {∅}.

Notice that since an authentic reconstruction must satisfy (1), and since the decoder must satisfy

the Markov condition {Sn, Xn} ↔ Y n ↔ Φn (Y n, θ), we have that Ŝn ↔ {Sn, Xn} ↔ Φn (Y n, θ)

forms a Markov chain only when successful decoding occurs. Thus, the authentic reconstruction Ŝn

should be defined as a quantity that the decoder attempts to deduce since defining Ŝn = Φn (Y, θn)

will generally not satisfy (1).

Henceforth, except when there is risk of confusion, we omit both the subscript n and the secret

4To focus the exposition we describe only private-key schemes in this paper, but public-key implementations can
be developed following, e.g., the general approach outlined in [48] and are discussed briefly in the appendix.
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key argument from the encoding and decoding function notation, letting the dependence be implicit.

Moreover, when the encoder and/or decoder are randomized functions, then all probabilities are

taken over these randomizations as well as the source and channel law.

The relevant distortions are the encoding and decoding distortion computed as the sum of the

respective (bounded) single letter distortion functions de and dr, i.e.,

1

n

n
∑

i=1

de(Si, Xi) and
1

n

n
∑

i=1

dr(Si,Φi (Y
n)).

Evidently,

de : S× X 7→ R
+ (3)

dr : S× S 7→ R
+. (4)

The system can fail in one of three ways. The first two failure modes correspond to either the

encoder introducing excessive encoding distortion, or the decoder failing to produce an authentic

reconstruction with acceptable distortion when the reference channel is in effect. Accordingly, we

define the overall distortion violation error event to be

Edv = EDe
∪ EDr

(5)

where, for any ε > 0,

EDe
=

{

1

n

n
∑

i=1

de(Si, Xi) > De + ε

}

(6)

EDr
=

{

Φn (Y n) = ∅

}

∪
{

1

n

n
∑

i=1

dr(Si,Φi (Y
n)) > Dr + ε

}

∩
{

Φn (Y n) 6= ∅

}

. (7)

In the remaining failure mode, the system fails to produce the desired authentic reconstruction

Ŝn from the channel output and instead of declaring that authentication is not possible produces

an incorrect estimate. Specifically, we define the successful attack event according to

Esa = {Φ(Y n) 6= ∅} ∩ {Φ(Y n) 6= Ŝn}. (8)
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Definition 2 The achievable distortion region for the problem (2) is the closure of the set of pairs

(De, Dr) such that there exists a sequence of authentication systems, indexed by n, where for every

ε > 0 and as n → ∞, Pr[Esa] → 0 regardless of the channel law in effect, Pr[EDe
] → 0, and

Pr[EDr
] → 0 when the reference channel is in effect, with Esa, EDe

and EDr
as defined in (8), (6),

and (7).

For such systems, we have the following coding theorem:

Theorem 1 The distortion pair (De, Dr) lies in the achievable distortion region for the problem (2)

if and only if there exist functions f(·, ·), g(·) and a distribution p(y, x, u, s) = p(s)p(u|s)p(x|u, s)p(y|x)

with X deterministic (i.e. p(x|u, s) = 1x=f(s,u)) such that

I(U ;Y )− I(S;U) ≥ 0 (9a)

E[de(S, f(U, S))] ≤ De (9b)

E[dr(S, g(U))] ≤ Dr. (9c)

The alphabet U of the auxiliary random variable U requires cardinality |U| ≤ (|S|+ |X|+3) · |S| · |X|.5

Essentially, the auxiliary random variable U represents an embedded description of the source

which can be authenticated, X represents the channel input, and g(U) in (9c) represents the

authentic reconstruction. The usual condition that the channel output is determined from the

channel input (i.e., the encoder does not know what the channel output will be until after the

channel input is fixed) is captured by the requirement that the full joint distribution p(y, x, u, s)

factors as shown above. The requirement (1) that the authentic reconstruction does not depend

directly on the channel output is captured by the fact that g(·) depends only on U and not on Y .

Without the authentication requirement, the set of achievable distortion pairs can be enlarged by

allowing the reconstruction to depend on the channel output, i.e. g(U) in (9c) can be replaced by

g(U, Y ).6 Thus, as we shall see in Sections 6 and 7, security comes at a price in this problem.

As an aside, note that Theorem 1 can be contrasted with its information embedding counter-

part, which as generalized from [18] in [35], states that a pair (R,De), where R is the embedding

5If instead f(U, S) is allowed to be a non-deterministic mapping, then it is sufficient to consider distributions
where the auxiliary random variable has the smaller alphabet |U| ≤ |S| + |X| + 3.

6The achievable distortion for transmitting a source across a channel can be derived without an auxiliary random
variable. The advantage of using (9c) with g(Y ) replaced by g(U,Y ), however, is that it facilitates a comparison.
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rate, is achievable if and only if there exists a function f(·, ·) and a distribution p(y, x, u, s) =

p(s)p(u|s)p(x|s, u)p(y|x) with X deterministic (i.e. p(x|u, s) = 1x=f(s,u)) such that

I(U ;Y )− I(S;U) ≥ R (10a)

E[de(S, f(U, S))] ≤ De (10b)

Thus we see that the authentication problem is substantially different from the information em-

bedding problem.

Before developing the proofs of Theorem 1, to develop intuition we describe the general system

structure, and its specialization to the Gaussian-quadratic case.

4.1 General System Structure

As developed in detail in Section 5, an optimal authentication system can be constructed by choos-

ing a codebook C with codewords appropriately distributed over the space of possible source out-

comes. A randomly chosen subset of these codewords A ⊂ C are marked as admissible and the

knowledge of A is a secret shared between the encoder and decoder, and kept from potential at-

tackers.

The encoder maps (quantizes) the source Sn to the nearest admissible codeword Un and then

generates the channel input Xn from Un. The decoder maps its received signal to the nearest

codeword Cn ∈ C. If Cn ∈ A, i.e., Cn is an admissible codeword, the decoder produces the

reconstruction Ŝn from Cn. If Cn 6∈ A, i.e., Cn is not admissible, the decoder declares that an

authentic reconstruction is not possible.

Observe that the A must have the following three characteristics. First, to avoid a successful

attack the number of admissible codewords must be appropriately small. Indeed, since the attacker

does not know A, if the attacker’s tampering causes the decoder to decode to any codeword other

than Un then the probability that the decoder is fooled by the tampering and does not declare

a decoding failure is bounded by |A| / |C|. Second, to avoid an encoding distortion violation, the

set of admissible codewords should be dense enough to allow the encoder to find an appropriate

Xn near Sn. Third, to avoid a reconstruction distortion violation, the decoder should be able to

distinguish the possible encoded signals at the output of the reference channel. Thus the codewords
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Figure 3: Codebook construction for the Gaussian-quadratic scenario. The large sphere represents
the space of possible source vectors and the small spheres representing the noise are centered on
codewords. When the small spheres do not overlap the codewords can be resolved at the output
of the reference channel. The shaded spheres represent the admissible codewords—a secret known
only to the encoder and decoder.

should be sufficiently separated that they can be resolved at the output of the reference channel.

4.1.1 Geometry for Gaussian-Quadratic Example

We illustrate the system geometry in the case of a white Gaussian source, quadratic distortion

measure, and an additive white Gaussian noise reference channel, in the high signal-to-noise ratio

(SNR) regime. We let σ2
S and σ2

N denote the source and channel variances, respectively. For this

example, we can construct C by packing codewords into the space of possible source vectors such

that no codeword is closer than some distance r
√

n to any other, i.e., packing spheres of radius

r
√

n into a sphere of radius σS

√
n where the center of the spheres correspond to codewords. Next,

a fraction 2−nγ of the codewords in C are chosen at random and marked as admissible to form A. It

suffices to let γ = 1/
√

n and r2 = σ2
N + ε for some ε > 0 that is arbitrarily small. This construction

is illustrated in Fig. 3.

The encoder maps the source Sn to a nearby admissible codeword Un, which it chooses as

the transmitted codeword Xn. Since the number of admissible codewords in a sphere of radius d
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centered on Sn is roughly
|A|
|C| ·

(

d

r

)n

,

on average there exists at least one codeword within distance d of the source provided d ≥ r2γ .

Thus, the average encoding distortion is roughly r222γ , which approaches σ2
N + ε as n →∞.

The authentic reconstruction is Ŝn = Un. Thus, when the decoder correctly identifies U n, the

reconstruction distortion is the same as the encoding distortion. And when the reference channel

is in effect, the decoder does indeed correctly identify U n. This follows from the fact that with

high probability, the reference channel noise creates a perturbation within a noise sphere of radius

σN

√
n about the transmitted signal Xn, and the noise spheres do not intersect since r > σN .

Furthermore, when the reference channel is not in effect and the attacker tampers with the

signal such that the receiver decodes to a codeword C different from the transmitted codeword U n,

then the probability that C was marked as admissible in the codebook construction phase is

Pr[C ∈ A|C 6= Un] =
|A|
|C| = 2−nγ ,

which goes to zero as n →∞. The decoder generates ∅ if it decodes to a non-admissible codeword,

so the probability of a nonauthentic reconstruction is vanishingly small.

Thus the distortions De = Dr = σ2
N can be approached with an arbitrarily small probability of

successful attack. See [49] [48] for insights into the practical implementation of this class of systems

including those designed based on a public key instead of a secret key.

5 Proofs

5.1 Forward Part: Sufficiency

Here we show that if there exist distributions and functions satisfying (9), then for every ε > 0

there exists a sequence of authentication system with distortion at most (De + ε,Dr + ε). Since the

achievable distortion region is a closed set this implies that (De, Dr) lies in the achievable distortion

region.

We prove this forward part of Theorem 1 by showing the existence of a random code with the

desired properties.
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5.1.1 Codebook Generation

We begin by choosing some γ > 0 such that

I(Y ;U)− I(U ;S) > 3γ. (11)

where γ decays to zero more slowly than 1/n, i.e.,

γ → 0 and nγ →∞ as n →∞ (12)

Given the choice of γ, the encoder chooses a random codebook C of rate

R = I(S;U) + 2γ. (13)

Each codeword in C is a sequence of 2nR i.i.d. random variables selected according to the distribution

p(u) =
∑

s∈S
p(u|s)p(s). Then, for each realized codebook C the encoder randomly marks 2n(R−γ)

of the codewords in C as admissible and the others as forbidden. We denote this new codebook of

admissible codewords as A, which has effective rate

R′ = R− γ = I(S;U) + γ, (14)

where the last equality follows from substituting (13). The knowledge of which codewords are

forbidden is the secret key and is revealed only to the decoder. The codebook C is publicly revealed.

5.1.2 Encoding and Decoding

The encoder first tries to find an admissible codeword un ∈ A that is δ-strongly jointly typical

with its source sequence Sn according to p(u|s). If the codeword un ∈ A is found to be typical,

the encoder output is produced by mapping the pair (sn, un) into xn via x = f(s, u). If no jointly

typical admissible codeword exists, the encoder expects the system to fail, and thus sends an

arbitrary codeword.
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The decoder attempts to produce the authentic reconstruction ŝn = gn(un) where

gn(un) = (g(u1), g(u2), . . . , g(un)). (15)

The decoder Φ (·) tries to deduce ŝn by searching for a unique admissible codeword ûn ∈ A that

is δ-strongly jointly typical with the received sequence Y n. If such a codeword is found the re-

construction produced is gn(ûn). If no such unique codeword is found, the decoder produces the

output symbol ∅.

5.1.3 System Failure Probabilities

We begin by analyzing the system failure probabilities.

Probability of Successful Attack. Suppose the attacker causes the received codeword to be

jointly typical with a unique codeword cn ∈ C. Since the attacker has no knowledge of which code-

words are admissible, the probability that codeword cn was chosen as admissible in the codebook

construction phase is

Pr[cn ∈ A] =
|A|
|C| =

2nR′

2nR
= 2−nγ .

where we have used (14) and (13). Therefore,

Pr[Esa] ≤ Pr[Φ (Y n) 6= ∅ | Φ(Y n) 6= Ŝn] = 2−nγ .

which goes to zero according to (12). Note that this argument applies regardless of the method

used by the attacker since without access to the secret key its actions are statistically independent

of which codewords are admissible.

Probability of Distortion Violation. The distortion violation events EDe
and EDr

defined in

(6) and (7) can arise due to any of the following typicality failure events:

• Est: The source is not typical.

• Eet: The encoder fails to find an admissible codeword that is jointly typical with its input.
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• Ect: The channel fails to produce an output jointly typical with its input when the reference

channel law is in effect.

• Edt: The decoder fails to find a codeword jointly typical with its input when the reference

channel law is in effect.

A distortion violation event can also occur if there is no typicality failure but the distortion is

still too high. Letting

Etf = Est ∪ Eet ∪ Ect ∪ Edt (16)

denote the typicality failure event, we have then that the probability of a distortion violation can

be expressed as

Pr[Edv] = Pr[Edv | Etf ] · Pr[Etf ] + Pr[Edv | Ec
tf ] · Pr[Ec

tf ] ≤ Pr[Edv | Ec
tf ] + Pr[Etf ]

= Pr [Edv | Ec
tf ] + Pr[Est] + Pr[Eet | Ec

st] + Pr[Ect | Ec
st,E

c
et] + Pr[Edt | Ec

st,E
c
et,E

c
ct] (17)

First, according to well-known properties of typical sequences [42], by choosing n large enough

we can make

Pr[Est] ≤ ε/4 (18)

Pr[Ect | Ec
st,E

c
et] ≤ ε/4. (19)

Second, provided that the source is typical, the probability that the encoder fails to find a

sequence un ∈ A jointly typical with the source follows from (14) as

Pr[Eet | Ec
st] ≤ 2−n[R′−I(S;U)] = 2−nγ (20)

from standard joint typicality arguments.

Third,

Pr[Edt | Ec
st,E

c
et,E

c
ct] ≤ 2−nγ + ε/4. (21)

Indeed, using standard joint typicality results, the probability that the received sequence Y n is

not δ-strongly jointly typical with the correct codeword U n selected by the encoder can be made
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smaller than ε/4 for n large enough, and the probability of it being strongly jointly typical with

any other admissible codeword is, using (11) with (13), at most

2−n[I(U ;Y )−R] ≤ 2−nγ .

Fourth,

Pr [Edv | Ec
tf ] = 0. (22)

Indeed, provided there are no typicality failures, the pair (Sn, Y n) must be strongly jointly typical,

so by the standard properties of strong joint typicality,

1

n

n
∑

i=1

de(Si, Xi) ≤ E[de(S,X)] + δ · d̄1

1

n

n
∑

i=1

dr(Si, gi(Ui)) ≤ E[dr(S, g(U))] + δ · d̄2,

where d̄1 and d̄2 are bounds defined via

d̄1 = sup
(s,x)∈S×X

de(s, x) (23)

d̄2 = sup
(s,ŝ)∈S×S

dr(s, ŝ). (24)

Thus, choosing δ such that

δ < max

(

ε

d̄1
,

ε

d̄2

)

and making n large enough we obtain (22).

Finally, using (18), (19), (20), (21), and (22) in (17) we obtain

Pr[Edv] ≤ 3ε/4 + 2 · 2−nγ (25)

which can be made less than ε for n large enough. Thus Pr[EDe
] → 0 and, when the reference

channel is in effect, Pr[EDr
] → 0.
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5.2 Converse Part: Necessity

Here we show that if there exists an authentication system where the pair (De, Dr) is in the achiev-

able distortion region, then there exists a distribution p(u|s) and functions g(·), f(·, ·) satisfying

(9). In order to apply previously developed tools, it is convenient to define the rate-function

R∗(De, Dr)
∆
= sup

p(U |S),f :U×S7→X,g:U7→S:E[de(S,f(U,S))]≤De,E[dr(S,g(U))]≤Dr

I(U ;Y )− I(S;U). (26)

Note that R∗(De, Dr) ≥ 0 if and only if the conditions in (9) are satisfied. Thus our strategy

is to assume that the sequence of encoding and decoding functions discussed in Section 4 exist

with limn→∞ Pr[Esa] = 0, limn→∞Pr[EDe
] = 0, and—when the reference channel is in effect—

limn→∞ Pr[EDr
] = 0. We then show that these functions imply that R∗(De, Dr) ≥ 0 and hence (9)

is satisfied.

To begin we note that it suffices to choose g(·) to be the minimum distortion estimator of S

given U . Next, by using techniques from [18] or by directly applying [35, Lemma 2] it is possible

to prove that allowing X to be non-deterministic has no advantage, i.e.,

R∗(De, Dr) ≥ sup
p(U |S),p(X|U,S):E[de(S,X)]≤De,E[dr(S,g(U))]≤Dr

I(U ;Y )− I(S;U). (27)

Arguments similar to those in [18] and [35, Lemma 1] show that R∗(De, Dr) is monotonically non-

decreasing and concave in (De, Dr). These properties will later allow us to make use of the following

lemma, whose proof follows readily from that of Lemma 4 in [18]:

Lemma 1 For arbitrary random variables V,A1, A2, . . . , An and a sequence of i.i.d. random vari-

ables S1, S2, . . . , Sn,

n
∑

i=1

[

I(V,Ai−1
1 , Sn

i+1;Ai)− I(V,Ai−1
1 , Sn

i+1;Si)
]

≥ I(V ;An)− I(V ;Sn). (28)

As demonstrated by the following Lemma, a suitable Ui is

Ui = (Ŝn, Y i−1
1 , Sn

i+1). (29)
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Lemma 2 The choice of Ui in (29) satisfies the Markov relationship

Yi ↔ (Si, Xi) ↔ Ui. (30)

Proof:

It suffices to note that

p(yi|xi, si) = p(yi|xi) =
p(yi

1|xn)

p(yi−1
1 |xn)

=
p(yi

1|xn, sn)

p(yi−1
1 |xn, sn)

(31)

=
p(yi

1|xn, ŝn, sn)

p(yi−1
1 |xn, ŝn, sn)

= p(yi|xn, sn, ŝn, yi−1
1 ) (32)

where the equalities in (31) follow from the memoryless channel model, and the first equality in (32) follows
from the fact that the system generates authentic reconstructions so (1) holds. Thus, (32) implies the Markov
relationship

Yi ↔ (Xi, Si) ↔ (X i
1, X

n
i+1, S

i
1, S

n
i+1, Y

i−1
1 , Ŝn), (33)

which by deleting selected terms from the right hand side yields (30).

Next, we combine these results to prove the converse part of Theorem 1 except for the cardinality

bound on U which is derived immediately thereafter.

Lemma 3 If a sequence of encoding and decoding functions Υn(·) and Φn (·) exist such that the

decoder can generate authentic reconstructions achieving the distortion pair (De, Dr) when the ref-

erence channel is in effect then

R∗(De, Dr) ≥ 0 (34)

Proof:

Define De,i and Dr,i as the component-wise distortions between Si and Xi and between Si and Ŝi. We have

20



the following chain of inequalities:

R∗(De, Dr) = R∗

(

1

n

n
∑

i=1

De,i,
1

n

n
∑

i=1

Dr,i

)

(35)

≥ 1

n

n
∑

i=1

R∗(De,i, Dr,i) (36)

≥ 1

n

n
∑

i=1

[I(Ui; Yi)− I(Ui; Si)] (37)

≥ 1

n

[

I(Ŝn; Y n)− I(Ŝn; Sn)
]

(38)

=
1

n

[

H(Ŝn|Sn)−H(Ŝn|Y n)
]

(39)

≥ − 1

n
H(Ŝn|Y n) (40)

≥ − 1

n
− Pr[Φn (Y n) 6= Ŝn] log |S| (41)

The concavity of R∗(De, Dr) yields (36). To obtain (37), we combine Lemma 2 with (27). Next, to
obtain (38), let V = Ŝn and Ai = Yi to apply Lemma 1 with Ui chosen according to (29). Fano’s inequality
yields (41).

Finally, using (in order) Bayes’ law, (8), and (7), we obtain

Pr[Φn (Y n) 6= Ŝn] = Pr[Esa] + Pr[{Φn (Y n) 6= Ŝn} ∩ {Φn (Y n) = ∅}] (42)

≤ Pr[Esa] + Pr[{Φn (Y n) = ∅}] (43)

≤ Pr[Esa] + Pr[EDr
]. (44)

Therefore exploiting that the system generates an authentic reconstruction (limn→∞ Pr[Esa] = 0) of the right
distortion (limn→∞ Pr[EDr

] = 0) and that the alphabet of S is finite, we have that (41) and (44) imply (34).

The following proposition bounds the cardinality of U.

Proposition 1 Any point in the achievable distortion region defined by (9) can be attained with U

distributed over an alphabet U of cardinality at most (|S|+ |X|+ 3) · |S| · |X| with p(x|u, s) singular

or over an alphabet U of cardinality at most |S|+ |X|+ 3 if p(x|u, s) is not required to be singular.

Proof:

This can be proved using standard tools from convex set theory. Essentially, we define a convex set of
continuous functions fj(p) where p represents a distribution of the form Pr(S = s, X = x|U = u) and
the fj(·) functions capture the features of the distributions relevant to (9). According to Carathéodory’s
Theorem [42, Theorem 14.3.4], [50], there exist j-max +1 distributions p1 through pj-max +1 such that any
vector of function values, (f1(p

′), f2(p
′), . . . , fj-max(p

′)), achieved by some distribution p′ can be achieved
with a convex combination of the pi distributions. Since each distribution corresponds to a particular choice
for U , at most j-max + 1 possible values are required for U . Specifically, the desired cardinality bound for
our problem can be proved by making the following syntactical modifications to the argument in [51, bottom
left of p. 634]:
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1. Replace Pr(X = x | U = u) with Pr(S = s, X = x | U = u) which is represented by the notation p.

2. Choose
fj(p) =

∑

x

Pr(S = j, X = x | U = u) (45)

for j ∈ {1, 2, . . . , n} where n = |S|.
3. Choose

fn+1(p) =
∑

s

∑

x

de(x, s) Pr(S = s, X = x | U = u). (46)

4. Choose
fn+2(p) =

∑

s

∑

x

dr(g(u), s) Pr(S = s, X = x | U = u). (47)

5. Choose

fn+3(p) =
∑

s

(

∑

x

Pr(S = s, X = x | U = u)

)

log

(

∑

x

Pr(S = s, X = x | U = u)

)

. (48)

6. Choose

fn+4(p) =
∑

y

(

∑

x

∑

s

Pr(Y = y | X = x) Pr(S = s, X = x | U = u)

)

·

log

(

∑

x

∑

s

Pr(Y = y | X = x) Pr(S = s, X = x | U = u)

)

. (49)

7. Choose
fn+5+j(p) =

∑

s

Pr(S = s, X = j | U = u) (50)

for j ∈ {1, 2, . . . , |X|}.

Since the fj(p) determine Pr[S = s] (and therefore H(S) as well), De, Dr, H(S|U), H(Y |U), and
Pr[X = x] (and therefore Pr[Y = y] and H(Y ) also), they can be used to identify all points in the distortion
region. According to [51, Lemma 3], for every point in this region obtained over the alphabet U there exists
a U∗ from alphabet U∗ with cardinality |U∗| at most one greater than the dimension of the space spanned by
the vectors fi. The fi corresponding to Pr[S = s] and Pr[X = x] contribute |S| − 1 and |X| − 1 dimensions
while the other fi contribute four more dimensions. Thus it suffices to choose |U∗| ≤ |X|+ |S|+3. Note that
this cardinality bound applies to the general case where X is not necessarily a deterministic function of S
and U∗.

By directly applying [35, Lemma 2] to each pair (u∗, s) in U∗ × S, we can split each u∗ into |X| new
symbols, u∗∗ such that the mapping from (u∗∗, s) to x is deterministic. The new auxiliary random variable
U∗∗ takes values over the alphabet U∗∗ where

|U∗∗| = |U∗| · |S| · |X| = (|X|+ |S|+ 3) · |S| · |X| . (51)

Furthermore, this process does not change the distortion or violate the mutual information constraint. Thus
a deterministic mapping from the source and auxiliary random variable to the channel input can be found
with no loss of optimality provided a potentially larger alphabet is allowed for the auxiliary random variable.

We next apply Theorem 1 to two example scenarios of interest—one discrete and one continuous.
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6 Example: the Binary-Hamming Scenario

Some applications of authentication are inherently discrete. For example, we might be interested

in authenticating a passage of text, some of whose characters may have been altered in a benign

manner through errors in optical character recognition process or error-prone human transcription

during scanning, as well as by tampering.

As perhaps the simplest model representative of such discrete problems, we consider a symmetric

binary source with a binary symmetric reference channel. Specifically, we model the source as

an i.i.d. sequence where each Si is a Bernoulli(1/2) random variable7 and the reference channel

output is Yi = Xi ⊕Ni, where ⊕ denotes modulo-2 addition and where N n is an i.i.d. sequence of

Bernoulli(p) random variables. Finally, we adopt the Hamming distortion measure:

d(a, b) =











0, if a = b

1, otherwise .

For this problem, a suitable auxiliary random variable is

U = {S ⊕ (A · T )⊕ [(1 −A) · V ]}+ 2 · (1−A), (52)

where A, T , and V are Bernoulli α, τ , and ν random variables, respectively, and are independent

of each other and S and N . Without loss of generality, the parameters τ and ν are restricted to

the range (0, 1/2). Note that U = {0, 1, 2, 3}.
The encoder function X = f(S,U) is, in turn, given by

X =











U, if U ∈ {0, 1}

S, if U ∈ {2, 3},
(53)

from which it is straightforward to verify via (52) that the encoding distortion is

De = ατ. (54)

7We adopt the convention that all Bernoulli random variables take values in the set {0, 1}.
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The corresponding decoder function Ŝ = g(U) takes the form

Ŝ = U mod 2, (55)

from which it is straightforward to verify via (52) that the reconstruction distortion is

Dr = ατ + (1− α)ν. (56)

In addition, I(U ;S) takes the form

I(U ;S) = H(S)−H(S|U)

= H(S)−H(S,A|U) + H(A|U, S)

= H(S)−H(S|U,A) −H(A|U) + H(A|U, S)

= 1− α · h(τ)− (1− α) · h(ν), (57)

where the second and third equalities follow from the entropy chain rule, where the last two terms

on the third line are zero because knowing U determines A, and where the last equality follows

from (52), with h(·) denoting the binary entropy function, i.e., h(q) = −q log q − (1− q) log(1− q)

for 0 ≤ q ≤ 1. Similarly, I(U ;Y ) takes the form

I(U ;Y ) = H(Y )−H(Y |U)

= H(Y )−H(Y,A|U) + H(A|U, Y )

= H(Y )−H(Y |U,A)−H(A|U) + H(A|U, Y ) (58)

= 1− α h(p)− (1− α)h (p(1− ν) + (1− p)ν) . (59)

For a fixed p, varying the parameters α, ν, and τ such that (59) is at least as big as (57) as required

by (9a) generates the achievable distortion region shown in Fig. 4. Note from (59), (57), (54) and

(56) that the boundary point De = Dr = p, in particular, is obtained by the parameter values α = 1

and τ = p (with any choice of ν). Numerical optimization over all p(u|s) and all (not necessarily

singular) p(x|s, u) with the alphabet size |U| = 7 chosen in accordance with Proposition 1 confirms

that Fig. 4 captures all achievable distortion pairs.
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Figure 4: The solid line represents the frontier of the achievable distortion region for a binary
symmetric source and a binary symmetric reference channel with cross-over probability p = 0.2.
The dashed line represents the distortion region achievable when authentication is not required.

For comparison, we can also develop the achievable distortion region when authentication is

not required. In this setting the goal is to provide a representation of the source which allows

a decoder to obtain a good reconstruction from the reference channel output while keeping the

encoding distortion small. Although in general hybrid analog-digital coding schemes can be used

[35], uncoded transmission is optimal for the binary-Hamming case and thus all points in the region

De ≥ 0 and Dr ≥ p are achievable, as also shown in Fig. 4. Thus we see that the requirement that

reconstructions be authentic strictly decreases the achievable distortion region as shown in Fig 4.

7 Example: the Gaussian-Quadratic Scenario

Some applications of authentication are inherently continuous. Examples involve sources such as

imagery, video, or audio, that may encounter degradations and transformations as a result of rou-

tine handling including compression, transcoding, resampling, printing, and scanning, intentional

editing and enhancements, as well as tampering attacks.

As perhaps the simplest model representative of such continuous problems, we consider a white
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Gaussian source with a white Gaussian reference channel. Specifically, we model the source as

an i.i.d. Gaussian sequence where each Si has mean zero and variance σ2
S , and the independent

reference channel noise as an i.i.d. sequence whose ith element Ni has mean zero and variance σ2
N .

Furthermore, we adopt the quadratic distortion measure d(a, b) = (a− b)2.

While our proofs in Section 5 exploited that our signals were drawn from finite alphabets

and that all distortion measures were bounded to simplify our development, the results can be

generalized to continuous-alphabet sources with unbounded distortion measures using standard

methods. In the sequel, we assume without proof that the coding theorems hold for Gaussian

sources with quadratic distortion. Since we have been unable to determine the optimal distribution

for U in closed form,8 we develop inner and outer bounds on the boundary of the achievable

distortion region.

7.1 Unachievable Distortions: Inner Bounds

To derive an inner bound, we ignore the requirement that reconstructions be authentic, i.e., satisfy

(1), and study the distortions possible in this case.

For a given transmit power P , it is well-known that the minimum possible reconstruction

distortion Dr in the transmission of the source over the channel can be achieved without either

source or channel coding in this Gaussian scenario, and the resulting distortion is

Dr =
σ2

Nσ2
S

σ2
N + P

. (60)

Moreover, for a scheme with encoding distortion De, the Cauchy-Schwarz inequality implies that

the P is bounded according to

P = E[X2] = E[(X−S +S)2] = E[(X−S)2]+E[S2]+2E[(X −S)S] ≤ De +σ2
S +2

√

Deσ2
S , (61)

where equality holds if and only if X =
(

1 +
√

De/σ2
S

)

S. Thus, substituting (61) into (60) yields

the inner bound

Dr =
σ2

Nσ2
S

σ2
N +

(√
De + σS

)2 . (62)

8An analysis using the calculus of variations suggests that the optimal distribution is not even Gaussian.
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7.2 Achievable Distortions: Outer Bounds

To derive outer bounds we will consider codebooks where (S,U,X) are jointly Gaussian. Since it

is sufficient to consider X to be a deterministic function of U and S, the innovations form

T ∼ N(0, σ2
T ), E[TS] = 0 (63a)

U = aS + cT (63b)

X = bU + dT (63c)

conveniently captures the desired relationships.9 We examine two regimes: a low De regime in

which we restrict our attention to the parameterization (a, b, c, d) = (1, 1, 1/α, 1), and a high De

regime in which we restrict our attention to the parameterization (a, b, c, d) = (1, β, 1, 0). As we

will see, time-sharing between these parameterizations yields almost the entire achievable distortion

region for Gaussian codebooks.

Low De Regime

We obtain an encoding that is asymptotically good at low De by using a distribution with structure

similar to that used to achieve capacity in the related problem of information embedding [19]. In

the language of [25], the encoding process involves distortion-compensation. In particular, the

source is amplified by a factor 1/α, quantized to the nearest codeword, attenuated by α, and then

a fraction of the resulting quantization error is added back to produce the final encoding, i.e.,

Xn = αQ[Sn/α] + (1− α)(Sn − αQ[Sn/α]) (64)

where Q[·] denotes the quantizer function.

With this encoding structure, it is convenient to make the assignment U n = αQ[Sn/α], so that

we may write

U = S + T/α (65)

X = U + (1− α)(S − U) = S + T (66)

9It can be shown that choosing either a = 1 or c = 1 incurs no loss of generality.
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where T is a Gaussian random variable with mean zero and variance σ2
T independent of both the

source S and the channel noise N .

We choose g(·) to be the minimum mean-square estimate of S given U . Thus the resulting

distortions are, via (65) and (66),

De = E[(X − S)2] = E[(S + T − S)2] = σ2
T (67)

and, in turn,

Dr = E[S2]

(

1− E[SU ]2

E[S2]E[U2]

)

=
σ2

S(σ2
T + α2σ2

S)− α2σ4
S

σ2
T + α2σ2

S

=
σ2

SDe

De + α2σ2
S

. (68)

To show that distortions (67) and (68) are achievable requires proving that (9a) holds. In [19],

the associated difference of mutual informations is computed (using slightly different notation) as

I(U ;Y )− I(S;U) =
1

2
log

σ2
T (σ2

T + σ2
S + σ2

N )

σ2
T σ2

S(1− α)2 + σ2
N (σ2

T + α2σ2
S)

(69)

which implies that to keep the difference of mutual informations nonnegative we need

σ2
T (σ2

T + σ2
S + σ2

N ) ≥ σ2
T σ2

S(1− α)2 + σ2
N (σ2

T + α2σ2
S). (70)

Collecting terms in powers of α yields

α2(σ2
T σ2

S + σ2
Nσ2

S)− 2ασ2
T σ2

S − σ4
T = (α− r+)(α− r−) ≤ 0 (71)

where

r+ =
1 +

√

1 + σ2
T /σ2

S + σ2
N/σ2

S

1 + σ2
N/σ2

T

≥ 0 (72)

r− =
1−

√

1 + σ2
T /σ2

S + σ2
N/σ2

S

1 + σ2
N/σ2

T

≤ 0. (73)

Therefore to satisfy the mutual information constraint we need r− ≤ α ≤ r+.

To minimize the distortions, (68) and (67) imply we want |α| as large as possible subject to the
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constraint (71). Thus we choose α = r+, from which we see that

αauth

αie
=

(

1 +

√

1 +
σ2

T + σ2
N

σ2
S

)

, (74)

where αie = σ2
T /(σ2

T + σ2
N ) is the corresponding information embedding scaling parameter deter-

mined by Costa [19]. Evidently, the scaling parameter for the authentication problem is at least

twice the scaling for information embedding and significantly larger when either the SNR σ2
S/σ2

N

or signal-to-(encoding)-distortion ratio (SDR) σ2
S/σ2

T is small.

High De Regime

An encoder that essentially amplifies the quantization of the source to overcome the reference

channel noise is asymptotically good at high De. A system with this structure corresponds to

choosing the encoder random variables according to

U = S + T (75)

X = βU. (76)

In turn, choosing as g(·) the minimum mean-square error estimator of S given U yields the distor-

tions

De = (1− β)2σ2
S + β2σ2

T (77)

Dr =
σ2

Sσ2
T

σ2
S + σ2

T

. (78)

It remains only to determine β. Since

I(U ;S) =
1

2
log

σ2
S + σ2

T

σ2
T

(79)

and

I(U ;Y ) =
1

2
log

β2(σ2
S + σ2

T ) + σ2
N

σ2
N

, (80)
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the mutual information constraint (9a) implies that

β ≥
√

σ2
Sσ2

N

σ2
T (σ2

S + σ2
T )

(81)

7.3 Comparing and Interpreting The Bounds

Using (68) with α given by (72) and varying σ2
T yields one outer bound. Using (77) and (78) with

(81) and again varying σ2
T yields the other outer bound. The lower convex envelope of this pair

of outer bounds is depicted in Fig. 5 at different SNR’s. To see that the first and second outer

bounds are asymptotically the best achievable for low and high De, respectively, we superimpose

on these figures the best Gaussian codebook performance, as obtained by numerically optimizing

the parameters in (63).

By using (62), (68), and (78), it is possible to show that for any fixed De ≥ σ2
N the inner and

outer bounds converge asymptotically in SNR in the sense that

lim
SNR→∞

Dr,outer

Dr,inner
= 1

where Dr,inner and Dr,outer represent the inner and outer bounds corresponding to the fixed value

of De. Thus, in this high SNR regime, Gaussian codebooks are optimal, and (62) accurately

characterizes their performance as reflected in Fig. 5.

The figure also indicates (and it is possible to prove) that for any fixed SNR, the inner and

outer bounds converge asymptotically in De in the sense that

lim
De→∞

Dr,outer(De)

Dr,inner(De)
= 1

where Dr,inner(De) and Dr,outer(De) represent the inner and outer bounds as a function of the

encoding distortion De. Evidently in this high encoding distortion regime, Dr/σ
2
N can be made

arbitrarily small by using Gaussian codebooks and making De/σ
2
N sufficiently large. While this

implies that, in principle, there is no fundamental limit to how small we can make Dr by increasing

De through amplification of the source, in practice secondary effects not included in the model such

as saturation or clipping will provide an effective limit.

Finally, note that the cost of providing authentication is readily apparent since the inner bound
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convex envelope of the low and high De outer bounds derived in the text.
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from (62) represents the distortions achievable when the reconstruction need not be authentic.

Since for a fixed SNR, the bounds converge asymptotically for large De, and for a fixed De ≥ σ2
N

the bounds converge asymptotically for large SNR, we conclude that the price of authentication

is negligible in these regimes. However, for low De regimes of operation, requiring authenticity

strictly reduces the achievable distortion region. This behavior is analogous to that observed in the

binary-Hamming case.

8 Comparing Authentication Architectures

The most commonly studied architectures for authentication are robust watermarking (sometimes

referred to as self-embedding) and fragile watermarking. In the sequel we compare these architec-

tures to that developed in this paper.

8.1 Quantize-and-Embed Authentication Systems

A variety of researchers have considered a quantize-and-embed strategy, sometimes termed “robust

watermarking” or “self-embedding,” for authentication problems with distortion criteria [14] [9]

[10] [3] [15]. The idea is to encode as follows. First, the source Sn is quantized to a representation

in terms of bits using a source coding (compression) algorithm. Second the bits are protected

using a cryptographic technique such as a digital signature or hash function. Finally, the protected

bits are embedded into the original source using an information embedding (digital watermarking)

algorithm. At the decoder, the embedded bits are extracted. If their authenticity is verified via

the appropriate cryptographic technique, a reconstruction of the source is produced from the bits.

Otherwise, the decoder declares that an authentic reconstruction is not possible.

It is straightforward to develop the information-theoretic limits of such approaches, and to

compare the results to the optimum systems developed in the preceding sections. In particular, if

we use optimum source coding and information embedding in the quantize-and-embed approach, it

follows that, in contrast to Theorem 1, the distortion pair (De, Dr) lies in the achievable distortion

region for a quantize-and-embed structured solution to the problem (2) if and only if there exists
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distributions p(ŝ|s) and p(u|s), and a function f(·, ·), such that

I(U ;Y )− I(S;U) ≥ I(S; Ŝ) (82a)

E[de(S, f(U, S))] ≤ De (82b)

E[dr(S, Ŝ)] ≤ Dr. (82c)

These results follow from the characterization of the rate-distortion function of a source [42] and

the capacity of information embedding systems with distortion constraints as developed in [35] as

an extension of [18].

To appreciate the reduction in the achievable region, we consider our two example scenarios.

8.1.1 Example: Binary-Hamming Case

In this scenario, the rate-distortion function is [42]

R(Dr) = 1− h(Dr), (83)

while the information embedding capacity is (see [35]) the upper concave envelope of the function

gp(De) =











0, if 0 ≤ d < p,

h(De)− h(p), if p ≤ De ≤ 1/2,

(84)

i.e.,

C(De) =















gp(Dp)

Dp
De, if 0 ≤ De ≤ Dp,

gp(De), if Dp < De ≤ 1/2,

(85)

where Dp = 1− 2−h(p). Equating R in (83) to C in (85), we obtain a relation between Dr and De.

This curve is depicted in Fig. 6 for different reference channel parameters. As this figure reflects,

the optimum quantize-and-embed system performance lies strictly inside the achievable region for

the binary-Hamming scenario developed in Section 6, with the performance gap largest for the

cleanest reference channels.
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8.1.2 Example: Gaussian-Quadratic Case

In this scenario, the rate-distortion function is [42]

R(Dr) =











1
2 log

σ2

S

Dr
, 0 ≤ Dr ≤ σ2

S

0, Dr > σ2
S,

(86)

while the information embedding capacity is [19]

C(De) =
1

2
log

(

1 +
De

σ2
N

)

. (87)

Again, equating R in (86) to C in (87), we obtain the following relation between Dr and De for all

De > 0:

Dr =
σ2

S

(1 + De/σ2
N )

. (88)

This curve is depicted in Fig. 7 for different reference channel SNRs. This figure reflects that the

optimum quantize-and-embed system performance lies strictly inside the achievable region for the

Gaussian-quadratic scenario developed in Section 7. Likewise, the performance gap is largest for the

highest SNR reference channels. Indeed, comparing the inner bound (62) on the performance of the

optimum system with that of quantize-and-embed, i.e., (88), we see that while quantize-and-embed

incurs no loss at low SNR:
Dqe

r

Dr
→ 1 as

σ2
S

σ2
N

→ 0, (89)

at high SNR the loss is as much as SNR/2 for De ≥ σ2
N :

σ2
N

σ2
S

Dqe
r

Dr
→ 1

1 + De/σ2
N

≤ 1

2
as

σ2
S

σ2
N

→∞, (90)

where we have used Dqe
r to denote the quantize-and-embed reconstruction distortion (88).

Disadvantages of Quantize-and-Embed: The main disadvantage of quantize-and-embed sys-

tems as characterized by (82) seem to be that at high SNR and low encoding distortion, only a

few bits representing the original signal can be embedded in the source. Thus the resulting recon-

struction distortion is much higher than a system employing a joint source–channel–authentication
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coding strategy based on the principles in Section 5.

8.2 Fragile Watermarking Authentication Systems

Another popular authentication architecture is based on the idea of fragile watermarking [6] [13]

[4] [12]. A watermark message, M , known only to the encoder and decoder (and kept secret from

the attacker) is embedded into the source signal by the encoder. The decoder attempts to extract a

watermark, M̂ , from the received signal. If M̂ and M are close enough (e.g., the distortion between

M̂ and M using a scalar distortion measures is below some threshold), then the received signal is

declared authentic. Developing a complete information theoretic characterization of such schemes

is beyond the scope of this paper. Instead we point out that while fragile watermarking systems

may achieve significantly lower encoding and reconstruction distortions when the reference channel

is in effect, they also achieve significantly lower security.

Specifically, imagine that the received signal in a fragile watermarking system using encoding

distortion De is declared authentic. Various signal restoration algorithms (e.g., linear filtering or

techniques from the theory of coding remote sources [52]) can be use to enhance the received signal

and we denote the reconstruction as g(Y n,M). Let R denote the set of all possible values for

g(Y n,M). If |R| = 1 then the security requirement (1) will be satisfied and the attacker can not

influence the reconstruction. In this case, the reconstruction distortion will be at least as large as

in Theorem 1. As |R| increases, the reconstruction can more closely follow the channel output and

so (when the reference channel is in effect) the reconstruction distortion decreases, but the amount

of tampering possible by a malicious attacker increases. Hence while fragile watermarking systems

may allow a lower reconstruction distortion they provide a weaker type of security.

Essentially, arguments in favor of this type of security assume that if the changes in a signal (as

measured by a scalar distortion measure) are numerically insignificant they are also semantically

insignificant. Thus, even though an attacker may have tampered with a signal which is declared

authentic, the tampering is immaterial. A major drawback to this view is that current methods of

measuring distortion are extremely crude. Hence, even if a signal differs only slightly according to a

crude distortion measure, the meaning may be drastically altered. Conversely, routine degradations

such as re-sampling or compression which are semantically insignificant may introduce a large

numerical distortion. While more accurate distortion measures may mitigate these problems, there
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is always the concern that a malicious adversary will fool the system by finding a flaw in the

distortion measure.10

9 Layered Authentication: Broadcast Reference Channels

More elaborate authentication systems provide multiple layers of security, and arise naturally out of

the use of broadcast reference channel models. For such layered authentication systems, we might

reasonably seek the following characteristics, which generalize those developed earlier. Starting from

a channel input that is some fixed encoding of the source that incurs some distortion, for channel

outputs that are consistent with any of a fixed set of reference channels, a decoder produces an

authentic reconstruction of some corresponding fidelity. Otherwise, the decoder declares that an

authentic reconstruction is not possible.

For the purpose of illustration, we focus on the two-receiver memoryless degraded broadcast

channel [42] as our reference channel. For convenience, we refer to the strong channel as the “fine”

one, and the weak channel, which is a degraded version of the strong one, as the “coarse” one.

In this case, for any prescribed level of encoding distortion De, there is a trade-off between the

qualities Dc
r and Df

r of authentic reconstructions that can be achieved by decoders whose inputs

are consistent with the coarse and fine channels, respectively. In general, achieving smaller values

of Dc
r requires accepting larger values of Df

r and vice-versa. Using the ideas of this paper, one can

explore the fundamental nature of such trade-offs.

9.1 Achievable Distortion Regions

The scenario of interest is depicted in Fig. 8. As a natural generalization of its definition in the

single-layer context (2), an instance of the layered authentication problem consists of the tuple

{S, p(s),X,Y, p(yc|yf), p(yf |x), de(·, ·), dr(·, ·)} , (91)

10Inaccurate distortion measures are also a problem in measuring fidelity in other settings such as compression, de-
noising, and signal enhancement. For these applications, it seems unlikely that Nature will craft distortions specially
tailored to exploit the shortcomings of a particular distortion measure. But this is exactly what a malicious adversary
will do. Thus inaccurate distortion measures are particularly dangerous for authentication even though they may be
acceptable for other applications.
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Figure 8: Two-layered authentication system operation when the reference channel is in effect.
From the coarse and fine outputs of the degraded broadcast reference channel, the authentic re-
constructions Ŝn

c and Ŝn
f are produced. The common encoding obtained from the source Sn is Xn.

where, since our reference channel is a degraded broadcast channel, the reference channel law takes

the form

p(yn
c , yn

f |xn) = p(yn
c |yn

f ) p(yn
f |xn). (92)

Let Ŝn
c denote the authentic reconstruction when decoder input is consistent with the coarse

output of the reference channel, and let Ŝn
f denote the authentic reconstruction when decoder

input is consistent with the fine output of the reference channel. In turn, the corresponding two

reconstruction distortions are defined according to

Dc
r =

1

n

n
∑

i=1

dr(S
n, Ŝn

c ) and Df
r =

1

n

n
∑

i=1

dr(S
n, Ŝn

f ). (93)

The following theorem develops trade-offs between the encoding distortion De, and the two

reconstruction distortions (93) that are achievable.

Theorem 2 The distortion triple (De, D
c
r , D

f
r) lies in the achievable distortion region for the layered

authentication problem (91) if there exist distributions p(u, t|s) and p(x|u, t, s), and functions gc (·)
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and gf (·, ·) such that

I(U ;Yc)− I(S;U) ≥ 0 (94a)

I(T ;Yf |U)− I(S;T |U) ≥ 0 (94b)

E[de(S,X)] ≤ De (94c)

E[dr(S, gc (U))] ≤ Dc
r . (94d)

E[dr(S, gf (U, T ))] ≤ Df
r. (94e)

In this theorem, the achievable distortion region is defined in a manner that is the natural gener-

alization of that for single-layer systems, i.e., Definition 2.

In the interests of brevity and since it closely parallels that for the single-layer case, we avoid a

formal proof of this result. Instead, we sketch the key ideas of the construction.

Sketch of Proof:

First a codebook Cc is created for the coarse layer at rate Rc = I(U ; S) + 2γ where only 2n(Rc+γ)

codewords are marked as admissible as in Theorem 1. Then for each codeword, cc ∈ Cc, an additional
random codebook, Cf(cc) of rate Rf = I(T ; S|U)+2γ is created according to the marginal distribution p(t|u)
where only 2n(Rf+γ) codewords are marked as admissible.

The encoder first searches Cc for an admissible codeword cc jointly typical with the source and then
searches Cf(cc) for a refinement cf that is jointly typical with the source. The pair (cc, cf) is then mapped
into the channel according to p(x|u, t, s). By standard arguments the encoding will succeed with high
probability provided that Rc > I(U ; S) and Rf > I(T ; S|U).

When the received signal is consistent with either output of the reference channel, the decoder locates an
admissible codeword ĉc ∈ Cc jointly typical with the received signal. If the received signal is consistent with
the coarse output of the reference channel, in particular, the decoder then produces the coarse authentic
reconstruction Ŝn

c = gc (ĉc). However, if the received signal is consistent with the fine output of the reference
channel, the decoder then proceeds to locate an admissible ĉf ∈ Cf(ĉc) and produces the fine authentic
reconstruction Ŝn

f = gf (ĉc, ĉf).
By arguments similar to those used in the single-layer case (i.e., proof of Theorem 1), this strategy

achieves vanishingly small probabilities of successful attack, and when the reference channel is in effect
meets the distortion targets provided that Rc < I(U ; Yc) and Rf < I(T ; Yf |U).

9.2 Example: Gaussian-Quadratic Case

The Gaussian-quadratic case corresponds to the fine and coarse outputs of the reference channel

taking the forms Yf = X + N and Yc = Yf + V , respectively, where N and V are Gaussian random

variables independent of each other, as well as S and X.
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For this case, a natural approach to the layered authentication system design has the structure

depicted in Figure 9, which generalizes that of the single-layer systems developed in Section 7. The

encoder determines the codeword T n nearest the source Sn, then perturbs T n so as to reduce the

encoding distortion, producing the transmitted vector Xn. If the channel output stays within the

darkly shaded sphere centered about T n, e.g., producing Y n
f as shown, the decoder produces a

fine-grain authentic reconstruction from T n. If the channel output is outside the darkly shaded

sphere, but inside the encompassing lightly shaded sphere centered about U n, e.g., producing Y n
c

as shown, the decoder produces a coarse-grain authentic reconstruction from U n. If the channel

output is outside any shaded region, e.g., producing Zn, the decoder indicates that an authentic

reconstruction is not possible.

To illustrate a possible achievable distortion region for the layered authentication scenario, we

extend the Gaussian-Quadratic example from Section 7.

To develop the performance of such a system, we apply Theorem 2. In particular, we choose

the auxiliary random variables according to

U = S + A/α (95)

T = S + B/β (96)

X = S + A + B. (97)

where A and B are Gaussian random variables independent of S. Choosing gc (·) and gf (·, ·) to be

the minimum mean-square error estimates of S from U and (U, T ), respectively, yields

De = σ2
A + σ2

B (98)

Dc
r = σ2

S

(

1− E[SU ]2

E[S2]E[U2]

)

=
σ2

Sσ2
A

σ2
A + α2σ2

S

(99)

Df
r = σ2

S − ΛS,[UT ]Λ
−1
[UT ]Λ[UT ],S =

σ2
Sσ2

Aσ2
B

β2σ2
Sσ2

A + σ2
Aσ2

B + α2σ2
Sσ2

B

, (100)

where Λ with a single subscript denotes the covariance of its argument, and Λ with a subscript pair

denotes the cross-covariance between its arguments.

To produce Ŝn
c , a decoder essentially views B as additive channel noise. Therefore, we can
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immediately apply the arguments from Section 7.2 to obtain

I(U ;Yc)− I(S;U) =
1

2
log

σ2
A(σ2

A + σ2
S + σ2

N + σ2
V + σ2

B)

σ2
Aσ2

S(1− α)2 + (σ2
N + σ2

V + σ2
B)(σ2

A + α2σ2
S)

. (101)

From this we can solve for α as in the single-layer case of Section 7.2 by simply replacing σ2
T and

σ2
N with σ2

A and σ2
N + σ2

V + σ2
B, respectively, in (72).

Finally, since

I(S;T |U)− I(T ;Yf |U) = H(T |U, Yf)−H(T |U, S) = H(T,U, Yf)−H(U, Yf)−H(T,U, S)+H(U, S).

we see that (94b) implies
det(Λ[TUYf ])

det(Λ[UYf ])
≤

det(Λ[TUS])

det(Λ[US])
. (102)

By varying σ2
A, σ2

B and β such that (102) is satisfied we can trace out the volume of an achievable

distortion region. Fig. 10 shows slices of this three dimensional region by plotting the fine and

coarse reconstruction distortions Df
r and Dc

r for various values of the encoding distortion De. Note

that it follows from our single-layer inner bounds that for a particular choice of encoding distortion

De, the achievable trade-offs between Dc
r and Df

r are contained within the region

Dc
r ≥

σ2
S(σ2

N + σ2
V )

σ2
N + σ2

V +
(√

De + σS

)2 (103)

Df
r ≥

σ2
Sσ2

N

σ2
N +

(√
De + σS

)2 , (104)

where obviously the lower bound of (104) is smaller than that of (103).

A simple alternative to the layering system for such authentication problems is time-sharing,

whereby some fraction of time the encoder uses a codebook appropriate for the coarse reference

channel, and for the remaining time uses a codebook appropriate for the fine reference channel.

When the coarse reference channel is in effect, the decoder produces the coarse authentic recon-

struction for the fraction of time the corresponding codebook is in effect and produces zero the rest

of the time. When the fine reference channel is in effect, the decoder produces the fine authentic

reconstruction during the fraction of time the corresponding codebook is in effect, and produces

the coarse reconstruction for the remaining time (since the broadcast channel is a degraded one).
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However, as Fig. 10 also illustrates, this approach is in general particularly inefficient: the use of

such time-sharing results in a substantially smaller achievable region.

10 Concluding Remarks

While this paper explores suitable architectures for authentication systems, many aspects of the

detailed design and implementation of such systems remain to be addressed. As the wide array of

proposed systems demonstrates, building authentication systems requires tools from a variety of

fields including information theory, communication theory, signal processing and cryptography.

On the information theory side, analyzing systems without the i.i.d. assumption in the source

(e.g. image models with correlated pixel values) or the channel (e.g. blurs, smudges, or other

localized or geometric degradations) is an important area for investigation. Systems that take

advantage of correlations in the source sequence can likely be designed to be significantly more

robust to additive white Gaussian noise in the Gaussian-quadratic scenario of Section 7, for example.

Also, the current lack of accurate, tractable source and channel models for authentication systems

suggests that universal encoders or decoders which perform well regardless of the particular source

and/or channel (or those which perform well under mismatch conditions [53] [54]) could be especially

valuable. Finally, while the distortion region characterized by Theorem 1 in Section 4 represents

fundamental asymptotic limits, bounds for finite block length systems—possibly using techniques

in [37]—would also provide useful insights.

Examples of interesting future work in communication theory relating to authentication systems

includes the design and analysis of practical authentication codes approaching the fundamental

limits as well as investigating synchronization and registration techniques. Specifically, turbo-codes

or similar coding structures suitable for iterative decoding can be expected to closely approximate

the performance promised by the random coding argument used in Section 5.

Some signal processing issues of interest include appropriate source and channel models as well as

the choice of a good signal basis. For example, multi-scale models and associated wavelet expansions

have proven valuable in other areas of image, audio, and video processing and the multi-resolution

capabilities of such techniques could prove especially valuable for designing layered authentication

systems.
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Also, while we have described only private-key authentication systems, in practice, public-

key systems are often desirable. One approach to adapting our framework to public-key systems

is outlined in the appendix for the purpose of illustration. However, more generally the issue

of appropriate cryptographic tools and how they can best be combined with the other facets of

authentication remains largely unexplored. For example, focusing on computationally bounded

attackers may enlarge the achievable distortion region.

Finally, an interesting area of future research is the analysis of alternative notions of authenti-

cation using a different definition of security than in (1). More relaxed security requirements may

yield a larger distortion region or other compelling advantages. We believe that a similar analysis

for other notions of authentic (e.g., the notion of authenticity for fragile watermarking systems dis-

cussed in Section 8.2) or a form of Definition 1 requiring a finite but non-zero limit on the influence

of the channel on Ŝn) would be a major step forward in authentication research.

Appendix: Public-Key Adaptation of Private-Key Systems

To simplify the analysis we have studied private key systems where the encoder and decoder share a

secret key, θ, which is hidden from the attacker. In many practical applications, however, it is more

convenient to use public key systems where a public key θp is known to all parties (including the

attacker) while a signing key, θs, is known only to the encoder. The advantage of public key systems

is that while only the encoder possessing θs can encode, anyone possessing θp can decode and verify

a properly encoded signal. In this section, we briefly describe how a secret key authentication

system can be combined with a generic digital signature scheme to yield a public key system as

discussed in further detail in [48] [49].

A digital signature scheme consists of a signing function τ = S(m, θs) and verifying function

V(m, τ, θp). Specifically, the signing function maps an arbitrary length message m to a γ bit tag τ

using the signing key θs. The verifying function returns true (with high probability) when given a

message, public key, and tag generated using the signing function with the corresponding signing

key. Furthermore, it is computationally infeasible to produce a tag accepted by the verifier without

using the signing key. Many such digital signature schemes have been described in the cryptography

literature where τ requires a number of bits that is sub-linear in n or even finite.
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Encoding:

1. The key for the secret key authentication system is published along with the public key of

the digital signature scheme.

2. The encoder uses the original authentication system to map the source Sn to Υn(Sn).

3. For a system like the one described in Section 5.1, there are a finite number of possible

values for the authentic reconstruction Ŝn and the authentic reconstruction is a deterministic

function of Sn. Thus each reconstruction can be assigned a bit representation c(Ŝn) and the

encoder computes τ = S(c(Ŝn), θs) using the digital signature algorithm.

4. Finally the digital signature tag τ is embedded into Υn(Sn) using an information embedding

or digital watermarking algorithm. Since τ only requires a sub-linear number of bits, this

process incurs an asymptotically negligible encoding distortion.

Decoding:

1. The decoder extracts an estimate τ̂ of the embedded tag τ . Since the size of τ is sub-linear,

the probability that τ̂ 6= τ when the reference channel is in effect can be made negligible.

2. Next, the decoder uses the secret key authentication decoder to produce Ŝn and its bit

representation c(Ŝn).

3. The decoder checks whether the digital signature verifying algorithm V(c(Ŝn), τ̂ , θp) accepts

the received data as valid.

4. If so, then the decoder produces the authentic reconstruction Ŝn. Otherwise, the decoder

declares a decoding failure.

Security, Robustness, and Distortion: The security of the public key schemes is the same as

the security of the public key digital signature scheme used. Specifically, the only way an attacker

can fool the system is to find a matching Ŝn and τ accepted by the digital signature verifying

algorithm. The robustness and distortion of the public key system are asymptotically the same as

the underlying secret key system since embedded digital signature tag requires only a sub-linear

fraction of bits.
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