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Proof: Any & is a0-design, andp is al-design if and only if On the Asymptotic Performance of the Decorrelator
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which automatically holds i is symmetric. By Corollary 3.2p is a

2-design, and such@, 1-, 2-design is &-design if® is symmetrid.] Abstract—\We derive the asymptotic signal-to-interference ratio (SIR)

This result can be found in the literature (cf. [5] and [10]) of the decorrelator in the large system limit, both for the case in which the
. o e number of users exceeds the spreading gain and for the case in which the
In Eldar and Forney [6], the relationship between tight frame&gmper of users is less than the spreading gain. We show that, contrary to
and rank-one quantum measurements is investigated. It is showtiatis claimed in [1], [2], when the number of users exceeds the spreading
that rank-one generalized quantum measurements (or positive ofg@in and the decorrelator is defined in terms of the Moore—Penrose pseu-
ator-valued measures (POVMs)) correspond to tight frames. doinverse, the SIR doesiot converge to zero.
It is hoped, that by drawing attention to the fact that WBE se- Index Terms—Code-division multiple access (CDMA), decorrelator,
guences, isometric (normalized, uniform) tight frames ardksigns multiuser detection, signal-to-interference ratio (SIR), Wishart matrix.
are the same thing, that the respective communities can benefit from
each others’ endeavours. Clearly, such an object, which has appeared

independently in different areas is of interest, and deserves to be I INTRODUCTION
understood in this wider context. In a code-division multiple-access (CDMA) system, each user
transmits information by modulating a unique signature sequence.
ACKNOWLEDGMENT Often times, modeling the signature sequences as random can be

appropriate [2]-[4]. For example, the signature sequences may be

eudonoise (PN) sequences that span many symbol periods, or the
sighature sequences may be effectively random due to independent
multipath fading in the channel.
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Il. THE DECORRELATOR To evaluate the SIR, we decompose each compongnbf the

Consider anM -user white Gaussian synchronous CDMA Syster%ecorrelator output into

where each user transmits information by modulating a signature se- e = S 4l 4N 9)
quence. The discrete-time model for the received signsbiven by Tt e,
where the terms
r=8SAb+n

J'fz = [PV]mm,Ambm (10)
where S = [s1]s2]---|sn] is the N x M matrix of signatures s
with s,, € C~ being the signature vector of theith user, Ty = Z [Py]mkArbr (11)
A = diag(A1, ..., Ay ) is the matrix of received amplitudes with k#m
A, being the amplitude of therth user’'s signab=[b1, b2, ..., bas] 2V = [(S*S)"']fnS*n (12)

is the data vector with,,, being themth user’s transmitted symbol,

. i i ” 5
andn is a noise vector whose elements are independ&fto, o~). represent the desired signal, the MAI, and the noise, respectively. Here,
We assume that all data vectors are equally likely with covaridnce [me and[].. denote, respectively, thekth element and the:th

The decorrelator receiver [5] demodulates the information trans ' :

) i, - . olumn of the corresponding matrices, and we have used (4). From
mitted by each user by premultiplying the received vectorS3y (10)=(12), the terms>,, +1,, andz" have variances
where () denotes theMoore—Penrose pseudoinverg&0]. The '
matrix $7 can be expressed directly in terms of the singular value var(z2,) = [Py)2m A2, (13)
decomposition (SVD) of as follows. Let , ) N N
var(z,,) = [Py A7 [Py]n — [Py]nm An, (14)
S=U%V ) var(e) = *[(8"8) . (15)
wherel is a unitaryN x N matrix,V is a unitaryM x M matrix, and

. . . ’ N - ) The SIR at thenth output of the decorrelator is, therefore,
¥ is a diagonalV x M matrix with diagonal elements; > 0, i =

1, ..., r and0 otherwise, where is the rank ofS. Then [Py]2,. A2, (16)
Y = > Py P o "
- a- (S 8)f mm [Py fn-A Pylm =[Py ?777nA7n
st — ysip @) [(§°5)7] [Py A [Py]m — [Py
where &' is a diagonald x N matrix with diagonal elements lll. A SYMPTOTIC LARGE-SYSTEM PERFORMANCE
o i=1,..., ise. § . .
[ » +++» 7 ando otherwise. We may also expreSs as We now evaluate the SIR in the large-system limit when accurate
St = (5°5)'s" @) power control and random Gaussian signatures are used. In the case of
‘ accurate power control, i.ed = AI;, we can simplify (16) to
where - [Py)2n a7
. R mo T 2 * l ] _ 2
(S*S)] — VA‘V* (5) C[(S S) ]rnrn + [PV]mm [PV]nnn
. . o where
Here, A is a diagonalM x M matrix with diagonal elements; = .
o2 andAf is a diagonal matrix with diagonal elemeritg);, i = 1 — i (18)
1, ..., » and0 otherwise. If the columns of are linearly indepen- ¢ o

dent, then (4) reduces & = (§*5)7'8".

o is the received signal-to-noise ratio (SNR). Next, we consider the limit
The vector outpuk of the decorrelator is given by

M — so with 3 2 M /N held constant when the elements of fliex
M signature matrixS are independerd (0, 1/N). The following

— &t — gt t
z=58'r=5'54b+5"n. ©) theorem characterizes the SIR of the decorrelator in this limit.
Combining (2) with (3) we have that Theorem 1: Let the elements of th&/ x M signature matrixS
) be independerd\ (0, 1/N), and let the matrix of amplituded be
S'S=vVIV' =Py (7)  expressible asil;. Then, in the limit as\/ — oo with 3 2 M/N

. held constant, the SIR for each user at the decorrelator output satisfies
wherel is a diagonall/ x M matrix whose first: diagonal elements

are equal td and whose remaining diagonal elements are all egual o 1:—3 g<1
and P, denotes the orthogonal projection onto the range sBA& ) Tm — -1 i1 (19)
of §*, which we denote by. Note, that we also havg = N(S)L, (B-1)2+¢B° p>1

hereA'(S) denotes th I St Substituting (7) into (6 . . .
where'(S) denotes the null space ubstituting (7) into (6) Proof: The proof of Theorem 1 relies heavily on the following

z= PyAb+ S'n. ®) lemma involving Wishart matrices, which have t_he foh = S*S
where the elements & are independer@\ (0, ¢*). Although this

lemma can be found in the statistical literature (see, e.g., [12]), a direct

and straightforward proof is given in Appendix B. The lemma and its

which implies tha? = I.,, and from (M,Py = VV* = 1I,y.1In . . o
this case, the data componentiiis Ab so that all the multiple-access proof rely on the concepts of isotropically distributed vectors and ma-
' rices, which are reviewed in Appendix A.

interference (MAI) is eliminated. However, if the signature vectors a}e

linearly dependent, then < M and the off-diagonal elements &% I\We use the notatior—> to denote convergence in the mean-squéikd)
are not all equal t@, implying that there is MAI in the outputs. sense [11].

If the signature vector§s,,, } are linearly independent, then= M
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Lemma 1: Let the elements of aiy x M matrix S be independent
CN(0, o). Then the eigenvector matrix 8% = $*§ is isotropically
distributed unitary and independent of the eigenvalues.

To prove (19) we need to determine the limits[8*S)],... and
[Pv]rrnn .
From (5), the quantity($*8)],... can be written as

[(S*S)-‘-]an = [VATV*]HLNL = v:1A+v”l (20)

whereV and A are the eigenvector and eigenvalue matrices in the

eigendecomposition of the Wishart mat#k S andwv,,, is the mth
column of V*. Thus, using Lemma 1, we conclude tHat is an
isotropically distributed unitary matrix independent 4f. Since

v,,, iS a column of an isotropically distributed unitary matrix, from

Appendix A it follows thatw,, is an isotropically distributed unit
vector. Consequently,,. has the same distribution ag./z*z, where
z is an M-dimensional vector of independedt\’(0, 1) random
variables. Thus(§*S)'],... has the same distribution as

M

oz P /M
2*Atz J; 1=/
= (21)
> =P/ M
j=1
wherez; is thejth component of, and
L A, £0
oy = g7 ! # (22)
0, A;=0

with A; denoting thejth eigenvalue o5*S. To evaluate the limit of
(21) whenM — oc, we rely on the following pair of lemmas.

2311

whereE(g(\1)) is evaluated according to the probability density func-
tion fz(z) of (24).

Proof: Let
1 w— |
Ky = i ; 9(A;)¢; (29)
whereé; = ¢; — E(c¢;). Then
M
B(sm) =57 2:: B(9(\)E(¢) =0 (30)
nd
‘ 1 L& ,
E(ry) = e ]Zl ; E(g(X)g(Xe))E(Ejér)
=L i E(3*(\)E(E2)
M? = ’ J
= 4 B ONEE) (31)

where we have used the fact that thgs are identically distributed,
as are the®;’s. Since by assumptio®(¢7) < oo, it follows from
(32) that if E(¢*(\1)) is bounded as4 — oo, thenE(x3,) — 0
asM — oo. In [13], it is shown that for? # 1, the smallest nonzero
eigenvalue converges almost surelyXgi, = (1 — +/f)* and the
largest eigenvalue converges almost surelp\ig. = (1 + /3)2.
Therefore,E(g*(\1)) is bounded adf — oc as long ag/(0) < oo
andg(x) is bounded ofi(1 — /3)?, (1++/5)?], which is satisfied by
the assumptions of the lemma. We conclude thaty, .. E(x3;) =

0 so that

Lemma 2 [13]: If the ratio of the number of users to the signature

length is, or converges to, a constant
(23)

. M
Mhiuoo v = 3 € (0, o)

then the percentage of thié eigenvalues o8™* S that lie below: con-

verges to the cumulative distribution function of the probability density

function
fale) = 1= 370t + Y= '23:3[' — e
where
m=(1-v3) (25)
m=(1+7) (26)
and the operatdf]™ is defined according to
[u]t 2 max{0, u}. (27)

(32)

lim rky =FE(km) =0
M—oo

where the limit is to be understood in a mean-squared sense.
Combining (32) with (29)

| M
i Z g(Aj)e;
=

where the limits are to be understood in a mean-squared sense. From
Lemma 2

M
Ee) o) @9

= lim

lim =
M—oo

M—oo

M

Z g(Aj) = E(c1) /‘OC g(x) fa(x) da

j=1

lim E(c1)
Moo M

= E(c1)E(g(A1)) (34)
where we used the fact that fdf — oo the nonzero eigenvalués
are allinthe interval(1—+/3)?, (14++/3)?] [13], and the assumptions
of the lemma thag(0) < oc andg(x) is bounded ofi(1 —/3)%, (1+
v/3)?]. Combining (34) with (33) completes the proof of the lemma.

Applying Lemma 3 and the strong law of large numbers to the nu-

Lemma 3: Let{c; } denote a set of independent and identically disnerator and denominator of (21), respectively, and noting that in this

tributed (i.i.d.) random variables independent{of; } with E((c1 —

caseg(z) = 0 forz = 0 andg(x) = 1/x for z > 0 so thatg(x)

E(e1))?) < oo, where{);} denote the eigenvalues of a Wishart Masgatisfies the conditions of Lemma 3, we have

trix under the conditions of Lemma 2. Lg(:) be a function such that
g(0) < oo andg(x) < oo forz € [(1 —+/B)?, (14 /7)?]. Then, as
M — oo

M

> 9(\)e; T E(g(M)E(er)

7=1

1

U (28)

[(8°8) T 25 25

= E(a) (35)

Z1

asM — oo, whereE(«;) is evaluated according to the probability
density functionfs () of (24).
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Similarly, from (7),[Pv]mm can be written as W s
[PV]mm = [Vjv*]mm = v:zjvm (36)

which has the same distribution as
M

. 2 M g
z*Iz_ Zl‘7| 7|/ . T
TSy N
zi|?/M kS
=1 ! =
where E
< U SO
1, A #0 o :
i = ’ (38) 10-3'» Gl RS x  Simulated (N=128) }::::::3
0, )\j =(. S Theoretical (N — o) [
Applying Lemma 3 and the strong law of large numbers to the nume [ .. .
ator and denominator of (37), respectively, and noting that in this ca 4 : ,
g(z) = 0forz = 0 andg(x) = 1 for z > 0 so thatg(z) satisfies the 0.25 0.5 1 2
conditions of Lemma 3, we have Ratio of Number of Users to Signature Length,
(Py] mes, ) (39) Fig. 1. Theoretica(N — oo) and experimentally observédV = 128)
Vimm | 1|2 m performance of the decorrelator as a function@f = M/N, with

equal-power users, random signatures, QPSK symbols, and an SNR per bit of
asM — oo, whereE () is evaluated according to the probability7 dB.

density functionfs(z) of (24).

We now proceed to compuig(c: ) and E(u.). From (22) we have Lemma4: Letx, — 7, where{x,, } is a sequence of random vari-

that ables such thdtl/x,,| < B for all n, and# # 0. Then
E(ar) = lim P(A #0)E(1/M|A #0). (40) 1 1
M—oo m.s.
— == (46)
Using (24) T, z
1 3<1 Proof:
lim P(\ #0) = { L (41) : :
M—oco e 3> 1. 2 R
. p((2-2)-2((2))
Also, forg <1 T, T TnT
[ —m]t[n2 — 2]F B(T— 1)\’
hm E(l//\1|>\1 #0)= / \/ i dz <FE T)
(x—m)(mp2—2) B 5
/ 2mwBa? dx :EE (@ = a)”)
—0 47)
T1- ,3 (42)
‘ sincex, =3 T. O
and forg > 1
Substituting (44) and (45) into (17), and using the factthat< 1/¢
Jim  E(1/ M #0) d/ Vi - gﬂ;;’; — 2" da with Lemma 4 completes the proof of Theorem 1. O
In Fig. 1, we plot the theoretical asymptotic large-system bit-error
_ 5/" Vi —m)(np —z) rate (N — oo) of the decorrelator as a function of = M/N
o 27 B2 for quadrature phase-shift keying (QPSK) symbols, given by sub-
stituting (19) into the formula for the QPSK bit-error rate of a
=3_1 (43) symbol-by-symbol threshold detector for additive white Gaussian
P noise (AWGN) channels [15]
where the integrals are evaluated using [14]. Thus,
1 st P. = Q(\m) (48)
5°8) w5 E(a) =4 0 - (44)
(88 Im =5 B@0 = Ly where
Similarly o) / ey
y dt. (49)
o 1, p<1 e
[Plmm == E(ju1) = hm P\ #0)= E 8> 1. (45) The theoretical bit-error rate is remarkably consistent with the simu-

lated bit-error raté N = 128) of the decorrelator for QPSK symbols.
It is well known that ifz,, == T andy,, — 7, thena,, £y, —3 T+7 Itis evident from Fig. 1 that the SIR of the decorrelator does not con-
andzx, y» — Ty [11]. The following lemma which involves the con- verge to zero in the large-system limit fér> 1, since the probability
vergence ol /x,, is now required to complete the proof of Theorem 1of error clearly does not converge 1g2.
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APPENDIX A
|SOTROPICALLY DISTRIBUTED VECTORS ANDMATRICES

2313

We now focus on the right-hand side of (53). Note HafY is uni-
tary andA is diagonal, so that the right-hand side of (53) is an eigende-

composition. Now, sinc® is an isotropically distributed unitary matrix
In this appendix, we define the concept of isotropically distributeghqy* is a unitary matrix, the eigenvector mat#i& Y is an isotrop-
vectors and matrices and highlight the key properties that are useqdi@ly distributed unitary matrix. Furthermore, the eigenvector matrix
prove Lemma 1 and Theorem 1. A more detailed discussion canper s independent of the eigenvalue matkisbecausd’ is indepen-

found in [16].

Definition 1: An m-dimensional complex random vect@r is
isotropically distributed if its probability density is invariant to all
unitary transformations; i.ejf(¢) = f(©"¢) for all © such that
06 =1,.

dent ofA.
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density of¢ is a function of its magnitude but not its direction. If,
in addition, ¢ is constrained to be a unit vector, then the probability

density is [1]
) IN¢ N

s =" 5676 - ) 0 1

ande is conveniently generated lgy= z//z*z, wherez is anm-di- 3]

mensional vector of independefv’(0, 1) random variables.

Definition 2: Ann x m complex random matri®® is isotropically
distributed if its probability density is unchanged when premultiplied [4]
by ann x n unitary matrix; i.e.,f(®) = f(©*®) for all © such that
9*(_) — In- [5]

From the definition of an isotropically distributed matrix, it can be
shown that the probability density is also unchanged when the matrix

is postmultiplied by am: x m unitary matrix; i.e.,f(®) = f(®0) for [71
all ® such tha®*© = I,,,. Furthermore, by combining Definitions 1
and 2, we can readily see that the column vecto® afe themselves (8]
isotropically distributed vectors.
[l
APPENDIX B [10]
PROOF OFLEMMA 1
[11]
LetS = UXV" be the SVD [10] ofS, wherell is anN x N unitary
matrix, V is anM x M unitary matrix, ancE is a diagonalV x M [12]
matrix with diagonal elements;, > 0. Then [13]
W=8S=VAV" (51)
[14]
whereA = £*X is a diagonal matrix of eigenvalues®f, andV isa  [15]

matrix of eigenvectors of.

Let T denote an independent and isotropically distributed unitar;llG]
matrix. By premultiplying and postmultiplying (51) BY* and, re-
spectively, we have that

T"§"SY =YT"VAV'Y (52)

or equivalently

(ST)*(8ST) = (V)" A(V™Y). (53)

Let us examine the left-hand side of (53). Since the elemens of
areCN' (0, 0%), 8 is an isotropically distributed matrix. WitR being
isotropically distributed an@” being unitary,SY has the same distri-
bution asS, and, consequentlySY)*(SY) has the same distribution
asW = §°S.
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