
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2309

Proof: Any � is a0-design, and� is a1-design if and only if
n

i=1

�i = 0

which automatically holds if� is symmetric. By Corollary 3.2,� is a
2-design, and such a0-, 1-, 2-design is a3-design if� is symmetric.

This result can be found in the literature (cf. [5] and [10]).
In Eldar and Forney [6], the relationship between tight frames

and rank-one quantum measurements is investigated. It is shown
that rank-one generalized quantum measurements (or positive oper-
ator-valued measures (POVMs)) correspond to tight frames.

It is hoped, that by drawing attention to the fact that WBE se-
quences, isometric (normalized, uniform) tight frames and2-designs
are the same thing, that the respective communities can benefit from
each others’ endeavours. Clearly, such an object, which has appeared
independently in different areas is of interest, and deserves to be
understood in this wider context.
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On the Asymptotic Performance of the Decorrelator
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Abstract—We derive the asymptotic signal-to-interference ratio (SIR)
of the decorrelator in the large system limit, both for the case in which the
number of users exceeds the spreading gain and for the case in which the
number of users is less than the spreading gain. We show that, contrary to
what is claimed in [1], [2], when the number of users exceeds the spreading
gain and the decorrelator is defined in terms of the Moore–Penrose pseu-
doinverse, the SIR doesnot converge to zero.

Index Terms—Code-division multiple access (CDMA), decorrelator,
multiuser detection, signal-to-interference ratio (SIR), Wishart matrix.

I. INTRODUCTION

In a code-division multiple-access (CDMA) system, each user
transmits information by modulating a unique signature sequence.
Often times, modeling the signature sequences as random can be
appropriate [2]–[4]. For example, the signature sequences may be
pseudonoise (PN) sequences that span many symbol periods, or the
signature sequences may be effectively random due to independent
multipath fading in the channel.

In recent studies, asymptotic expressions for the signal-to-interfer-
ence ratio (SIR) of the decorrelator receiver [5] in the large system limit
have been derived, assuming random signature sequences and power
control. The large system limit implies that both the number of usersM
and the spreading gainN approach infinity with their ratio,� =M=N ,
held constant. In [1]–[4], [6] it was shown that for� < 1, the SIR for
each user at the decorrelator output converges toA2(1��)=�2, where
A2 is the received power and�2 is the noise variance. The case� > 1
is not analyzed in [3], [4], [6]; in [1], [2] it is claimed incorrectly that
in this case the SIR converges to0, where the decorrelator is defined in
terms of the Moore–Penrose pseudoinverse of the signature matrix.

In this correspondence, we derive the SIR for each user at the decor-
relator output for both� < 1 and� > 1 in a unified manner. After
reviewing the decorrelator in Section II, in Section III, we derive the
asymptotic SIR of the decorrelator in the large system limit for all�. In
particular, we show that the SIR does not converge to zero when� > 1.

The method of analysis we present is broadly applicable to other
multiuser detectors as well. For example, it can be used as an al-
ternative to methods in [1], [4] for deriving the asymptotic SIR for
the matched-filter detector, and it has been recently used to derive
the asymptotic SIR for the orthogonal multiuser detector [7] and the
covariance shaping multiuser detector [8], [9].
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II. THE DECORRELATOR

Consider anM -user white Gaussian synchronous CDMA system
where each user transmits information by modulating a signature se-
quence. The discrete-time model for the received signalrrr is given by

rrr = SSSAAAbbb+ nnn (1)

where SSS = [sss1jsss2j � � � jsssM ] is the N � M matrix of signatures
with sssm 2 N being the signature vector of themth user,
AAA = diag(A1; . . . ; AM ) is the matrix of received amplitudes with
Am being the amplitude of themth user’s signal,bbb=[b1; b2; . . . ; bM ]
is the data vector withbm being themth user’s transmitted symbol,
andnnn is a noise vector whose elements are independentCN (0; �2).
We assume that all data vectors are equally likely with covarianceIII .

The decorrelator receiver [5] demodulates the information trans-
mitted by each user by premultiplying the received vector bySSSy,
where (�)y denotes theMoore–Penrose pseudoinverse[10]. The
matrix SSSy can be expressed directly in terms of the singular value
decomposition (SVD) ofSSS as follows. Let

SSS = UUU���VVV � (2)

whereUUU is a unitaryN�N matrix,VVV is a unitaryM�M matrix, and
��� is a diagonalN �M matrix with diagonal elements�i > 0; i =
1; . . . ; r and0 otherwise, wherer is the rank ofSSS. Then

SSSy = VVV���yUUU� (3)

where ���y is a diagonalM � N matrix with diagonal elements
1=�i; i = 1; . . . ; r and0 otherwise. We may also expressSSSy as

SSSy = (SSS�SSS)ySSS� (4)

where

(SSS�SSS)y = VVV���yVVV �: (5)

Here,��� is a diagonalM � M matrix with diagonal elements�i =
�2i and���y is a diagonal matrix with diagonal elements1=�i; i =
1; . . . ; r and0 otherwise. If the columns ofSSS are linearly indepen-
dent, then (4) reduces toSSSy = (SSS�SSS)�1SSS�.

The vector outputxxx of the decorrelator is given by

xxx = SSSyrrr = SSSySSSAAAbbb+ SSSynnn: (6)

Combining (2) with (3) we have that

SSSySSS = VVV ~IIIVVV � = PV (7)

where~III is a diagonalM �M matrix whose firstr diagonal elements
are equal to1 and whose remaining diagonal elements are all equal0,
andPV denotes the orthogonal projection onto the range spaceR(SSS�)
of SSS�, which we denote byV . Note, that we also haveV = N (SSS)?,
whereN (SSS) denotes the null space ofSSS. Substituting (7) into (6)

xxx = PVAAAbbb+ SSSynnn: (8)

If the signature vectorsfsssmg are linearly independent, thenr = M
which implies that~III = IIIM , and from (7),PV = VVV VVV � = IIIM . In
this case, the data component inxxx isAbAbAb so that all the multiple-access
interference (MAI) is eliminated. However, if the signature vectors are
linearly dependent, thenr < M and the off-diagonal elements ofPV
are not all equal to0, implying that there is MAI in the outputs.

To evaluate the SIR, we decompose each componentxm of the
decorrelator output into

xm = xSm + xIm + xNm (9)

where the terms

xSm = [PV ]mmAmbm (10)

xIm =
k 6=m

[PV ]mkAkbk (11)

xNm = [(SSS�SSS)y]�mSSS
�nnn (12)

represent the desired signal, the MAI, and the noise, respectively. Here,
[�]mk and [�]m denote, respectively, themkth element and themth
column of the corresponding matrices, and we have used (4). From
(10)–(12), the termsxSm, xIm, andxNm have variances

var(xSm) = [PV ]
2
mmA

2
m (13)

var(xIm) = [PV ]
�
mAAA

2[PV ]m � [PV ]
2
mmA

2
m (14)

var(xNm) =�2[(SSS�SSS)y]mm: (15)

The SIR at themth output of the decorrelator is, therefore,


m=
[PV ]

2
mmA

2
m

�2[(SSS�SSS)y]mm+[PV ]�mAAA
2[PV ]m�[PV ]2mmA2

m

: (16)

III. A SYMPTOTIC LARGE-SYSTEM PERFORMANCE

We now evaluate the SIR in the large-system limit when accurate
power control and random Gaussian signatures are used. In the case of
accurate power control, i.e.,AAA = AIIIM , we can simplify (16) to


m =
[PV ]

2
mm

�[(SSS�SSS)y]mm + [PV ]mm � [PV ]2mm
(17)

where

1

�
=

A2

�2
(18)

is the received signal-to-noise ratio (SNR). Next, we consider the limit
M !1 with �

�
=M=N held constant when the elements of theN �

M signature matrixSSS are independentCN (0; 1=N). The following
theorem characterizes the SIR of the decorrelator in this limit.

Theorem 1: Let the elements of theN � M signature matrixSSS
be independentCN (0; 1=N), and let the matrix of amplitudesAAA be
expressible asAIIIM . Then, in the limit asM ! 1 with �

�
= M=N

held constant, the SIR for each user at the decorrelator output satisfies1


m
m:s:
�!

1��
�
; � � 1

��1
(��1) +��

; � > 1.
(19)

Proof: The proof of Theorem 1 relies heavily on the following
lemma involving Wishart matrices, which have the formWWW = SSS�SSS

where the elements ofSSS are independentCN (0; �2). Although this
lemma can be found in the statistical literature (see, e.g., [12]), a direct
and straightforward proof is given in Appendix B. The lemma and its
proof rely on the concepts of isotropically distributed vectors and ma-
trices, which are reviewed in Appendix A.

1We use the notation to denote convergence in the mean-squared( )
sense [11].
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Lemma 1: Let the elements of anN �M matrixSSS be independent
CN (0; �2). Then the eigenvector matrix ofWWW = SSS�SSS is isotropically
distributed unitary and independent of the eigenvalues.

To prove (19) we need to determine the limits of[(SSS�SSS)y]mm and
[PV ]mm.

From (5), the quantity[(SSS�SSS)y]mm can be written as

[(SSS�SSS)y]mm = [VVV���yVVV �]mm = vvv�m���
yvvvm (20)

whereVVV and��� are the eigenvector and eigenvalue matrices in the
eigendecomposition of the Wishart matrixSSS�SSS andvvvm is themth
column of VVV �. Thus, using Lemma 1, we conclude thatVVV � is an
isotropically distributed unitary matrix independent of���. Since
vvvm is a column of an isotropically distributed unitary matrix, from
Appendix A it follows thatvvvm is an isotropically distributed unit
vector. Consequently,vvvm has the same distribution aszzz=

p
zzz�zzz, where

zzz is an M -dimensional vector of independentCN (0; 1) random
variables. Thus,[(SSS�SSS)y]mm has the same distribution as

zzz����yzzz

zzz�zzz
=

M

j=1

�j jzj j2=M
M

j=1

jzj j2=M
(21)

wherezj is thejth component ofzzz, and

�j =

1

�
; �j 6= 0

0; �j = 0
(22)

with �j denoting thejth eigenvalue ofSSS�SSS. To evaluate the limit of
(21) whenM ! 1, we rely on the following pair of lemmas.

Lemma 2 [13]: If the ratio of the number of users to the signature
length is, or converges to, a constant

lim
M!1

M

N
= � 2 (0; 1) (23)

then the percentage of theM eigenvalues ofSSS�SSS that lie belowx con-
verges to the cumulative distribution function of the probability density
function

f�(x) = [1� ��1]+�(x) +
[x � �1]+[�2 � x]+

2��x
(24)

where

�1 = 1� �
2

(25)

�2 = 1 + �
2

(26)

and the operator[�]+ is defined according to

[u]+
�
= maxf0; ug: (27)

Lemma 3: Let fcjg denote a set of independent and identically dis-
tributed (i.i.d.) random variables independent off�jg with E((c1 �
E(c1))

2) < 1, wheref�jg denote the eigenvalues of a Wishart ma-
trix under the conditions of Lemma 2. Letg(�) be a function such that
g(0) <1 andg(x) <1 for x 2 [(1�p�)2; (1+p

�)2]. Then, as
M ! 1

1

M

M

j=1

g(�j)cj
m:s:�!E(g(�1))E(c1) (28)

whereE(g(�1)) is evaluated according to the probability density func-
tion f�(x) of (24).

Proof: Let

�M =
1

M

M

j=1

g(�j)~cj (29)

where~cj = cj � E(cj). Then

E(�M) =
1

M

M

j=1

E(g(�j))E(~cj) = 0 (30)

and

E(�2M) =
1

M2

M

j=1

M

k=1

E(g(�j)g(�k))E(~cj~ck)

=
1

M2

M

j=1

E(g2(�j))E(~c 2j )

=
1

M
E(g2(�1))E(~c 21) (31)

where we have used the fact that the�j ’s are identically distributed,
as are the~cj ’s. Since by assumptionE(~c21) < 1, it follows from
(32) that ifE(g2(�1)) is bounded asM ! 1, thenE(�2M ) ! 0
asM ! 1. In [13], it is shown that for� 6= 1, the smallest nonzero
eigenvalue converges almost surely to�min = (1 � p

�)2 and the
largest eigenvalue converges almost surely to�max = (1 +

p
�)2.

Therefore,E(g2(�1)) is bounded asM ! 1 as long asg(0) < 1
andg(x) is bounded on[(1�p�)2; (1+p�)2], which is satisfied by
the assumptions of the lemma. We conclude thatlimM!1 E(�2M) =
0 so that

lim
M!1

�M = E(�M) = 0 (32)

where the limit is to be understood in a mean-squared sense.
Combining (32) with (29)

lim
M!1

1

M

M

j=1

g(�j)cj = lim
M!1

E(c1)

M

M

j=1

g(�j) (33)

where the limits are to be understood in a mean-squared sense. From
Lemma 2

lim
M!1

E(c1)

M

M

j=1

g(�j) = E(c1)
1

0

g(x)f�(x)dx

= E(c1)E(g(�1)) (34)

where we used the fact that forM ! 1 the nonzero eigenvalues�j
are all in the interval[(1�p�)2; (1+p�)2] [13], and the assumptions
of the lemma thatg(0) <1 andg(x) is bounded on[(1�p�)2; (1+p
�)2]. Combining (34) with (33) completes the proof of the lemma.

Applying Lemma 3 and the strong law of large numbers to the nu-
merator and denominator of (21), respectively, and noting that in this
caseg(x) = 0 for x = 0 andg(x) = 1=x for x > 0 so thatg(x)
satisfies the conditions of Lemma 3, we have

[(SSS�SSS)y]mm
m:s:�! E(�1)E(jz1j2)

E(jz1j2) = E(�1) (35)

asM ! 1, whereE(�1) is evaluated according to the probability
density functionf�(x) of (24).
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Similarly, from (7),[PV ]mm can be written as

[PV ]mm = [VVV ~IIIVVV �]mm = vvv�m ~IIIvvvm (36)

which has the same distribution as

zzz�~IIIzzz

zzz�zzz
=

M

j=1

�j jzj j2=M
M

j=1

jzj j2=M
(37)

where

�j =
1; �j 6= 0

0; �j = 0.
(38)

Applying Lemma 3 and the strong law of large numbers to the numer-
ator and denominator of (37), respectively, and noting that in this case
g(x) = 0 for x = 0 andg(x) = 1 for x > 0 so thatg(x) satisfies the
conditions of Lemma 3, we have

[PV ]mm
m:s:�! E(�1)E(jz1j2)

E(jz1j2) = E(�1) (39)

asM ! 1, whereE(�1) is evaluated according to the probability
density functionf�(x) of (24).

We now proceed to computeE(�1) andE(�1). From (22) we have
that

E(�1) = lim
M!1

P (�1 6= 0)E(1=�1j�1 6= 0): (40)

Using (24)

lim
M!1

P (�1 6= 0) =
1; � � 1

1
�
; � > 1.

(41)

Also, for � � 1

lim
M!1

E(1=�1j�1 6= 0) =
1

0

[x � �1]+[�2 � x]+

2��x2
dx

=
�

�

(x� �1)(�2 � x)

2��x2
dx

=
1

1� �
(42)

and for� > 1

lim
M!1

E(1=�1j�1 6= 0) = �
1

0

[x � �1]+[�2 � x]+

2��x2
dx

= �
�

�

(x� �1)(�2 � x)

2��x2
dx

=
1

� � 1
(43)

where the integrals are evaluated using [14]. Thus,

[(SSS�SSS)y]mm
m:s:�!E(�1) =

1
1��

; � � 1

1
�(��1)

; � > 1.
(44)

Similarly

[PV ]mm
m:s:�!E(�1) = lim

M!1
P (�1 6= 0) =

1; � � 1

1
�
; � > 1.

(45)

It is well known that ifxn
m:s:�! x andyn

m:s:�! y, thenxn�yn m:s:�! x�y
andxnyn

m:s:�! xy [11]. The following lemma which involves the con-
vergence of1=xn is now required to complete the proof of Theorem 1.

Fig. 1. Theoretical( ) and experimentally observed( = 128)
performance of the decorrelator as a function of = , with
equal-power users, random signatures, QPSK symbols, and an SNR per bit of
7 dB.

Lemma 4: Letxn
m:s:�! x, wherefxng is a sequence of random vari-

ables such thatj1=xnj � B for all n, andx 6= 0. Then

1

xn

m:s:�! 1

x
: (46)

Proof:

E
1

xn
� 1

x

2

=E
x� xn
xnx

2

�E
B(x� xn)

x

2

=
B2

x 2
E (x� xn)

2

! 0 (47)

sincexn
m:s:�! x.

Substituting (44) and (45) into (17), and using the fact that
m � 1=�
with Lemma 4 completes the proof of Theorem 1.

In Fig. 1, we plot the theoretical asymptotic large-system bit-error
rate (N ! 1) of the decorrelator as a function of� = M=N
for quadrature phase-shift keying (QPSK) symbols, given by sub-
stituting (19) into the formula for the QPSK bit-error rate of a
symbol-by-symbol threshold detector for additive white Gaussian
noise (AWGN) channels [15]

Pe = Q (
p

m ) (48)

where

Q(y) =
1p
2�

1

y

e�t =2 dt: (49)

The theoretical bit-error rate is remarkably consistent with the simu-
lated bit-error rate(N = 128) of the decorrelator for QPSK symbols.

It is evident from Fig. 1 that the SIR of the decorrelator does not con-
verge to zero in the large-system limit for� > 1, since the probability
of error clearly does not converge to1=2.
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APPENDIX A
ISOTROPICALLY DISTRIBUTED VECTORS ANDMATRICES

In this appendix, we define the concept of isotropically distributed
vectors and matrices and highlight the key properties that are used to
prove Lemma 1 and Theorem 1. A more detailed discussion can be
found in [16].

Definition 1: An m-dimensional complex random vector��� is
isotropically distributed if its probability density is invariant to all
unitary transformations; i.e.,f(���) = f(�������) for all ��� such that
������� = IIIm.

Intuitively, an isotropically distributed complex vector is equally
likely to point in any direction in complex space. Thus, the probability
density of��� is a function of its magnitude but not its direction. If,
in addition,��� is constrained to be a unit vector, then the probability
density is

f(���) =
�(m)

�m
�(�������� 1) (50)

and��� is conveniently generated by��� = zzz=
p
zzz�zzz, wherezzz is anm-di-

mensional vector of independentCN (0; 1) random variables.

Definition 2: An n�m complex random matrix��� is isotropically
distributed if its probability density is unchanged when premultiplied
by ann � n unitary matrix; i.e.,f(���) = f(�������) for all ��� such that
������� = IIIn.

From the definition of an isotropically distributed matrix, it can be
shown that the probability density is also unchanged when the matrix
is postmultiplied by anm�m unitary matrix; i.e.,f(���) = f(������) for
all��� such that������� = IIIm. Furthermore, by combining Definitions 1
and 2, we can readily see that the column vectors of��� are themselves
isotropically distributed vectors.

APPENDIX B
PROOF OFLEMMA 1

LetSSS = UUU���VVV � be the SVD [10] ofSSS, whereUUU is anN�N unitary
matrix,VVV is anM �M unitary matrix, and��� is a diagonalN �M
matrix with diagonal elements�i � 0. Then

WWW = SSS�SSS = VVV���VVV � (51)

where��� = ������� is a diagonal matrix of eigenvalues ofWWW , andVVV is a
matrix of eigenvectors ofWWW .

Let ��� denote an independent and isotropically distributed unitary
matrix. By premultiplying and postmultiplying (51) by���� and���, re-
spectively, we have that

����SSS�SSS��� = ����VVV���VVV ���� (52)

or equivalently

(SSS���)�(SSS���) = (VVV ����)����(VVV ����): (53)

Let us examine the left-hand side of (53). Since the elements ofSSS

areCN (0; �2), SSS is an isotropically distributed matrix. WithSSS being
isotropically distributed and��� being unitary,SSS��� has the same distri-
bution asSSS, and, consequently,(SSS���)�(SSS���) has the same distribution
asWWW = SSS�SSS.

We now focus on the right-hand side of (53). Note thatVVV ���� is uni-
tary and��� is diagonal, so that the right-hand side of (53) is an eigende-
composition. Now, since��� is an isotropically distributed unitary matrix
andVVV � is a unitary matrix, the eigenvector matrixVVV ���� is an isotrop-
ically distributed unitary matrix. Furthermore, the eigenvector matrix
VVV ���� is independent of the eigenvalue matrix��� because��� is indepen-
dent of���.
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