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Abstract— We propose a new low-complexity strategy for ap-
proaching the matched filter bound on most practical ISI chan-
nels. At the transmitter, a form of channel-independent precod-
ing is introduced to perform frequency-interleaving, which ap-
propriately conditions the channel. At the receiver, a very low-
complexity iterated-decision equalizer [1] is used. As an illus-
tration, we use the system to effectively attain the matched filter
bound on the1 + D channel without the use of error-control cod-
ing.

I. INTRODUCTION

In this paper, we introduce a strategy for approaching the
matched filter bound on practical intersymbol interference (ISI)
channels with finite energy impulse responses. At the transmit-
ter, frequency-interleaving is used as a precoding step, and we
note that this precoding does not require any knowledge of the
channel impulse response or the noise level. At the receiver, an
iterated-decision equalizer [1] is used.

In Section II, we summarize the form of iterated-decision
equalizer of interest, which exploits the receiver’s knowledge
of the channel impulse response [1]. In Section III, we develop
“frequency-interleaved encoding,” and describe how it can be
used in conjunction with the iterated-decision equalizer. We
analyze the performance and complexity of the proposed sys-
tem in Sections III-A and III-B respectively. We emphasize
that throughout this paper, the transmitter has no knowledge of
the channel, which is usually the case for reasonably rapidly
time-varying channels.

II. THE ITERATED-DECISION EQUALIZER

In the discrete-time baseband model of the pulse amplitude
modulation (PAM) communication system we consider, the
transmitted data is a white stream of symbols x[n], each with
energy Es. The symbols x[n] are corrupted by a convolution
with the impulse response of the channel, a[n], and by additive
noise, w[n], to produce the received symbols

r[n] =
∑

k

a[k]x[n− k] + w[n]. (1)

The impulse response a[n] is normalized to have unit energy,
and the noise w[n] is a zero-mean, complex-valued, circularly
symmetric, stationary, white Gaussian noise sequence with
variance N0 that is independent of x[n].

The iterated-decision equalizer processes the received data
in a block-iterative fashion. Specifically, during each iteration
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or “pass,” a linear filter is applied to a block of received data,
and tentative decisions made in the previous iteration are then
used to construct and subtract out an estimate of the ISI. The
resulting ISI-reduced data is then passed on to a slicer, which
makes a new set of tentative decisions. With each successive it-
eration, increasingly refined hard decisions are generated using
this strategy.

The detailed structure of the iterated-decision equalizer is
depicted in Fig. 1. The parameters of all systems and signals
associated with the lth pass are denoted using the superscript
l. On the lth pass of the equalizer where l = 1, 2, 3, . . ., the
received data r[n] is first processed by a linear filter bl[n], pro-
ducing the sequence

r̃l[n] =
∑

k

bl[k]r[n− k]. (2)

Next, an estimate ẑl[n] of the ISI is constructed, where

ẑl[n] =
∑

k

dl[k]x̂l−1[n− k] (3)

with dl[n] being a noncausal filter. (In subsequent analysis, we
will show that x̂0[n] is never required for the first iteration, so
the sequence may remain undefined.) Since ẑl[n] is intended to
be some kind of ISI estimate, we restrict attention to the case
in which dl[0] = 0. The estimate ẑl[n] is subtracted from r̃l[n]
and the difference is scaled by 1/µl to remove an estimation
bias, i.e.,

x̃l[n] =
1
µl

(r̃l[n] − ẑl[n]). (4)

Finally, the slicer generates the hard decisions x̂l[n] from x̃l[n]
using a symbol-wise minimum-distance rule.

Since the equalizer uses a symbol-by-symbol decision de-
vice, a natural equalizer design strategy involves maximizing
the signal-to-interference+noise ratio (SINR) at the slicer over
all Bl(ω) and Dl(ω) at each iteration, where the SINR at the
lth iteration is defined as

γl �
=

Es

E[|x̃l[n] − x[n]|2] . (5)

r[n]
r̃l[n] x̃l[n] x̂l[n]

ẑl[n]
x̂l−1[n]dl[n]

bl[n]
1
µl

Fig. 1. Iterated-decision equalizer structure.



Let x[n] and x̂l−1[n] be sequences of zero-mean uncorrelated
symbols, each with energy Es; and let the normalized correla-
tion between the two sequences be expressed in the form

E[x∗[n] · x̂l−1[k]]
Es

= ρl−1
x δ[n− k]. (6)

Then the optimal filters are

Bl(ω) ∝ A∗(ω)
N0 + Es(1 − (ρl−1

x )2)|A(ω)|2 (7)

D(ω) = ρl−1
x

(
A(ω)Bl(ω) − µl

)
(8)

where

µl =
1
2π

∫ π

−π

A(ω)Bl(ω)dω. (9)

The maximum SINR is thus

γl =

(
1

1
2π

∫ π

−π
1

1+αl(ω)
dω

− 1

)
· 1
1 − (ρl−1

x )2
(10)

where

αl(ω) =
Es(1 − (ρl−1

x )2)|A(ω)|2
N0

. (11)

Furthermore, the slicer input x̃l[n] satisfies, for each n,

x̃l[n] = x[n] + vl[n] (12)

where vl[n] is complex-valued, zero-mean, and uncorrelated
with the input symbol stream x[n], having variance

var vl[n] =
N0

2π

∫ π

−π

∣∣∣∣Bl(ω)
µl

∣∣∣∣
2

dω

+
Es(1 − (ρl−1

x )2)
2π

∫ π

−π

∣∣∣∣A(ω)Bl(ω)
µl

− 1
∣∣∣∣
2

dω. (13)

The optimal Dl(ω) is intuitively satisfying. The parame-
ter ρl−1

x describes our confidence in the quality of the estimate
x̂l−1[n]. If x̂l−1[n] is a poor estimate of x[n], then ρl−1

x will
in turn be low, and consequently a smaller weighting is applied
to the ISI estimate that is to be subtracted from r̃l[n]. On the
other hand, if x̂l−1[n] is an excellent estimate of x[n], then
ρl−1

x ≈ 1, and nearly all of the ISI is subtracted from r̃l[n].
Note that the feedback branch is not used during the first pass
because ρ0

x = 0, so the sequence x̂0[n] does not need to be
defined.

If the cascade of the ISI channel and l iterations of the equal-
izer is treated as an additive white Gaussian noise (AWGN)
channel, then we have the following convenient iterative algo-
rithm for determining the set of correlation coefficients ρl

x to
be used at each iteration, and simultaneously predicting the as-
sociated sequence of symbol error probabilities:

1) Set ρ0
x = 0 and let l = 1.

2) Compute the SINR γl at the slicer input on the lth decod-
ing pass from ρl−1

x via (10) and (11).

3) Approximate the symbol error probability Pr(εl) at the
slicer output from γl using the appropriate formula for
the symbol error rate of a symbol-by-symbol threshold
detector for AWGN channels [2]. For M -PSK,

Pr(εl) = 2Q
(
sin

( π

M

) √
2γl

)
, (14)

where Q(v) = 1√
2π

∫ ∞
v

e−t2/2dt. For square M -QAM,

Pr(εl) = 1 −

1 − 2

(
1 − 1√

M

)
Q




√
3γl

M−1







2

.

(15)
4) Compute the normalized correlation coefficient ρl

x be-
tween the symbols x[n] and the decisions x̂l[n] generated
at the slicer via the approximation

ρl
x ≈ 1 − 2 sin2

( π

M

)
Pr(εl) (16)

for M -PSK or

ρl
x ≈ 1 − 3

M − 1
Pr(εl) (17)

for square M -QAM.
5) Increment l and go to step 2.

III. THE ITERATED-DECISION EQUALIZER WITH

FREQUENCY-INTERLEAVED ENCODING

The role of frequency-interleaving is to effectively transform
any channel into a channel well-suited for use with the iterated-
decision equalizer described in Section II.

Figure 2 depicts the cascade of the transmitter, ISI channel,
and the receiver front end when frequency-interleaved encod-
ing is used with the iterated-decision equalizer. At the trans-
mitter, a sequence of N data symbols x[n] is interleaved in the
frequency domain, so that the time sequence xp[n] correspond-
ing to the N -point discrete Fourier transform (DFT) Xp[k] is

obtained, where Xp[k]
�
= X[p(k)], p(·) is a permutation of

the set S = {0, 1, 2, . . . , N − 1}, and X[k] is the DFT of
x[n]. Appended to the time sequence is a cyclic prefix of length
L − 1, where L is the length of the channel impulse response
and whose purpose will be explained shortly. The resulting
signal xp[n] is transmitted over the ISI channel. The symbols
xp[n] are corrupted by a convolution with the impulse response
of the channel, a[n], and by additive noise, w[n], to produce
the received symbols

rp[n] =
∑

k

a[k]xp[n− k] + w[n]. (18)

The impulse response a[n] is normalized to have unit energy,
and the noise w[n] is a zero-mean, complex-valued, circularly
symmetric, stationary, white Gaussian noise sequence with
variance N0 that is independent of x[n]. At the receiver front
end, the cyclic prefix is removed from the sequence rp[n], and



the remaining sequence is deinterleaved in the frequency do-
main, so that the N -point DFT R[k] is obtained. The relation-
ship between R[k] and X[k] is then

R[k] = Ap−1 [k]X[k] + Wp−1 [k], (19)

where Ap−1 [k]
�
= A[p−1(k)] and Wp−1 [k]

�
= W [p−1(k)],

p−1(·) is the inverse permutation of p(·), and A[k] and W [k]
are the DFTs of a[n] and w[n] respectively. Note that the use
of a cyclic prefix causes X[k] to be pointwise multiplied by
Ap−1 [k].

Though frequency-interleaved encoding has similarities with
OFDM systems that do not know the channel at the transmit-
ter, it is important to emphasize that the motivation and per-
formance of the two are different. An uncoded OFDM sys-
tem is designed to circumvent the need for equalization, but
does not achieve the matched filter bound unless the attenuation
in all subbands is equal (i.e., the channel is flat). Frequency-
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Fig. 2. The cascade of the transmitter, ISI channel, and receiver front end
when frequency-interleaved encoding is used with the iterated-decision equal-
izer.
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Fig. 3. The structure of the iterated-decision equalizer when frequency-
interleaved encoding is used.

interleaved encoding, on the other hand, is related to a power-
and bandwidth-efficient signal space diversity technique that
makes transmitted signals insensitive to fading channels [3].
The DFT matrix operation at the transmitter in Fig. 2 is equiv-
alent to the rotation matrix in [3], thereby creating a diversity
order of up to N . The remaining blocks in Fig. 2 implement the
pointwise multiplication of X[k] with an interleaved version of
A[k]. Interleaving destroys the correlation in A[k], similar in
purpose to the interleaving proposed in [3] to destroy corre-
lation among the channel fading coefficents. As we will see
later in this section, frequency-interleaved encoding can con-
vert a channel for which maximum-likelihood sequence detec-
tion (MLSD) cannot achieve the matched filter bound into a
channel for which the bound can be asymptotically approached.
However, MLSD for a channel with N parameters is an in-
tractable problem for large N .

The equalizer described in Section II is a low-complexity
technique that can be used after the receiver front end to ap-
proximate MLSD, with several modifications. First, the chan-
nel to be equalized is now ap−1 [n] rather than a[n]. Second, all
the filtering is done in the DFT domain as illustrated in Fig. 3.
Third, the integrals of Fourier transforms have been replaced
by sums of the frequency samples of the corresponding DFTs.
Thus, the optimal filters are

Bl
p−1 [k] ∝ A∗

p−1 [k]

N0 + Es(1 − (ρl−1
x )2)|Ap−1 [k]|2 (20)

Dl
p−1 [k] = ρl−1

x

(
Ap−1 [k]Bl

p−1 [k] − µl
)

(21)

where

µl =
1
N

N−1∑
i=0

A[i]Bl[i], (22)

and the maximum SINR is

γl =

(
1

1
N

∑N−1
k=0

1
1+αl[k]

− 1

)
· 1
1 − (ρl−1

x )2
(23)

where

αl[k] =
Es(1 − (ρl−1

x )2)|A[k]|2
N0

. (24)

The slicer input x̃l[n] satisfies, for each n,

x̃l[n] = x[n] + vl[n] (25)

where vl[n] is complex-valued, zero-mean, and uncorrelated
with the input symbol stream x[n], having variance

var vl[n] =
N0

N

N−1∑
k=0

∣∣∣∣Bl[k]
µl

∣∣∣∣
2

+
Es(1 − (ρl−1

x )2)
N

N−1∑
k=0

∣∣∣∣A[k]Bl[k]
µl

− 1
∣∣∣∣
2

. (26)

Furthermore, the iterative algorithm for determining the se-
quence of ρl

x remains the same as in Section II, except that
γl is now computed in Step 2 from ρl−1

x via (23) and (24).



For the remainder of this paper, we consider the special
case in which p(·) is a random permutation of the set S =
{0, 1, 2, · · · , N−1}, with all permutations being equally likely.
In this case, the frequency-interleaving creates an effective
channel that has some special properties. In particular, it can
be shown that the coefficients of the resulting effective channel
ap−1 [n] are uncorrelated. Given that the effective channel can
be expressed as

ap−1 [n] =
1
N

N−1∑
k=0

Ap−1 [k]ej 2πk
N n =

1
N

N−1∑
k=0

A[k]ej
2πp(k)

N n

(27)
for 0 ≤ n ≤ N − 1, the second-order statistics are given by
E[ap−1 [n]] = a[0]δ[n] and

E[ap−1 [n]a∗p−1 [m]] =




|a[0]|2 n = m = 0
1

N−1

∑N−1
i=1 |a[i]|2 n = m �= 0
0 otherwise

(28)
where the expectations are over all permutations.

In light of the fact that the coefficients of the effective chan-
nel ap−1 [n] are uncorrelated, it is reasonable to expect that the
effective noise process vl[n] at the slicer input becomes white
in the limit as N → ∞. This is indeed the case, as described
by the following theorem whose proof is in [4] and is omitted
due to space constraints.

Theorem 1: Let p be a random permutation of the set S =
{0, 1, 2, . . . , N−1}, with all permutations being equally likely.
Then, as N → ∞, we have that the slicer input x̃l[n] in (25)
satisfies, for each n, 1

x̃l[n] m.s.−→ x[n] + vl[n] (29)

where vl[n] is not only a complex-valued, zero-mean sequence
uncorrelated with x[n] having variance (26), but also a se-
quence that is marginally Gaussian and white.

Thus, treating the cascade of the frequency-interleaved chan-
nel with the equalizer as an AWGN channel in Step 3 of the
iterative algorithm for determining ρl

x is reasonably well jus-
tified. Note also that (L − 1)/N → 0 as N → ∞, so the
overhead for the cyclic prefix becomes negligible.

Essentially, the system described in this section transforms
an arbitrary ISI channel into a “good” channel with very high
probability, where “good” means that the matched filter bound
can be asymptotically achieved at high signal-to-noise ratio
(SNR) using the equalizer described in Section II.

A. Performance

For illustration purposes, our simulations and plots in this
section are based on the 1+D channel (i.e., a[n] = δ[n]/

√
2+

δ[n − 1]/
√

2) with N = 256 and L = 2, unless otherwise
stated.

The analysis of the iterative nature of the equalizer is analo-
gous to the analysis presented in [1]. From Steps 2 and 3 of the

1We use the notation
m.s.−→ to denote convergence in the mean-square sense.
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Fig. 4. Iterated-decision equalizer performance with frequency-interleaved
encoding. The successively lower solid curves plot QPSK symbol error rate as
a function of ρx for the 1 + D channel at SNR’s of 7,10, and 12 dB respec-
tively. Along each curve, ◦’s identify the theoretically predicted decreasing
error rates achieved with l = 1, 2, . . . decoding passes, and the intersections
with the dashed line are the steady-state values (l → ∞). The associated
experimentally obtained values are depicted using ×’s.

algorithm to compute ρl
x, we see that Pr(εl) can be expressed

as Pr(εl) = G(ζ, ρl−1
x ) where 1/ζ is defined as the received

SNR, Es/N0. In Fig. 4, the successively lower solid curves
plot G(ζ, ρx) as a function of 1/(1 − ρx) for various values of
1/ζ. Meanwhile, from Step 4 of the algorithm, Pr(εl) can be
expressed as Pr(εl) = H(ρl

x), which corresponds to the dashed
line in Fig. 4. At a given SNR 1/ζ, the sequence of error prob-
abilities Pr(εl) and correlation coefficients ρl

x can be obtained
by iterating horizontally and vertically between the appropri-
ate solid curve and the dashed line. The error rate performance
for a given 1/ζ eventually converges to a steady-state value of
Pr(ε∞), corresponding to the intersection of the dashed line
and the appropriate solid curve in Fig. 4. It is significant that
few passes are required to approximately achieve steady state,
since the amount of computation is directly proportional to the
number of passes required.

We now discuss the high-SNR (ζ → 0) limit of the SINR
expression in (23) for fixed ρx. For a particular channel A[k],
let β be the ratio of the total number of DFT points, N , to the
number of nonzero DFT points. As ζ → 0 with ρx fixed, it can
be shown [4] that

γ → 1
β − 1

· 1
1 − (ρx)2

. (30)

Since this limit is approached from below, it is a convenient
upper bound on γ for any ζ.

The limit of (23) as ρx → 1 for fixed ζ has also been
shown [4] to be

γ → 1
ζ
. (31)

Thus (30) and (31) are two upper bounds on γ, correspond-
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Fig. 5. High SNR performance limits of the iterated-decision equalizer with
frequency-interleaved encoding. The solid curve plots the QPSK symbol error
rate as a function of ρx for a bandpass channel with β = 1.641 at an SNR per
bit of 12 dB, and ◦’s identify the theoretically predicted decreasing error rates.
The dash-dot curves indicate the high-SNR limits of performance.

ing to lower bounds on Pr(ε). These bounds are illustrated in
Fig. 5 for an ideal bandpass channel with β = 1.641, where
the solid curve corresponds to (23), the dash-dot horizontal
line corresponds to (31), and the dash-dot curve corresponds
to (30).

We now examine the conditions under which the iterated-
decision equalizer with frequency-interleaved encoding can
achieve the matched filter bound. First, from Fig. 5, we ob-
serve that a necessary condition for the matched filter bound to
be achieved is that the dash-dot curve corresponding to (30) lie
completely below the dashed curve. This is the case for vir-
tually all practical fullband channels, where β ≈ 1. Second,
the convergence in (31) must occur for small enough values of
1/(1 − ρx) so that γ∞ ≈ 1/ζ; i.e., convergence of the solid
curve to the horizontal dash-dot curve in Fig. 5 must occur to
the left of the dashed curve. This is indeed the case at high
SNR, as shown in [4].

In Fig. 6, we present the bit-error rate as a function of SNR
for the iterated-decision equalizer with frequency-interleaved
encoding. The iterated-decision equalizer with frequency-
interleaved encoding clearly outperforms various other equaliz-
ers, including MLSD and the iterated-decision equalizer with-
out encoding, and indeed approaches the matched filter bound
at high SNR.

One might wonder whether frequency-interleaved encoding
can be used with various other equalizers to produce a simi-
lar gain in performance. In fact, if such encoding is used in
conjunction with a linear equalizer (LE) or decision-feedback
equalizer (DFE), there is no change in performance. The reason
is that the channel affects the mean square slicer error of both
kinds of equalizers via a frequency average [5], which remains
constant whether the channel is A[k] or Ap−1 [k].

B. Complexity

Without frequency-interleaving, systems with iterated-
decision equalization have a complexity that is essentially lin-
ear in block length N for a given channel and SNR. When fre-
quency interleaving is incorporated, the complexity is propor-
tional to N logN . However, the complexity does not depend
directly on the constellation size. By contrast, the Viterbi algo-
rithm which implements MLSD has complexity NML, where
M is the signal constellation size and L is the length of the
channel.

The actual savings can be dramatic in practice on typical
channels. For example, when N = 256, M = 4, and
L = 5, and we perform 10 iterations of the iterated-decision
equalizer (which is typically more iterations than needed), the
iterated-decision equalizer with frequency-interleaved encod-
ing is roughly an order of magnitude less complex than the
Viterbi algorithm with the same parameters. The difference
is even more dramatic with larger signal constellations. When
M is increased to 64, the complexity of the iterated-decision
equalizer with frequency-interleaved encoding remains un-
changed, but the Viterbi algorithm becomes an additional 6 or-
ders of magnitude more complex.
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