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Abstract—Solitons are eigenfunction solutions to certain non-
linear wave equations that arise in a variety of natural and man-
made systems. Their rich properties and tractability make them
an intriguing component of such systems, often describing large-
scale or long-term behavior of natural systems, or the information
content in certain communication or signal processing systems.
However, it is often difficult to detect or estimate the parameters
of solitons in such systems due to the presence of strong nonsoliton
components or the nonlinear interaction of multiple solitons.
The objective of this paper is to develop and investigate the
detection and estimation of soliton signals. As a framework for
this study, we consider using these nonlinear systems as both
signal generators and signal processors in a form of multiplexed
soliton communication. In contrast to more conventional uses of
solitons in a communications context, our communication system
uses soliton systems for signal generation and multiplexing for
transmission over traditional linear channels. In addition to their
mathematical tractability and the simplicity of the analog circuits
used to generate and process them, we show that the soliton
signal dynamics may also provide a mechanism for decreasing
transmitted signal energy while enhancing signal detection and
parameter estimation performance.

Index Terms—Estimation, modulation, multiplexing, nonlinear
circuits, signal detection, solitons.

I. INTRODUCTION

SOLITONS are stable, mode-like solutions to a special class
of nonlinear wave equations that can be solved analytically

using a technique known as “inverse scattering” [1]. The
inverse scattering transform can be interpreted as a nonlinear
Fourier analysis for these systems, which decompose wave
dynamics into a superposition of normal modes. These normal
modes are solitons, and their particle-like properties have been
observed in a variety of natural phenomena including ocean
and plasma waves [2], [3], crystal lattice vibrations [4], and
energy transport in proteins [2]. Solitons also describe the
behavior of a variety of man-made systems, including super-
conducting transmission lines [5], nonlinear circuits [6], [7],
ultrafast electronics and optoelectronics [8], [9], and surface
acoustic wave devices [10].
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From an engineering standpoint, these nonlinear wave equa-
tions provide useful models for analyzing natural phenomena
as well as the behavior of certain electrical and physical sys-
tems. They also constitute building blocks for more complex,
yet analytically tractable, signal processing or communication
systems. However, in many contexts, it is often difficult
to observe solitons in physical systems with rich dynamics
since solitons can be masked by strong nonsoliton modes.
For example, solitons present as internal waves or as surface
waves in many ocean environments can be obscured by
energetic radiation modes [11]. In addition, when multiple
interacting solitons are present, it can be difficult to resolve
or measure them, as is the case for densely wavelength-
multiplexed optical solitons in fiber [12]. For a number of
applications, it is important to develop effective techniques
for detecting and estimating the parameters of solitons from
noisy measurements.

Recently, circuit implementations of certain nonlinear sys-
tems that can generate and process analog signals containing
solitons, or “soliton signals,” were developed in [13] and
were presented in [14]. The focus of that paper is on the
implementation of a class of soliton systems with analog
circuitry and a statistical characterization of their operation in
the presence of additive disturbances. In this paper, parameter
estimation and detection of soliton signals are considered for
this class of systems.

As a framework for exploring detection and estimation of
soliton signals, we consider using these nonlinear systems as
both signal generators and signal processors in a new multi-
plexed communication system over traditional linear channels
such as coaxial cable or radio frequency broadcast. In the
process, we suggest a speculative but plausible communication
paradigm in which the parameters of soliton signals are modu-
lated and the nonlinear interaction among solitons is exploited
to multiplex signal streams. Parameter estimation and detection
for these soliton signals then directly address many of the
performance aspects of the proposed communication system.

A plausible scenario in which such a soliton multiplexing
system might be used is one where multiple signals or data
streams are present at a transmitter that can efficiently combine
and transmit them over a wideband linear channel. Multiplex-
ing strategies that combine data and jointly encode or modulate
them are capable of exploiting the additional coordination for
enhanced receiver performance. While joint encoding (and
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decoding) of multiple streams in general has a complexity that
increases with the number of streams, the soliton modulation
and multiplexing techniques developed in this paper have a
fixed receiver structure.

One potential benefit to using solitons as carrier signals
and the nonlinear systems as multiplexors is that, as we
will show, the soliton signal dynamics provide a mechanism
for simultaneously decreasing transmitted signal energy and
enhancing communication performance. More broadly, there
has been a resurgence of interest in analog modulation and
coding techniques [15] in efforts to develop communication
systems for a variety of broadcast and multicasting scenarios
where digital techniques are suboptimal. In this context, this
soliton communication system can, in principle, be viewed as
a simple form of joint modulation and analog error protection
with convenient hardware implementations.

In order to develop this framework, some of the well-known
properties of solitons are briefly described in Section II. The
remainder of the paper focuses on new ideas and results. In
Section III, a communication paradigm is introduced where
soliton signals are used as carrier waveforms whose parameters
are modulated with information-bearing signals. The associ-
ated nonlinear systems can multiplex multiple signals and
independently extract them by exploiting the eigenfunction
properties of solitons for these systems. The methods and
analysis in this paper center mainly on the Toda lattice: a
particular nonlinear system that supports soliton solutions and
whose implementation via analog circuitry is discussed in
detail in [14]. This system, which is described in Section II
along with some of the properties of its soliton solutions, forms
the basis of a soliton communication paradigm developed
in Section IV. In Section V, the effects of unknown channel
gain and signal corruption on the dynamics of solitons in the
Toda lattice and the processed noise statistics are analyzed,
extending the statistical characterization developed in [14]
with an analysis based on the inverse scattering transform.

The extent to which the parameters of these soliton sig-
nals can be reliably estimated in noise has a significant
impact on potential communication applications. Accordingly,
Craḿer–Rao bounds on parameter estimation error are ex-
amined in Section VI. Based on a statistical characteriza-
tion of the received and processed soliton signals, a set
of parameter estimation algorithms are presented in which
maximum-likelihood (ML) estimates can be obtained from
corrupted measurements. In Section VII, we demonstrate how
soliton circuits can be used to enhance the detection of
multiplexed solitons in noise. Section VIII contains some
concluding remarks.

II. SOLITON SYSTEMS

An important class of solutions to certain nonlinear evolu-
tion equations are traveling wave solutions that propagate with
constant shape and velocity; these are referred to as “solitary
waves.” Specifically, a solitary wave solution with temporal
and spatial variables and is a traveling wave of the form

, where is a fixed constant,
and the energy of is localized in . The Toda lattice

Fig. 1. Diode ladder network.

equations describe one such nonlinear system that possesses
solitary wave solutions.

Originally developed to describe a nonlinear spring mass
system [16], the Toda lattice equations govern the dynamics
of the diode ladder network shown in Fig. 1, where each of
the shunt impedances is a double capacitor, i.e.,
[14]. In terms of the voltages across the double capacitors,
the Toda lattice equations are

(1)

or, equivalently, in terms of the diode currents

(2)

where

saturation current in the diodes;
thermal voltage;
current through the th diode.

This set of ordinary differential equations describes the behav-
ior of the cascade system, whose dynamics can be completely
specified by the one-dimensional (1-D) signal . When

in Fig. 1 is of the form

sech (3)

the response of the diode ladder circuit is

sech (4)

where , and .
The relationship between the amplitude, velocity, and ef-

fective pulse-width of these waves leads to narrower waves
that are larger in amplitude, which will propagate faster than
wider waves that are smaller in amplitude. If a solution to
the equation is composed of solitary waves with different
amplitudes, then collisions between the solitary waves are
possible. The term “soliton” refers to such solitary wave
solutions that retain their identity on collision with other
solitary waves. As the individual solitary waves approach one
another, they begin to interact nonlinearly. However, after
passing through one another, they regain their shape and speed
with only a slight positional shift [17].

There are many physical systems that support soliton so-
lutions in a wide range of media [1], [3], [5], [9]. These
can be distributed systems with dynamics described by partial
differential equations and whose solitons propagate through a
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Fig. 2. Two solitary wave solutions to the Toda lattice.

bulk medium such as water, optical fiber, or plasma. They can
also be lumped or cascade systems in which solitons propagate
along a chain of identical nodes, such as in a crystal lattice, a
nonlinear ladder network, or a metallic-grating surface acoustic
wave device. These cascade soliton systems, such as the Toda
lattice, are often described by systems of ordinary rather than
partial differential equations.

Fig. 2 illustrates soliton behavior in the Toda lattice for
two solutions of the form of (4). Each trace in the figure
corresponds to the current in the diode at the associated
index. As shown in the figure, the Toda lattice exhibits the
key features of soliton behavior previously mentioned. This
one-parameter family of solutions has an amplitude-dependent
velocity with which it passes through the circuit. As the larger
soliton catches up to the smaller soliton, as viewed on the
sixth node, the combined amplitude of the two solitons is
actually less than would result from a linear superposition
of the two amplitudes. In addition, the signal shape changes
significantly during this nonlinear interaction. Each of these
characteristics of soliton interaction has useful implications in
the communications context developed in this paper.

A well-known and often defining property of soliton systems
is that by means of the inverse scattering transform, they
can be described by an equivalent representation through the
evolution of a specific linear operator whose eigenvalues re-
main constant with time. Specifically, soliton systems possess
a symmetric linear operator whose temporal evolution
satisfies an operator differential equation of the form

(5)

where is an antisymmetric linear operator, and the
nonlinear evolution equation is implicitly determined by (5).
For example, the Toda lattice equations can be expressed
in this form, where the elements of a matrix describe
the voltages at nodes in the lattice. In this representation,
solitons present in the system correspond to eigenvalues in the
discrete spectrum of the linear operator . The dynamics of
solitons that correspond to different eigenvalues are uncoupled.
However, their contributions to the solution in the observed
system are nonlinearly coupled. Through a process called
“inverse scattering,” the state of the system at any time

Fig. 3. Soliton carrier signal.

can be completely reconstructed from the eigenvalues and
eigenfunctions of . A detailed treatment of the inverse
scattering method can be found in [1].

For the Toda lattice, and are the symmetric and
antisymmetric tridiagonal matrices given by

...

...
.. .

. . .

(6)

where , for voltages
in a solution to (1). When written in this form, (5) implicitly

contains the Toda lattice equations. Although each of the
entries of evolve with time, the eigenvalues of
remain constant.

If the motion on the lattice is confined to a finite region
of the lattice, i.e., the lattice is at rest for , then the
spectrum of eigenvalues for the matrix can be separated
into two sets. There is a continuum of eigenvalues
and a discrete set of eigenvalues for which . When
the lattice is at rest, the eigenvalues consist only of the
continuum. When there are solitons in the lattice, one discrete
eigenvalue will be present for each soliton excited. This
separation of eigenvalues of into discrete and continuous
components is common to all of the soliton systems solved
with inverse scattering. A more detailed investigation of the
inverse scattering method as applied to the Toda lattice can
be found in [16].

III. SOLITON MODULATION AND MULTIPLEXING STRATEGIES

To explore some of the properties of the soliton signals
generated by nonlinear systems as described in Section II, we
propose a simplified example of a multiplexed communication
system. By using solitons as carriers that can be independently
modulated and multiplexed by the underlying nonlinear sys-
tems, the problems of detection and parameter estimation of
soliton signals can be related to aspects of performance of
the communication system. In this section, we outline the
modulation and multiplexing strategy, highlighting the basic
ideas without focusing on the detailed system implementation.

In order to use soliton signals as carriers of information,
we define a soliton carrier as a periodic soliton signal that has
one or more solitons of different parameter values contained
within each period. As an example, a soliton carrier with one
soliton in each period is depicted in Fig. 3. Information can
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Fig. 4. Multiplexed soliton communication system. The transmitter generates a multisoliton carrier whose parameters are each modulated with different
message streams. The multisoliton signal is then multiplexed by the nonlinear system in preparation for transmission over an identity channel. At the receiver,
the signal is again passed through the nonlinear system to demultiplex the individual message streams.

be embedded in the parameters of the solitons, which will
either affect the shape or relative spacing of the solitons in
each period.

In Section II, it was demonstrated that solitons of different
parameter values approach and pass through one another as
the signal is processed by the nonlinear system. By passing
a soliton carrier through a section of the nonlinear system of
just the right length, the component solitons in each period
of the carrier signal will superimpose; the effect of passing
the carrier through the nonlinear system will be to multiplex
the component solitons such that they become coincidental in
time. If the signal is extracted from the nonlinear system at
this point, the multiplexed solitons will remain “frozen” in
their current relative positions. At a later point in time, this
multiplexed waveform could be demultiplexed by continuing
the process. By passing the signal through an equivalent length
section of the nonlinear system, the component solitons will
finish passing through one another, leaving the carrier once
again with multiple nonoverlapping solitons.

By combining the notions of modulating soliton carriers
with multiplexing the component solitons within each period, a
simple multiplexed communication system can be constructed.
The overall process is depicted in Fig. 4. Specifically, the
transmitter takes as input several message streams, which it
uses to generate a multisoliton carrier signal whose parameters
are each modulated by a corresponding message stream. In
the example shown in the figure, this signal consists of two
solitons, where the smaller soliton is modulated by stream

and the larger by . The modulated soliton carrier is then
passed through an appropriate length section of the nonlinear
system, which acts as a multiplexor, combining the solitons
in time. The output of the multiplexor is a packetized soliton
carrier, whose solitons remain fixed in their relative locations
since they no longer evolve according to the nonlinear system
dynamics.

The output of the transmitter is then sent over a channel.
When the channel is an identity channel, the receiver can
use a nonlinear system identical to that used for multiplexing
to continue the nonlinear evolution of the solitons and thus
separate out the component solitons in each period. Each
of the individual message streams can then be recovered
independently. In order to further develop some of the ideas of
soliton carrier modulation and multiplexing, for the remainder
of this paper, we focus our attention on one specific class
of nonlinear systems: those governed by the Toda lattice
equations.

IV. TODA LATTICE SOLITON

MODULATION AND MULTIPLEXING

The cascade structure of the Toda lattice system enables a
convenient implementation of the modulation and multiplexing
ideas of Section III. A periodic soliton carrier signal for the
Toda lattice of the form depicted in Fig. 3 can be written as
a sum of solutions of the form (4), i.e.,

(7)

Modulating the parameter or the relative positions of the
solitons in each period results in a form of scale modulation
or pulse-position modulation.

A multisoliton example is shown in Fig. 5 for a four-soliton
signal using the Toda lattice circuits developed in [14]. In
order for the circuits to act as multiplexors, the carrier signal
is a periodically repeated train of four solitons of increasing
parameter . As such, this system could support four separate
information streams: one on each of the component solitons.

Although presented in the context of the Toda lattice equa-
tion, as indicated at the outset of the paper, the soliton mod-
ulation techniques developed here are applicable to a variety
of soliton systems, both in discrete and continuous time. For
example, a similar technique can be used for modulation of the
discrete-time solitons generated by the discrete-KdV equation
whose circuit implementation is discussed in [14]. Related
techniques for modulation of information on soliton carriers
were previously proposed by Hirotaet al. [18], [19]. Although
their signal generation and processing methods relied on an
inexact phenomenon known as “recurrence,” the modulation
paradigm they presented is essentially a two-soliton version
of the carrier modulation paradigm presented here. However,
the methods used to generate and multiplex solitons required
extremely long lattices for only two solitons and required a
specific relationship between the soliton amplitudes. Unlike
the methods presented here, such methods do not generalize
to an arbitrary number of solitons with arbitrary parameters.
Further, the number of nodes in the lattice would increase
exponentially with the number of solitons for the restricted set
of parameters that could be accommodated.

A. Fourier Spectrum of Toda Lattice Solitons

The soliton demodulation and demultiplexing techniques
discussed in this paper assume that there is no convolutional
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Fig. 5. Multiplexing of a four soliton solution to the Toda lattice.

distortion in the received signal, which is the case when the
bandwidth of the soliton signals is small compared with the
available channel bandwidth, i.e., the channel bandwidth is
sufficiently wide (frequency nonselective) to pass the soliton
without distortion. We assess the bandwidth requirements by
exploring the spectral characteristics of multisoliton signals. A
periodic single soliton carrier for the Toda lattice of the form
(7) at a fixed node

sech (8)

where is the period of the carrier, has a Fourier transform
given by

(9)

where , resulting in Fourier series coefficients that
fall off exponentially in frequency.

A single period of the two-soliton signal can be written [6]

sech sech sech sech

(10)

with . When the solitons do not overlap in
time, , and the denominator in (10) is approximately
unity; therefore, the modulation is essentially the sum of the
individually modulated waveforms. As the solitons begin to
overlap, the contribution from the multiplicative cross term
becomes significant, and spectral mixing of the component
messages will occur. This results in bandwidth expansion of
the multisoliton signal due to the convolution of the spectra
of each of the component solitons.

B. Low-Energy Signaling with Soliton Signals

As depicted in Figs. 2 and 6, there is a net reduction of
signal amplitude as multiple Toda lattice solitons interact. As
mentioned in Section I, this nonlinear coupling among the
component solitons can be exploited to yield a reduction in
the energy required to transmit the soliton carrier.

In fact, for a two-soliton carrier, as a function of the relative
separation of the two solitons, the energy of the transmitted

Fig. 6. Two-soliton solution is depicted in the Toda lattice. Each horizontal
trace is the response at a successive node in the lattice. In this case, the two
soliton wavenumbers arep1 = 2 and p2 = 1:3.

signal is minimized precisely at the point of overlap. This is
shown in the Appendix by analysis of the energy that would be
required to transmit the waveform in (10)

(11)

As shown in Fig. 6, when the two solitons are well separated
in time, , and the two component solitons are each
distinguishable. In this case, , and the denominator is
approximately unity in (10). However, as the solitons come to
interact, , the nonlinear cross term and the denominator
in (10) become significant, and the combined signal amplitude
decreases.

The resulting effect on the energy of the signal is illustrated
in Fig. 7 for several different values of the parameter
holding fixed and with . Significant energy
reduction occurs for a fairly wide range of separations ,
indicating that the modulation techniques described in this
section could take advantage of this reduction, even though
modulation would cause the relative separation to deviate from

. For example, for , the
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Fig. 7. Normalized signal energy for a two-soliton solution to the Toda
lattice holding�1 = sinh(2) fixed for three values of�2. The signal energy
is normalized by the maximum signal energy of the separated solitons.

relative positions of the two solitons could be modulated by
as much as 1.0 while still providing an energy reduction in
excess of 20%. The nominal separation for these solitons in
a two-soliton periodic carrier could be as small as 1.5 for the
solitons to be essentially uncoupled. This would correspond
to an “effective modulation depth” of 1.0/1.5 or 67% while
maintaining 67% of the energy reduction available. If the
multiplexed soliton system were used over an SNR-limited
channel, then rather than transmitting the energy-reduced
signal, the multisoliton signal could be rescaled to achieve the
same SNR over the channel as the separated soliton signal. As
we shall see, this has an overall effect of decreasing parameter
estimation error at this fixed SNR.

V. CHANNEL EFFECTS

In our preliminary development, the multiplexing and com-
munication contexts described in Sections III and IV consid-
ered an identity channel, allowing demultiplexing of the com-
ponent streams at a receiver by simply processing a received
multisoliton waveform with the Toda lattice equations. If these
techniques were to be applied in more realistic channels,
the multiplexed soliton waveform could undergo significant
distortion from transmitter to receiver. In Section V-B, we
consider effects of additive noise. In the following section,
the issue of unknown channel gain is considered.

A. Gain Normalization

In any practical communication context, a modulation sys-
tem must be able to combat the presence of an unknown gain
due to channel fluctuations. This is a potential drawback of
using Toda lattice solitons as carrier signals since these solitons
have a specific relationship between the amplitude and pulse
width. If the soliton signal sech is transmitted
through a channel and arrives at the receiver with an unknown
gain , then the soliton dynamics of the signal
can no longer be observed from processing the signal

Fig. 8. Normalized cross-covariance of the input and output signals as a
function of composite gain
c.

directly with the Toda lattice. In general, the signal will
give rise to both soliton and nonsoliton components, where the
soliton component may be of a different soliton parameter.

Many communication systems combat gain fluctuations with
automatic gain control (AGC) to dynamically adjust the gain
of a preamplifier in the receiver. To demonstrate the feasibility
of AGC for the soliton modulation systems, we consider the
effect of an unknown gain on a single soliton processed by
the Toda lattice. Since processing the soliton will correspond
to a simple time delay only when the unknown gain has been
corrected, an AGC system might exploit differences between
the input and the processed waveforms and adjust the gain until
the processed waveform is a pure time delay of the input. As an
example, in Fig. 8, the peak of the cross-covariance between
the gain-adjusted soliton signal and the processed signal at
the th node of the lattice is shown as a function of the
composite unknown gain . For this example, ,
and . As shown, the normalized cross covariance
has a unique maximum of when the input to the
Toda lattice has been properly rescaled, i.e., . This
gives an indication that AGC techniques based on feedback of
the processed signal can be effective in combating unknown
channel gain. However, a variety of issues including how such
AGC might be performed for multisoliton signals or modulated
multisoliton carriers remains unexplored.

B. Noise Dynamics in Soliton Systems

For even a simple additive noise channel, it is not clear
that processing the received multisoliton waveform with the
nonlinear evolution equations is an effective means of demul-
tiplexing. In order to assess the degree to which a receiver can
demultiplex and demodulate multisoliton signals in noise, it is
necessary to first examine both the dynamics of the noise as
it is processed and its effects on the soliton dynamics.

For the remainder of this paper, we assume an additive
white Gaussian noise channel from transmitter to receiver,
i.e., , where is the multisoliton signal,
and is stationary white Gaussian noise. There are two
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significant effects of the additive noise on the output of the
receiver. First, when the received signal is used as the
input to the Toda lattice, then the noise from the channel
has a dynamical effect on the solution to the Toda lattice.
Our initial analysis of these dynamical effects in [14] focused
primarily on the noise component while assuming that at high
SNR, the soliton dynamics were unaffected. However, even
at high SNR, the additive noise may also have an effect
on the actual solitons excited in the lattice. Accordingly, we
extend these results in our subsequent analysis developed
in this paper, where inverse scattering techniques are used
to examine the effects of additive noise on the induced
soliton eigenvalues. The results we obtain are important both
in developing an understanding of the temporal behavior
of the soliton component of the signal and in determining
the performance of any parameter estimation algorithms that
employ inverse scattering.

As developed in [14], the dynamics of the Toda lattice
equations when driven by white Gaussian noise with low noise
power leads to a model in which an input–output relationship
from the signal at the zeroth node to the output at theth
node has the approximate frequency response

otherwise
(12)

where . The lattice behaves like a lowpass filter
and, for , approaches the ideal filter

otherwise.
(13)

These results are assumed to hold when soliton signals are also
present in the input. Specifically, at high SNR, it is assumed
that the soliton components are processed independently from
the noise and that the noise is still effectively lowpass filtered.
The validity of these assumptions was verified in [14] through
both linearized analyses and simulation.

We next consider a complimentary noise model based on
inverse scattering. As described in Section II, the inverse
scattering transform provides a particularly useful mechanism
for exploring the long-term behavior of soliton systems. In
a manner similar to the use of the Fourier transform for
describing the ability of linear processors to extract a signal
from a stationary random background, the eigenvalues from
inverse scattering can effectively characterize the ability of
the system to extract the component solitons of a received
soliton signal in noise, as we now develop.

To begin, recall that the dynamics of the Toda lattice may
be described by the evolution of the matrix given in (6),
whose eigenvalues outside correspond to solitons.
By considering the effects of small amplitude perturbations to
the entries and on the eigenvalues of , we
can observe the effects on the soliton dynamics through the
corresponding eigenvalues.

Following [20], we write the matrix in the form
, where is the unperturbed symmetric matrix

corresponding to the noise-free soliton signal, andis the
symmetric random perturbation resulting from additive noise.

By expanding the eigenvalues of the matrixin a convergent
series, we obtain [20],

(14)

where is the th eigenvalue of , , and
are the elements of the matrix defined by ,
where diagonalizes .

Since , then to first order in the elements of,
the eigenvalues of are unbiased estimates of the eigenvalues
of . In addition, since is a linear combination of the
elements of , then if the elements of are jointly Gaussian,
which is a reasonable assumption at high SNR; then, to first
order, the eigenvalues ofwill be jointly Gaussian, distributed
about the eigenvalues of .

The proceeding leads to some important interpretations.
When processing small amplitude white Gaussian noise alone,
the lattice can be viewed as a dispersive lowpass filter;
therefore, the output of the system will approximately be
bandlimited white Gaussian noise at each node. In the presence
of noise, solitons will be essentially unperturbed, and the
noise will remain Gaussian and bandlimited. Via inverse
scattering, to first order, small amplitude noise alone only ex-
cites eigenvalues corresponding to the nonsoliton continuum.
When solitons are also processed, the noise induces a small
Gaussian perturbation to the true soliton eigenvalues as well.
These properties are exploited in the next two sections, which
consider estimation and detection of soliton signals.

VI. ESTIMATION OF SOLITON SIGNALS

In physical or natural systems, it is often necessary to
estimate solitons or their parameters from measurements.
This is the case, for example, when they are masked by
external noise in the measurements or by strong nonsoliton
components or when many solitons are superimposed, making
them difficult to resolve. These situations can all arise in the
communication techniques suggested in Sections III and IV.
In this section, we explore soliton parameter estimation by
investigating the ability of a receiver to estimate the parameters
of the multisoliton carrier from corrupted measurements.

We first determine bounds on the performance of any
unbiased estimator of the scale parametersand the relative
positions of multisoliton signals in stationary white Gauss-
ian noise with noise power . A bound on the variance of
an estimate of the parametermay be useful in determining
the demodulation performance of a parameter modulation
system, where the component soliton wavenumbers are slightly
modulated. When contains two solitons that are separated
in time and therefore are not interacting, the multisoliton signal
appears as a linear superposition of the two, i.e.,

sech sech

(15)
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As such, each of the component solitons can be treated
separately. As we shall see, for large separations, the ability
to estimate the parameters and from is the same as
estimating from and from , respectively.

If the time locations of each soliton are known, then the
variance of any unbiased estimator of must satisfy the
Craḿer–Rao lower bound [21]

Var (16)

For the infinite observation interval , the
Craḿer–Rao Bound (16) can be evaluated to be [13]

Var (17)

A Cramér–Rao bound would also be useful for determining
the demodulation performance of pulse position modulation,
where the soliton position is slightly modulated. For each of
the separated solitons, sech , where
is the relative position of the soliton in a period of the carrier,
the Craḿer–Rao bound for is given by

Var

sech

(18)

More generally, when the received signal is a multisoliton
waveform where the solitons are multiplexed in time, the
signal shape is sensitive to the relative positions of the solitons,
and parameter estimation becomes more difficult. We will
focus our attention on the two-soliton solution to the Toda
lattice

sech sech sech sech

(19)

where

(20)

with both solitons traveling in the same direction and with
,

(21)

where , and .

In the communication context, we are generally interested in
parameter estimation with an unknown relative spacing among
the solitons. Either the relative spacing of the solitons has been
modulated and is therefore unknown to the receiver, or the
parameters and are modulated, and the induced phase
shift in the received solitons is unknown. In either case, the
Cramér–Rao bound for jointly estimating the parameters of a
multisoliton signal from observations of can be obtained
numerically by forming the Fisher information matrix ,
where

(22)

where is the th element of . The usual resulting bound
on the estimation variance for parameter is given by [21]

Var (23)

For large separations , the Craḿer–Rao bound for
estimating the parameters of either soliton will be unaffected
by the parameters of the other. As shown in Fig. 9(a), when the
component solitons are well separated, the bound for either
or approaches the bound for estimation of a single soliton
with that parameter value in the same level of noise. The
bounds for estimating and are shown in Fig. 9(a) as
a function of the relative separation,.

Note that both of the bounds are reduced by the nonlinear
superposition, indicating that the potential performance of
the receiver is enhanced by multiplexing. As was shown in
Section IV-B, the energy of the signal is reduced by multi-
plexing, which indicates that this performance enhancement is
achieved at a lower signal-to-noise ratio since the noise power
was held fixed. However, as we let the parameter difference

increase, we notice a different character to the bounds.
Note that in Fig. 9(b), the performance of the larger soliton is
inhibited by the nonlinear superposition, whereas the smaller
soliton is still enhanced. In fact, the bound for the smaller
soliton becomes lower than that for the larger soliton near the
range .

The ability to simultaneously enhance estimation per-
formance while decreasing signal energy is an inherently
nonlinear phenomena. Using (16), we obtain the familiar
Craḿer–Rao bound for linear estimation, which is inversely
proportional to the signal energy

Var

SNR
(24)

However, when the signal has a nonlinear dependence on
the parameter, the bound is a function of the energy in the
derivative of the signal with respect to the parameter rather
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(a)

(b)

Fig. 9. Craḿer–Rao lower bound for estimating�1 and �2 with all pa-
rameters unknown in white Gaussian noise withN0 = 1. The bounds
are shown as a function of the relative separation� = �1 � �2. The
Cramér–Rao bound for estimating�1 and �2 of a single soliton with the
same parameter value is indicated with “o” and “�” marks, respectively, as
given by (17). (a)�1 = sinh(2) and�2 = sinh(1:75). (b) �1 = sinh(2)
and �2 = sinh(1:25).

than signal energy. Bounds for estimating the times of arrival
of the two component solitons can also be shown to

agree with the single soliton bounds for large separations and
are qualitatively similar to those for estimating the scaling
parameters.

To illustrate the combined effects of the energy reduction
and parameter estimation enhancement that occurs during
multiplexing, in Fig. 10(a), the Craḿer–Rao bounds are shown
for a fixed SNR, rather than a fixed noise power . If
the transmitter were to send information embedded in the
parameters of a carrier with separated solitons at an SNR
of about 19.7 dB, then the performance of the receiver would
be bounded by the Craḿer–Rao bounds for separated solitons,
e.g., the points labeled “x” and “o” in Fig. 9(a) as given by
(17). For this example, this corresponds to a mean-squared

(a)

(b)

Fig. 10. Craḿer–Rao lower bound for estimating�1 and �2 with all
parameters unknown in white Gaussian noise. The bounds that result from
multiplexing the solitons without signal rescaling are shown with dashed lines.
The bounds that result from maintaining a constant SNR for all separations
are shown with solid lines. (a)�1 = sinh(2) and �2 = sinh(1:75). (b)
�1 = sinh(2) and �2 = sinh(1:5).

parameter estimation error of 0.1011 and 0.0778 or about
2.15% and 3.62%, respectively.

If the transmitter sent the same information embedded
in the parameters but prior to transmission multiplexed the
solitons using the Toda lattice, then the performance of the
receiver would be bounded by the solid and dashed lines
in Fig. 9(a). For this example, this corresponds to a mean-
squared parameter estimation error of 0.0412 and 0.0540
or about 1.14% and 1.94%, respectively. This reduction in
mean-squared parameter estimation error is a result of the
increased sensitivity of the multiplexed soliton signal to the
parameters and was accomplished with less transmitted signal
power. If the SNR of the transmitted signal were the same
for the multiplexed and separated signals, for this example,
the resulting mean-squared parameter estimation error would
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decrease even further to 0.0362 and 0.0475 or to 1.0% and
1.7%, respectively. This additional 14% reduction in parameter
estimation error is due to the effective increase in available
SNR, which is made possible by the reduction in energy of
the multiplexed signal.

Fig. 10(a) and (b) explicitly show the mean-squared error
reduction that results from boosting the SNR of the multi-
plexed signal to that of the separated solitons. The original
Cramér–Rao bounds for each parameter are indicated using
dashed lines and are the same as those in Fig. 9(a). The bounds
that result from rescaling the multiplexed signal are indicated
in solid lines and lie below the original bounds. To further
illustrate the potential for exploiting the energy reduction, in
Fig. 10(b), the same process was repeated for
and . Note that in this example, prior to energy
normalization, the mean-squared estimation error for the larger
soliton is increased from multiplexing. However, once the
SNR of the multiplexed signal is brought to the same level
as the separated solitons, the overall mean-squared estimation
error for the larger soliton is reduced.

A. Estimation Based on Demultiplexing

In this section, we consider estimating the parameters of
soliton signals by first demultiplexing and, therefore, decou-
pling the component solitons. Once separated, more con-
ventional techniques can be applied to parameter estimation.
The algorithms described are representative of the types of
operations that might appear in a receiver for the com-
munication techniques suggested in Sections III and IV. As
such, the bounds presented in the previous section and the
performance of the algorithms in this section should give some
indication of potential receiver performance. As a model for
the receiver structure, we will focus on the diode ladder circuit
implementation of the Toda lattice equations (2), where
is the current through the th diode , and for
simplicity, the parameters of all circuit elements have been
normalized to unity.

When the component solitons in a multisoliton signal are
separated in time, the positions of each of the solitons can be
estimated independently. Consider estimating the position
of one of the separated component solitons in a solution to (2)

sech (25)

with the parameter known. This is classical time-of-arrival
estimation. For observations , where
is a stationary white Gaussian process, the familiar maximum
likelihood estimate can be obtained through convolution with
a matched filter followed by a peak detector [21].

When the signal contains a multisoliton signal in which
the solitons are multiplexed and overlapping in time, then the
estimation of the vector of parametersfrom the received
signal becomes more involved. If the
component solitons are not well separated, their parameters are
tightly coupled to the entire signal and should not be estimated
independently. However, the parameters can be decoupled
by preprocessing the signal with the Toda lattice. By
driving the Toda lattice with the received signal such that

Fig. 11. Toda lattice receiver model.

in (2), then as the signal is processed by the
lattice, the component solitons will naturally separate, owing
to their different propagation velocities. This gives rise to the
following strategy for estimating the positions of each of the
multiplexed solitons: First, use the Toda lattice to separate each
of the component solitons in time; then, estimate the positions
of each of the separated solitons using a matched filter as
before. By the invertibility of the Toda lattice equations, the
ML estimate of the positions of the separated solitons are
identical to those based on the received signal.

When the signal is used to drive the lattice, each of
the component solitons in will propagate down the lattice
appearing in the signal at node . For each signal
in the solution to the dynamic equations (2), there will be a
contribution from both the signal component giving rise to

and the noise component giving rise to , i.e.,
, where is the stationary white

Gaussian noise process , and is the multiplexed
soliton signal . From our linear noise analyses, at high
SNR, the noise component of the solution is well
approximated as bandlimited white Gaussian noise, whereas
the signal component propagates unaffected by the noise.
If the component solitons of the signal are well separated
by the time they appear in the signal at node , then
the ML estimate of the positions of each of the component
solitons based on the signal can be obtained by standard
matched filtering. Not only are the position estimates equal to
those that would be obtained directly from , but they are
also much simpler to compute.

To examine empirically the performance of this approach,
we consider soliton signals in white Gaussian noise with noise
power . Rather than using the circuit hardware that was
developed and presented in [14], computer simulations are
used for the experiments in this paper. These simulations are
performed using a Runge–Kutta integration routine with a
fixed step size . Since the bandwidth limitations of the chan-
nel and receiver will restrict the possible range of parameters,
and to simplify our simulations, we assume that the receiver
is a lowpass filter followed by a Toda lattice circuit, as shown
in Fig. 11. We also assume that the bandwidth of the
lowpass filter in Fig. 11 is wide enough to pass the soliton
components of completely. The input to the Toda lattice
circuit then contains the soliton signal in bandlimited
white Gaussian noise.

For the two-soliton signal in (19), if the component solitons
are well separated as viewed on theth node of the Toda
lattice, the signal appears to be a linear superposition of two
solitons

sech

sech (26)

where is the time-shift incurred due to the nonlinear
interaction. Matched filters can now be used to estimate the
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Fig. 12. Cram´er–Rao bounds for�1 and�2 are shown with solid and dashed
lines, whereas the estimation error results of 100 Monte Carlo trials are
indicated with “o” and “�” marks, respectively.

time of the arrival of each soliton at the th node. We
formulate the estimates

(27)

where is the time of arrival of theth soliton and node
. The performance of this algorithm for a two-soliton signal

with is shown in Fig. 12. Note that
although the error variance of each estimate is apparently a
constant multiple of the Craḿer–Rao bound, the estimation
error variance still approaches the bound in an absolute sense
as .

The scaling parameters can also be estimated by first
demultiplexing the component solitons. In [13], an algorithm
that uses velocity filtering techniques to estimate the parame-
ters of the separate solitons through their soliton velocities
is presented and analyzed. The performance of such techniques
is similar to that of the time-of-arrival estimation techniques,
although this does not constitute an ML approach.

B. Estimation Based on Inverse Scattering

Because of the nonlinear manner in which the parameters
appear in a multisoliton signal, it is difficult to formulate

an ML estimate directly from the received signal , even
when the solitons are not multiplexed. However, we can use
the inverse scattering framework along with some of the results
from Section V-B to construct their ML estimates at high
signal-to-noise ratios.

Since the transformation from the signal to the
eigenvalue-eigenvector representation of the inverse scattering
transform is invertible, then ML estimates of the parameters

can be formulated using this representation. The matrix
and its inverse scattering decomposition can be obtained

from the signal by first driving the lattice with the signal

and then sampling the circuit waveforms to construct
at a fixed time.

If the current at each node evolves according to the Toda lat-
tice equations, then the eigenvalues of the matrix are time
invariant, and the eigenvalues for which correspond to
soliton solutions, with . In
Section V-B, it was shown that in additive noise at high SNR,
the eigenvalues of are, to first order, jointly Gaussian
and distributed about the true eigenvalues of the original
multisoliton signal. Therefore, the eigenvalues of the matrix

generated from constitute ML estimates of the
underlying eigenvalues. ML estimates of the parameters
can be obtained through the one-to-one mapping fromto

, .
In order to perform eigenvalue estimation, the finite length

of a practical implementation of the Toda lattice must be
appropriately accommodated. This can be resolved by either
using the periodic Jacoby matrix that results from making
the periodic assumption or by simply truncating
the matrix. It can be shown that for the periodic Toda lattice,
the eigenvalues of the periodic Jacoby matrix are also time
invariant and correspond to periodic soliton solutions [4].
An example of the joint estimation of the parameters of
a two-soliton signal is shown in Fig. 13(a). The estimation
error variance decreases with the noise power at the same
exponential rate as the Cramér–Rao bound.

To verify that the performance of the estimation algorithm
has the same dependence on the relative separation of solitons
as previously indicated, the estimation error variance is also
indicated in Fig. 13(b) versus the relative separation. In the
figure, the mean-squared parameter estimation error for each
of the parameters are shown along with their corresponding
Craḿer–Rao bound. At least empirically, we see that the
fidelity of the parameter estimates are indeed enhanced by
multiplexing, even though this corresponds to a signal with
lower observational SNR since the noise power was held
fixed.

VII. D ETECTION OF SOLITON SIGNALS

The inherent difficulties that arise in estimating the pa-
rameters of soliton signals also make detecting solitons a
difficult task. If the soliton multiplexing strategy described in
Sections III and IV were used to send signals from a base
station to many receivers, each of the receivers may need
to identify whether or not the received signal contained any
information directed to them. If their receivers were tuned to
specific soliton parameter values, then they would first need to
detect the presence of a soliton at the prescribed value prior to
demodulation. This would correspond to detection of a single
or of multiple solitons that have been multiplexed and received
in additive noise.

Detection of either a single soliton or of a signal composed
of multiple nonoverlapping solitons in additive white Gaussian
noise falls within the context of classical detection. The
optimal receiver for a variety of measures, including the Bayes
or Neyman–Pearson criteria, involves a matched filter followed
by the usual likelihood ratio test.
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(a)

(b)

Fig. 13. Estimation error variance for the inverse scattering-based estimates
of �1 = sinh(2); �2 = sinh(1:5). The bounds for�1 and�2 are indicated
with solid and dashed lines, respectively. The estimation results for 100 Monte
Carlo trials with a diode lattice ofN = 10 nodes for�1 and�2 are indicated
by the points labeled “o” and “�,” respectively.

When the received signal contains a multisoliton sig-
nal where the component solitons are multiplexed and not
resolved, detection becomes more involved. Specifically, con-
sider a two-soliton solution to the Toda lattice, where one of
four decisions must be made.

1) Neither soliton is present.
2) Only soliton one is present.
3) Only soliton two is present.
4) Both solitons are present.

If the relative positions of the component solitons were known
a priori, then detection reduces to deciding which one among
four known signals is present. Once again, this falls within the
scope of standard Gaussian detection theory.

If the relative positions of the solitons were unknown, as
would be the case for a modulated soliton carrier, then the
two-soliton signal will vary significantly as a function

of their relative separation, and the optimal processor is no
longer a single matched filter. This leads to the composite
hypothesis test

where and are soliton one, soliton two, and
the two-soliton signals, respectively, and , which
usually results in a generalized likelihood ratio test.

Typically, when the waveform shape varies significantly as
a function of the unknown parameter, multiple hypotheses
are used with one for each value of the parameter sampled
over a prespecified range. This is often the approach used
for detection of a signal of unknown frequency or unknown
spatial direction. For soliton detection, this approach would
turn the current problem into one with hypotheses, ,
and as before, and an additional hypotheses: one for
each value of the parametersampled over a range of possible
values. The resulting complexity increases exponentially with
the number of component solitons and requires a number
of hypothesis tests given by

(28)

However, as with parameter estimation in Section VI, mul-
tisoliton detection can be decoupled by demultiplexing the
component solitons in the signal with the Toda lattice.
If the component solitons are separated as viewed on theth
node, then detection can be more simply formulated using the
signal . The invertibility of the lattice equations implies
that a Bayes optimal decision based on must be the same
as that based on since the likelihood function
and are identical for any invertible
transformation .

Although a generalized likelihood ratio test still must be
used, where the value of is needed for the unknown
positions of the component solitons, the ML estimate
can be simply formulated from using matched filters.
Since the ML estimates based on and must be the
same, as shown in Section VI, then the detection performance
of a generalized likelihood ratio test using those estimates and
the signal must also be the same.

At high SNR, the noise component of the signal can
be well modeled as bandlimited white Gaussian noise, as in
Section VI. Therefore, the generalized likelihood ratio test for
detection can be performed by first demultiplexing with
the Toda lattice equations followed by matched filter process-
ing. We have therefore reduced generalized detection from
a case where the composite signal varies significantly
as a function of the unknown parameters to one in which
each of the separated component solitons varies through only
a time shift. This reduces the complexity significantly while
maintaining Bayes optimality.

To illustrate this detection algorithm, a hypothesis test
between and is considered, where the separation of
the two solitons is varied randomly in the interval

. A set of Monte Carlo runs has been completed
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Fig. 14. Set of empirically generated receiver operating characteristics are
shown for the detection of the smaller soliton from a two-soliton signal. For
each of the three noise levels, the receiver operating characteristic for detection
of the smaller soliton alone is also indicated with the dashed line, along with
the corresponding detection indexd.

for each of three different levels of the noise power.
The receiver operating characteristic for the soliton with

is shown in Fig. 14, where the probability

of detection for this soliton is shown as a function of
the false alarm probability . For comparison, the receiver
operating characteristic that would result from a detection
of the soliton alone at the same noise level and with the
time-of-arrival known is also shown. The detection index

is indicated for each case, where is the
energy in the component soliton. The corresponding results
for the larger soliton are qualitatively similar, although the
detection indices for that soliton alone, with ,
are 5.6, 4.0, and 3.3, respectively. Therefore, the detection
probabilities are considerably higher for a fixed probability
of false alarm. Note that the detection performance for the
smaller soliton is well modeled by the theoretical performance
for detection of the smaller soliton alone. This implies, at least
empirically, that the ability to detect the component solitons
in a multiplexed soliton signal is unaffected by multiplexing
with other solitons. Further, although the unknown relative
separation results in significant waveform uncertainty and
would require a prohibitively complex receiver for standard
detection techniques, Bayes optimal performance can still be
achieved with a minimal increase in complexity.

VIII. C ONCLUDING COMMENT

This paper can be viewed as an exploration of some of the
properties of soliton signals and systems from the framework

sech sech sech sech

sech sech sech
(30)

sech sech

sech sech sech sech

sech sech sech

sech sech sech sech

sech sech sech sech

(33)
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of a communication paradigm. Many of the issues that arise
in the analysis of this potential communication system are
derived from detection and parameter estimation of the trans-
mitted multisoliton signals, including soliton multiplexing,
energy compaction, and enhanced estimation and detection
performance. Although the multiplexed communication tech-
niques suggested in this paper are highly simplified, they serve
to illustrate that with their rich properties, tractability, and
relatively simple hardware implementations, soliton signals
and systems more generally may ultimately form the basis
of advanced systems for a wide variety of communication and
signal processing applications. Possible applications include
power-efficient joint modulators and multiplexors. These sys-
tems could operate purely in analog and be nonlinear, yet have
performance that is characterized in closed form.

APPENDIX

A. Proof of Energy Minimization for Two-Soliton Solution

Without loss of generality, we assume and seek the
value of that minimizes (11). Differentiation of (11) yields

(29)

We now seek the value of that makes the integral (29) equal
to zero. This is accomplished by first noting that when
in (10), then is an even function of time, centered about

. In this case, setting makes even.
If it can be shown that by setting that is an
odd function, then the integral in (29) is trivially zero. This
indeed turns out to be the case in (30), shown at the bottom
of the previous page. Note that setting makes each
of the terms in the numerator of the first term of (30) even.
Setting also makes the denominator of the first term an
even function. This term is then multiplied by the second term
of (30), which is a constant times an odd function

times an even function. Hence, we have several
even functions multiplying an odd function, making the entire
first line in (30) an odd function. The second line is also seen
to be an odd function by similar analysis. As a result,
is a stationary point of (11). To check that this is a minimum,
we need to verify that

(31)

First, we note that

(32)

Since is real, the first term in (32) is positive.
The second term contains , which is real and positive,
and , which can be seen to also be positive,
as in (33), shown at the bottom of the previous page, where

. Since each term in (32) is positive, the integral is
therefore positive, and is indeed a minimum.

ACKNOWLEDGMENT

We thank the associate editor Prof. A. Sayed and the anony-
mous reviewers for their detailed comments that considerably
improved the clarity of the paper.

REFERENCES

[1] M. Ablowitz and A. Clarkson,Solitons, Nonlinear Evolution Equations
and Inverse Scattering.Cambridge, U.K.: Cambridge Univ. Press,
1991.

[2] E. Infeld and G. Rowlands,Nonlinear Waves, Solitons and Chaos.New
York: Cambridge Univ. Press, 1990.

[3] A. Scott, F. Chu, and D. McLaughlin, “The soliton: A new concept in
applied science,”Proc. IEEE,vol. 61, pp. 1443–1483, Oct. 1973.

[4] M. Toda, “Nonlinear lattice and soliton theory,”IEEE Trans. Circuits
Syst.,vol. CAS-30, pp. 542–554, Aug. 1983.

[5] A. Scott,Active and Nonlinear Wave Propagation in Electronics.New
York: Wiley-Interscience, 1970.

[6] R. Hirota and K. Suzuki, “Theoretical and experimental studies of
lattice solitons in nonlinear lumped networks,”Proc. IEEE, vol. 61,
pp. 1483–1491, Oct. 1973.

[7] A. Singer, “A new circuit for communication using solitons,” inProc.
IEEE Workshop Nonlinear Signal Image Process.,1995, vol. I, pp.
150–153.

[8] M. Rodwell et al., “Active and nonlinear wave propagation devices
in ultrafast electronics and optoelectronics,”Proc. IEEE, vol. 82, pp.
1035–1059, July 1994.

[9] H. A. Haus, “Molding light into solitons,”IEEE Spectrum,pp. 48–53,
Mar. 1993.

[10] Y. Cho, J. Wakita, and N. Miyagawa, “Nonlinear equivalent circuit
model analysis of acoustic devices and propagation of surface acoustic
wave,” Jpn. J. Appl. Phys.,vol. 32, no. 5B, pp. 2261–2264, 1993.

[11] A. Osborne, E. Segre, G. Boffetta, and L. Cavaleri, “Soliton basis states
in shallow-water ocean surface waves,”Phys. Rev. Lett.,vol. 67, pp.
592–595, July 1991.

[12] R. Jenkins, J. Sauer, C. Radehaus, A. Benner, M. Ablowitz, and
G. Beylkin, “Techniques for detecting densely wavelength-multiplexed
solitons,” in Proc. SPIE—ISOE,July 1993, vol. 2024, pp. 258–269.

[13] A. Singer, “Signal processing and communication with solitons,” Ph.D.
dissertation, Mass. Inst. Technol., Cambridge, 1996.

[14] A. Singer and A. Oppenheim, “Circuit implementations of soliton
systems,”Int. J. Bifurc. Chaos, vol. 9, no. 4, pp. 571–590, 1999.

[15] M. D. Trott, “Unequal error protection codes: Theory and practice,” in
Proc. IEEE Inform. Theory Workshop,June 1996, p. 11.

[16] M. Toda, Theory of Nonlinear Lattices,no. 20 in Springer Series in
Solid-State Science. New York: Springer-Verlag, 1981, no. 20.

[17] N. Zabusky and M. Kruskal, “Interaction of solitons in a collisionless
plasma and the recurrence of initial states,”Phys. Rev. Lett.,vol. 15,
pp. 240–243, Aug. 1965.

[18] K. Suzuki, R. Hirota, and K. Yoshikawa, “Amplitude modulated soliton
trains and coding-decoding applications,”Int. J. Electron.,vol. 34, no.
6, pp. 777–784, 1973.

[19] K. Suzuki, R. Hirota, and K. Yoshikawa, “The properties of phase
modulated soliton trains,”Jpn. J. Appl. Phys.,vol. 12, pp. 361–365,
Mar. 1973.

[20] J. vomScheidt and W. Purkert, “Random eigenvalue problems,”Proba-
bility and Applied Mathematics.Amsterdam, The Netherlands: North
Holland, 1983.

[21] H. L. V. Trees,Detection, Estimation, and Modulation Theory: Part I.
New York: Wiley, 1968.

Andrew C. Singer (M’96), for a photograph and biography, see this issue,
p. 2699.



2782 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

Alan V. Oppenheim (F’77) received the S.B. and
S.M. degrees in 1961 and the Sc.D. degree in 1964,
all in electrical engineering, from the Massachusetts
Institute of Technology (MIT), Cambridge. He was
also the recipient of an honorary doctorate from Tel-
Aviv University, Tel-Aviv, Israel, in 1995.

In 1964, he joined the faculty at MIT, where
he currently is the Ford Professor of Engineering
and a MacVicar Faculty Fellow. Since 1967, he has
also been affiliated with MIT Lincoln Laboratory,
Lexington, MA, and, since 1977, with the Woods

Hole Oceanographic Institution, Woods Hole, MA. His research interests are
in the general area of signal processing and its applications. He is coauthor of
the widely used textbooksDiscrete-Time Signal Processingand Signals and
Systems. He is also editor of several advanced books on signal processing.

Dr. Oppenheim is a Member of the National Academy of Engineering and of
Sigma Xi and Eta Kappa Nu. He has been a Guggenheim Fellow and a Sackler
Fellow at Tel-Aviv University. He has also received a number of awards
for outstanding research and teaching, including the IEEE Education Medal,
the IEEE Centennial Award, the Society Award, the Technical Achievement
Award, and the Senior Award of the IEEE Acoustics, Speech and Signal
Processing Society. He has also received a number of awards at MIT for
excellence in teaching, including the Bose Award and the Everett Moore
Baker Award.

Gregory W. Wornell (M’91) received the B.A.Sc.
degree (with honors) from the University of British
Columbia, Victoria, B.C., Canada, and the S.M.
and Ph.D. degrees from the Massachusetts Institute
of Technology (MIT), Cambridge, all in electrical
engineering, in 1985, 1987, and 1991, respectively.

Since 1991, he has been on the faculty of the
Department of Electrical Engineering and Computer
Science at MIT, where he is currently Cecil and
Ida Green Career Development Associate Professor.
From 1992 to 1993, he was on leave at AT&T Bell

Laboratories, Murray Hill, NJ, and during 1990, he was a Visiting Investigator
at the Woods Hole Oceanographic Institution, Woods Hole, MA. His current
research interests include signal processing, wireless and broadband communi-
cations, and applications of fractal geometry and nonlinear dynamical system
theory in these areas. He is author of the monographSignal Processing with
Fractals: A Wavelet-Based Approachand coeditor of the volumeWireless
Communications: Signal Processing Perspectives(Englewood Cliffs, NJ:
Prentice-Hall). He is also a consultant to industry and an inventor on four
patents in the area of communications and another in the area of digital
watermarking is pending.

Dr. Wornell is currently an Associate Editor for the communications area
for IEEE SIGNAL PROCESSING LETTERS and serves on the Communications
Technical Committee of the Signal Processing Society. Among the awards
he has received for teaching and research are the MIT Goodwin Medal for
“conspicuously effective teaching” in 1991, the ITT Career Development
Chair at MIT in 1993, an NSF Faculty Early Career Development Award in
1995, an ONR Young Investigator Award in 1996, the MIT Junior Bose Award
for Excellence in Teaching in 1996, and an MIT Graduate Student Council
Teaching Award in 1998. He is a member of Tau Beta Pi and Sigma Xi.


