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Detection and Estimation of
Multiplexed Soliton Signals
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Abstract—Solitons are eigenfunction solutions to certain non-  From an engineering standpoint, these nonlinear wave equa-
linear wave equations that arise in a variety of natural and man-  tions provide useful models for analyzing natural phenomena
made systems. Their rich properties and tractability make them as well as the behavior of certain electrical and physical sys-

an intriguing component of such systems, often describing large- . -
scale or long-term behavior of natural systems, or the information t€Ms. They also constitute building blocks for more complex,

content in certain communication or signal processing systems. yet analytically tractable, signal processing or communication
However, it is often difficult to detect or estimate the parameters systems. However, in many contexts, it is often difficult
of solitons in such systems due to the presence of strong nonsolitorny, gpserve solitons in physical systems with rich dynamics
components or the nonlinear interaction of multiple solitons. . . .

The objective of this paper is to develop and investigate the since solitons cap be masked bY strong nonsoliton modes.
detection and estimation of soliton signals. As a framework for FOr example, solitons present as internal waves or as surface
this study, we consider using these nonlinear systems as bothwaves in many ocean environments can be obscured by
sigl_r:al generators at_“d silgnal ptroc::-?sors in a form i’_f mulltiplexet]zcl energetic radiation modes [11]. In addition, when multiple
soliton communication. In contrast to more conventional uses of ; ; - : e

solitons in a communications context, our communication system interacting solitons are .present, it can be difficult to resolve
uses soliton systems for signal generation and multiplexing for Of measure them, as is the case for densely wavelength-
transmission over traditional linear channels. In addition to their multiplexed optical solitons in fiber [12]. For a number of
mathematical tractability and the simplicity of the analog circuits  applications, it is important to develop effective techniques

used to generate and process them, we show that the solitonsq getecting and estimating the parameters of solitons from
signal dynamics may also provide a mechanism for decreasing .
noisy measurements.

transmitted signal energy while enhancing signal detection and N i _ )
parameter estimation performance. Recently, circuit implementations of certain nonlinear sys-

tems that can generate and process analog signals containing
solitons, or “soliton signals,” were developed in [13] and
were presented in [14]. The focus of that paper is on the
implementation of a class of soliton systems with analog
|. INTRODUCTION circuitry and a statistical characterization of their operation in
LITONS are stable, mode-like solutions to a special clatise presence of additive disturbances. In this paper, parameter
f nonlinear wave equations that can be solved analyticalbgtimation and detection of soliton signals are considered for
using a technique known as “inverse scattering” [1]. Thedis class of systems.
inverse scattering transform can be interpreted as a nonlineaAs a framework for exploring detection and estimation of
Fourier analysis for these systems, which decompose wasliton signals, we consider using these nonlinear systems as
dynamics into a superposition of normal modes. These normpth signal generators and signal processors in a new multi-
modes are solitons, and their particle-like properties have bggiexed communication system over traditional linear channels
observed in a variety of natural phenomena including oceggich as coaxial cable or radio frequency broadcast. In the
and plasma waves [2], [3], crystal lattice vibrations [4], anfrocess, we suggest a speculative but plausible communication
energy transport in proteins [2]. Solitons also describe thradigm in which the parameters of soliton signals are modu-
behavior of a variety of man-made systems, including supted and the nonlinear interaction among solitons is exploited
conducting transmission lines [5], nonlinear circuits [6], [7lo multiplex signal streams. Parameter estimation and detection
ultrafast electronics and optoelectronics [8], [9], and surfagg; these soliton signals then directly address many of the
acoustic wave devices [10]. performance aspects of the proposed communication system.
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decoding) of multiple streams in general has a complexity that ig i1
increases with the number of streams, the soliton modulation
and multiplexing techniques developed in this paper have a
fixed receiver structure.

One potential benefit to using solitons as carrier signals
and the nonlinear systems as multiplexors is that, as we Zy, Zy 701 z, Z 41
will show, the soliton signal dynamics provide a mechanism
for simultaneously decreasing transmitted signal energy and
enhancing communication performance. More broadly, there
has been a resurgence of interest in analog modulation and Fig. 1. Diode ladder network.
coding techniques [15] in efforts to develop communication
systems for a variety of broadcast and multicasting scenari@§uations describe one such nonlinear system that possesses
where digital techniques are suboptimal. In this context, thiglitary wave solutions.
soliton communication system can, in principle, be viewed asQriginally developed to describe a nonlinear spring mass
a simple form of joint modulation and analog error protectiogystem [16], the Toda lattice equations govern the dynamics
with convenient hardware implementations. of the diode ladder network shown in Fig. 1, where each of

In order to develop this framework, some of the well-knowghe shunt impedances is a double capacitor, ¥g.= /s>
properties of solitons are brlefly described in Section II. Tl"[q4] In terms of the V0|tages across the double Capacrimrs
remainder of the paper focuses on new ideas and resultsi{g Toda lattice equations are
Section Ill, a communication paradigm is introduced where

in+l
—

}
|
|5

Vo V1 Vn-1 vn Vn+l

2
soliton signals are us_ed as Ca_rrier Wav_efornjs whose parameters d;’i";t) = al,(exp{(vn_1(t) — vn(t))/v,}
are modulated with information-bearing signals. The associ- t
ated nonlinear systems can multiplex multiple signals and —exp{(vn(t) = vnp1())/0:}) (1)

independently extract them by exploiting the eigenfunctiog, equivalently, in terms of the diode currents
properties of solitons for these systems. The methods and ’

analysis in this paper center mainly on the Toda lattice: ad_i 1n<1 in(t)> () = 200 () + i () @)
particular nonlinear system that supports soliton solutions andft I
whose implementation via analog circuitry is discussed Wh r
detail in [14]. This system, which is described in Section Il
along with some of the properties of its soliton solutions, forms )
the basis of a soliton communication paradigm developed?t thermal voltage; .
in Section IV. In Section V, the effects of unknown channel 'L_"(t) curren_t through thm_th d|ode_. )
gain and signal corruption on the dynamics of solitons in thB“S set of ordinary differential equations _descrlbes the behav-
Toda lattice and the processed noise statistics are analyZ@f0f the cascade system, whose dynamics can be completely
extending the statistical characterization developed in [18pecified by the one-dimensional (1-D) signal). When
with an analysis based on the inverse scattering transformo() in Fig. 1 is of the form
The extent to _which th_e parameters of these sol_iton_sig- io(t) = B2 sech(Br) 3)
nals can be reliably estimated in noise has a significant
impact on potential communication applications. Accordinglghe response of the diode ladder circuit is
Cranér—Rao bounds on parameter estimation error are ex- , 9
amined in Section VI. Based on a statistical characteriza- in(t) = B* secfi(pn — ) ()
tion of the received and processed soliton signals, a sieres = VI, sinh(p), andr = t /o /.
of parameter estimation algorithms are presented in whichThe re|ation5hip between the amp"tude, Ve|ocity' and ef-
maximum-likelihood (ML) estimates can be obtained frorfective pulse-width of these waves leads to narrower waves
corrupted measurements. In Section VII, we demonstrate h@yat are larger in amplitude, which will propagate faster than
soliton circuits can be used to enhance the detection \fder waves that are smaller in amplitude. If a solution to
multiplexed solitons in noise. Section VIII contains somehe equation is composed of solitary waves with different
concluding remarks. amplitudes, then collisions between the solitary waves are
possible. The term “soliton” refers to such solitary wave
solutions that retain their identity on collision with other
solitary waves. As the individual solitary waves approach one
An important class of solutions to certain nonlinear evolanother, they begin to interact nonlinearly. However, after
tion equations are traveling wave solutions that propagate wjghssing through one another, they regain their shape and speed
constant shape and velocity; these are referred to as “solitarigh only a slight positional shift [17].
waves.” Specifically, a solitary wave solution with temporal There are many physical systems that support soliton so-
and spatial variables and» is a traveling wave of the form lutions in a wide range of media [1], [3], [5], [9]. These
u(n,t) = f(n —ct) = f(z), wherec is a fixed constant, can be distributed systems with dynamics described by partial
and the energy off(z) is localized inz. The Toda lattice differential equations and whose solitons propagate through a

I, saturation current in the diodes;

Il. SOLITON SYSTEMS
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Fig. 3. Soliton carrier signal.
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can be completely reconstructed from the eigenvalues and
s eigenfunctions ofL(0). A detailed treatment of the inverse

80 Node index scattering method can be found in [1].

time(us) 100 O For the Toda lattice(¢) and B(t) are the symmetric and

antisymmetric tridiagonal matrices given by

60

Fig. 2. Two solitary wave solutions to the Toda lattice.

an—1

bulk medium such as water, optical fiber, or plasma. They can L=\|ap1 by an
also be lumped or cascade systems in which solitons propagate
along a chain of identical nodes, such as in a crystal lattice, a
nonlinear ladder network, or a metallic-grating surface acoustic N —Gp

wave device. These cascade soliton systems, such as the Toda B=|a,_1 0 —0n (6)
lattice, are often described by systems of ordinary rather than
partial differential equations.

Fig. 2 illustrates soliton behavior in the Toda lattice fo{}vherean = exp{(vn — Vn41)/2}/2, by = /2 for voltages
two solutions of the form of (4). Each trace in the figure, in a solution to (1). When written in this form, (5) implicitly
corresponds to the current in the diode at the associaigshtains the Toda lattice equations. Although each of the
index. As shown in the figure, the Toda lattice exhibits thenyries of L(¢) evolve with time, the eigenvalues di(t)
key features of soliton behavior previously mentioned. Thigmain constant.
one-parameter family of solutions has an amplitude-dependenfs the motion on the lattice is confined to a finite region
velpcny with which it passes through the circuit. As the largess the lattice, i.e., the lattice is at rest fpr] — oo, then the
soliton catches up to the smaller soliton, as viewed on thgectrum of eigenvalues for the matidxt) can be separated
sixth node, the combined amplitude of the two solitons igto two sets. There is a continuum of eigenvaldes [1, 1]
actually less than would result from a linear superpositiofg a discrete set of eigenvalues for whigh| > 1. When
of the two amplitudes. In addition, the signal shape changgg |attice is at rest, the eigenvalues consist only of the
significantly during this nonlinear interaction. Each of thesgyntinuum. When there are solitons in the lattice, one discrete
characteristics of soliton interaction has useful implications ggenvalue will be present for each soliton excited. This
the communications context developed in this paper. separation of eigenvalues &f{¢) into discrete and continuous
~ Awell-known and often defining property of soliton systemgomponents is common to all of the soliton systems solved
is that by means of the inverse scattering transform, th@j, inverse scattering. A more detailed investigation of the

can be described by an equivalent representation through figsrse scattering method as applied to the Toda lattice can
evolution of a specific linear operator whose eigenvalues Iigs found in [16].

main constant with time. Specifically, soliton systems possess

a symmetric linear operatak(t) whose temporal evolution | S ToN MODULATION AND MULTIPLEXING STRATEGIES
satisfies an operator differential equation of the form

n,

QAp,

To explore some of the properties of the soliton signals
dL(t) generated by nonlinear systems as described in Section I, we

3 = B(t)L(t) — L(t)B(t) (5) propose a simplified example of a multiplexed communication
system. By using solitons as carriers that can be independently

where B(t) is an antisymmetric linear operator, and thenodulated and multiplexed by the underlying nonlinear sys-
nonlinear evolution equation is implicitly determined by (5)tems, the problems of detection and parameter estimation of
For example, the Toda lattice equations can be expressatiton signals can be related to aspects of performance of
in this form, where the elements of a matrX¢) describe the communication system. In this section, we outline the

the voltages at nodes in the lattice. In this representationpdulation and multiplexing strategy, highlighting the basic
solitons present in the system correspond to eigenvalues in itheas without focusing on the detailed system implementation.

discrete spectrum of the linear operafdt). The dynamics of  In order to use soliton signals as carriers of information,
solitons that correspond to different eigenvalues are uncouplec: define a soliton carrier as a periodic soliton signal that has
However, their contributions to the solution in the observeshe or more solitons of different parameter values contained
system are nonlinearly coupled. Through a process calleithin each period. As an example, a soliton carrier with one

“inverse scattering,” the state of the system at any timsmliton in each period is depicted in Fig. 3. Information can
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Fig. 4. Multiplexed soliton communication system. The transmitter generates a multisoliton carrier whose parameters are each modulategentith diffe
message streams. The multisoliton signal is then multiplexed by the nonlinear system in preparation for transmission over an identity chamaeeivdrth
the signal is again passed through the nonlinear system to demultiplex the individual message streams.

be embedded in the parameters of the solitons, which will IV. TODA LATTICE SOLITON
either affect the shape or relative spacing of the solitons in MODULATION AND MULTIPLEXING
each period.

; ) ) ) The cascade structure of the Toda lattice system enables a
In Section II, it was demonstrated that solitons of different,enient implementation of the modulation and multiplexing
parameter values approach and pass through one anothefyass of Section IIl. A periodic soliton carrier signal for the

the signal is processed by the nonlinear system. By passifgys |attice of the form depicted in Fig. 3 can be written as
a soliton carrier through a section of the nonlinear system 9f¢ iy of solutions of the form ), i.e.

just the right length, the component solitons in each period

of the carrier signal will superimpose; the effect of passing . =, )
the carrier through the nonlinear system will be to multiplex in(t)= > Bsech’la(n— ) —pt]—28.  (7)
the component solitons such that they become coincidental in f=—0c0

time. If the signal is extracted from the nonlinear system
this point, the multiplexed solitons will remain “frozen” in
their current relative positions. At a later point in time, thi
multiplexed waveform could be demultiplexed by continuing

the process. By pas_sing the signal through an equival_ent Ienglt al using the Toda lattice circuits developed in [14]. In
section of the nonlinear system, the component solitons Wg)l}der for the circuits to act as multiplexors, the carrier signal

finish passing through one another, leaving the carrier oN&€a periodically repeated train of four solitons of increasing

aggm W|thbmglt|plt$] non(;.verlap?mg ZOII't(t).nS' lit . garamete;ﬁ. As such, this system could support four separate
y comoining the notions of modulating Solton Carmely., 1 ation streams: one on each of the component solitons.

with multiplexing the component solitons within each period, a Although presented in the context of the Toda lattice equa-
simple multiplexed communication system can be construct%%

. ; I e n, as indicated at th tset of th , th lit d-
The overall process is depicted in Fig. 4. Specifically, t)’g . as Indicared at e outser of the paper, the Soion Mo

ﬁodulating the parametes or the relative positions of the
solitons in each period results in a form of scale modulation
r pulse-position modulation.

multisoliton example is shown in Fig. 5 for a four-soliton

i itter tak inout | i hi ation techniques developed here are applicable to a variety
ransmitier takes as input several message streams, whic f'goliton systems, both in discrete and continuous time. For

uses to generate a multisoliton carrier ;ignal whose parametgrample a similar technique can be used for modulation of the

?hrs sagr?] TeOdlrilc?tend'r?Xthz (f:_orr?esp%r?dmg nnf;leizi%.estsngfmd;l%rete—time solitons generated by the discrete-KdV equation
it X ph S t\;\v ! I Igul't’ IS SI9 dulated Ibs " tV\’/f?hose circuit implementation is discussed in [14]. Related

solitons, where he smaller soliton 1S modulated by s rea1@chniques for modulation of information on soliton carriers

a and the larger by. The modulated sohtqn carrer 1s th(.ar\/vere previously proposed by Hiro& al. [18], [19]. Although
passed through an appropriate length section of the nonlin ir signal generation and processing methods relied on an

system, which acts as a multiplexor, combining the SOIitOﬁlr?exact phenomenon known as “recurrence,” the modulation
in time. The output of the multiplexor is a packetized solito% ’

carrier, whose solitons remain fixed in their relative locatio aradigm they presented is essentially a two-soliton version
! the carrier modulation paradigm presented here. However,

Zlnr(]:en:?ey no longer evolve according to the nonlinear SYS“?HE methods used to generate and multiplex solitons required
yTﬁ cs;[ t of the t itter is th t h extremely long lattices for only two solitons and required a
€ oufput ot the fransmitier IS then Sent over a ¢ ann%Eecific relationship between the soliton amplitudes. Unlike

When the channel is an identity channel, the receiver ¢ e methods presented here, such methods do not generalize

use a nonlinear system identical to that used for multiplexiqg an arbitrary number of solitons with arbitrary parameters.
to continue the nonlinear evolution of the solitons and th rther. the number of nodes in the lattice would increase

zfpt?]reat?n doi\L/Jitdlg:\? rzzg]sp:gneen;trz(z)alrl?snscalg ,?haecnh lf:rlr(;ibvlzer onentially with the number of solitons for the restricted set
) i Ot parameters that could be accommodated.

independently. In order to further develop some of the ideas of

soliton carrier modulation and multiplexing, for the remainder . . )

of this paper, we focus our attention on one specific clafs FoUrier Spectrum of Toda Lattice Solitons

of nonlinear systems: those governed by the Toda latticeThe soliton demodulation and demultiplexing techniques
equations. discussed in this paper assume that there is no convolutional
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Multiplexor Channel Demultiplexor

Fig. 5. Multiplexing of a four soliton solution to the Toda lattice.

distortion in the received signal, which is the case when th ‘ v ‘ ; ‘ ' ~ '

bandwidth of the soliton signals is small compared with the
available channel bandwidth, i.e., the channel bandwidth is
sufficiently wide (frequency nonselective) to pass the soliton
without distortion. We assess the bandwidth requirements by
exploring the spectral characteristics of multisoliton signals. A
periodic single soliton carrier for the Toda lattice of the form )
7) at a fixed node ;
) : P ANRY,
ft) = Z B? secR(B(t — £T)) — 23 (8) i IIVAVEY —

I
e I
0

whereT" is the period of the carrier, has a Fourier transform
given by \\
S W
F(w) = w, S —
(W) = we 4=_§é¢0 ESNEET) §w —tw)  (9) |

-10 -8 -6 -4 -2 0 2 4 6 8 10

wherew, = 27 /T, resulting in Fourier series coefficients that me
fall off exponentially in frequency. Fig. 6. Two-soliton solution is depicted in the Toda lattice. Each horizontal

. . . . . race is the response at a successive node in the lattice. In this case, the two
A single period of the two-soliton signal can be written [6Ljion wavenumbers are, = 2 andps = 1.3.

ft) = B2 secH (1) + (2 secH(n2) + AsecH(n;) secH (1)
~ (cosh(¢/2) + sinh(¢/2) tanh(n;) tanh(n2))2 signal is minimized precisely at the point of overlap. This is
(10) shown in the Appendix by analysis of the energy that would be
required to transmit the waveforn{t; 61, 62) = f,.(¢) in (10)

with »; = (¢t — 6;). When the solitons do not overlap in
time, A = 0, and the denominator in (10) is approximately E— /Oo ot 61, 82)2 dt. (11)
unity; therefore, the modulation is essentially the sum of the oo

individually modulated waveforms. As the solitons begin to As shown in Fig. 6, when the two solitons are well separated

overlap, the contribution from the multiplicative cross terng, time, |, —8»| > 0, and the two component solitons are each
becomes significant, and spectral mixing of the componegikyinguishable. In this casel ~ 0, and the denominator is
messages will occur. This results in bandwidth expansion oo imately unity in (10). However, as the solitons come to
the multisoliton signal due to the convolution of the spectidieract s, ~ 6,, the nonlinear cross term and the denominator
of each of the component solitons. in (10) become significant, and the combined signal amplitude
decreases.

The resulting effect on the energy of the signal is illustrated

As depicted in Figs. 2 and 6, there is a net reduction af Fig. 7 for several different values of the paramet&r
signal amplitude as multiple Toda lattice solitons interact. Aslding 3; fixed and with 3> < ;. Significant energy
mentioned in Section I, this nonlinear coupling among theduction occurs for a fairly wide range of separatiéns &,
component solitons can be exploited to yield a reduction indicating that the modulation techniques described in this
the energy required to transmit the soliton carrier. section could take advantage of this reduction, even though

In fact, for a two-soliton carrier, as a function of the relativenodulation would cause the relative separation to deviate from
separation of the two solitons, the energy of the transmittéd = é». For example, fopd, = sinh(1.25), 1 = sinh(2), the

B. Low-Energy Signaling with Soliton Signals
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. . . . . Fig. 8. Normalized cross-covariance of the input and output signals as a
Fig. 7. Normalized signal energy for a two-soliton solution to the Todgnction of composite gainy..

lattice holding3; = sinh(2) fixed for three values ofi.. The signal energy
is normalized by the maximum signal energy of the separated solitons.

directly with the Toda lattice. In general, the signat) will
jve rise to both soliton and nonsoliton components, where the

as much ast1.0 while still providing an energy reduction in oliton component may be of a different soliton parameter.

, . . . Many communication systems combat gain fluctuations with
excess of 20%. The nominal separation for these solitons in . . . : .
automatic gain control (AGC) to dynamically adjust the gain

a two-soliton periodic carrier could be as small as 1.5 for th e . .
P a preamplifier in the receiver. To demonstrate the feasibility

. . . o)
solitons to be essentially uncoupled. This would correspon . . .
to an “effective modulation depth” of 1.0/1.5 or 67% whiIeO? AGC for the soliton modulation systems, we consider the

maintaining 67% of the energy reduction available. If theﬁECt of an unknown gain on a single soliton processed by

multiplexed soliton system were used over an SNR-limite e Toda lattice. Since processing the soliton will correspond

channel, then rather than transmitting the energy-reductgda simple time delay only when the unknown gain has been

: S : . orrected, an AGC system might exploit differences between
signal, the multisoliton signal could be rescaled to achieve tfje . . . .
. . e input and the processed waveforms and adjust the gain until

same SNR over the channel as the separated soliton signal

we shall see. this has an overall effect of decreasin tPeSprocessed waveform is a pure time delay of the input. As an
) g parameter e )

estimation error at this fixed SNR. examp!e, in Fig. 8, thg pea!< of the cross-covariance b_etween

the gain-adjusted soliton signal and the processed signal at

the nth node of the lattice is shown as a function of the

composite unknown gain.. For this exampleg = sinh(2),

In our preliminary development, the multiplexing and comand0.1 < ~. < 3. As shown, the normalized cross covariance
munication contexts described in Sections Il and IV consithas a unique maximum of = 1 when the input to the
ered an identity channel, allowing demultiplexing of the conifoda lattice has been properly rescaled, ire.,= 1. This
ponent streams at a receiver by simply processing a receigdes an indication that AGC techniques based on feedback of
multisoliton waveform with the Toda lattice equations. If thesghe processed signal can be effective in combating unknown
techniques were to be applied in more realistic channethannel gain. However, a variety of issues including how such
the multiplexed soliton waveform could undergo significamAGC might be performed for multisoliton signals or modulated
distortion from transmitter to receiver. In Section V-B, wenultisoliton carriers remains unexplored.
consider effects of additive noise. In the following section,
the issue of unknown channel gain is considered. B. Noise Dynamics in Soliton Systems

relative positions of the two solitons could be modulated

V. CHANNEL EFFECTS

For even a simple additive noise channel, it is not clear
that processing the received multisoliton waveform with the
In any practical communication context, a modulation systonlinear evolution equations is an effective means of demul-
tem must be able to combat the presence of an unknown gaptexing. In order to assess the degree to which a receiver can
due to channel fluctuations. This is a potential drawback démultiplex and demodulate multisoliton signals in noise, it is
using Toda lattice solitons as carrier signals since these solitoresessary to first examine both the dynamics of the noise as
have a specific relationship between the amplitude and puisés processed and its effects on the soliton dynamics.
width. If the soliton signak(t) = 3% sech(t) is transmitted ~ For the remainder of this paper, we assume an additive
through a channel and arrives at the receiver with an unknowhite Gaussian noise channel from transmitter to receiver,
gainr(t) = vs(t), then the soliton dynamics of the signat) i.e.,r(¢) = s(t) + n(t), wheres(t) is the multisoliton signal,
can no longer be observed from processing the sig(gl andn(t) is stationary white Gaussian noise. There are two

A. Gain Normalization
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significant effects of the additive noise on the output of thBy expanding the eigenvalues of the matfixn a convergent

receiver. First, when the received signdt) is used as the series, we obtain [20],

input to the Toda lattice, then the noise from the channel

has a dynamical effect on the solution to the Toda lattice. N PO

Ol_Jr ini_tial analysis_of these dynamica_ll effects i_n [14] focus_ed Ay = g + ngg B Z dgidig I (14)

primarily on the noise component while assuming that at high it ity Hig

SNR, the soliton dynamics were unaffected. However, even

at high SNR, the additive noise may also have an effect . . N

on the actual solitons excited in the lattice. Accordingly, w&/heres is the gth eigenvalue of.o, iy = i — g, andd;;

extend these results in our subsequent analysis develop&®l the elements of the matrik defined byD = C''DC,

in this paper, where inverse scattering techniques are udgere C diagonalizesLo.

to examine the effects of additive noise on the induced SinceE{dy,} = 0, then to first order in the elements &%,

soliton eigenvalues. The results we obtain are important bdfi¢ eigenvalues ok are unbiased estimates of the eigenvalues

in developing an understanding of the temporal behavi€f Lo In addition, sinced,, is a linear combination of the

of the soliton component of the signal and in determiningléments ofD, then if the elements ab are jointly Gaussian,

the performance of any parameter estimation algorithms tiY#ich is a reasonable assumption at high SNR; then, to first

employ inverse scattering. order, the eigenvalues d@fwill be jointly Gaussian, distributed
As developed in [14], the dynamics of the Toda latticBPout the eigenvalues di,.

equations when driven by white Gaussian noise with low noise The proceeding leads to some important interpretations.

power leads to a model in which an input—output relationsh¥yhen processing small amplitude white Gaussian noise alone,

from the signal at the zeroth node to the output at A  the lattice can be viewed as a dispersive lowpass filter;

node has the approximate frequency response therefore, the output of the system will approximately be
bandlimited white Gaussian noise at each node. In the presence

of noise, solitons will be essentially unperturbed, and the
noise will remain Gaussian and bandlimited. Via inverse
scattering, to first order, small amplitude noise alone only ex-
wherew,. = «/I,v;. The lattice behaves like a lowpass filtecites eigenvalues corresponding to the nonsoliton continuum.

.
6—2] sin (de)]\‘r7

elim=2 cosh " («o)IN  gtherwise

lw| < w.

Hy(jw) = { (12)

and, for N > 1, approaches the ideal filter When solitons are also processed, the noise induces a small
Gaussian perturbation to the true soliton eigenvalues as well.
|Hn (jw))? ~ { L o< We (13) These properties are exploited in the next two sections, which

0, otherwise. consider estimation and detection of soliton signals.

These results are assumed to hold when soliton signals are also

present in the input. Specifically, at high SNR, it is assumed

that the soliton components are processed independently from VI. ESTIMATION OF SOLITON SIGNALS

the noise and that the noise is still effectively lowpass filtered. | physical or natural systems, it is often necessary to

The validity of these assumptions was verified in [14] throughstimate solitons or their parameters from measurements.
both linearized analyses and simulation. This is the case, for example, when they are masked by
We next consider a complimentary noise model based @Rternal noise in the measurements or by strong nonsoliton
inverse scattering. As described in Section Il, the invergtg)mponemS or when many solitons are superimposed, making
scattering transform provides a particularly useful mechanislem difficult to resolve. These situations can all arise in the
for exploring the long-term behavior of soliton systems. |gommunication techniques suggested in Sections Il and IV.
a manner similar to the use of the Fourier transform fqp this section, we explore soliton parameter estimation by
describing the ability of linear processors to extract a sign@lestigating the ability of a receiver to estimate the parameters
from a stationary random background, the eigenvalues frofpithe multisoliton carrier from corrupted measurements.
inverse scattering can effectively characterize the ability of \we first determine bounds on the performance of any
the system to extract the component solitons of a receivgflpiased estimator of the scale parametgrand the relative
soliton signal in noise, as we now develop. positionsé; of multisoliton signals in stationary white Gauss-
To begin, recall that the dynamics of the Toda lattice Ma¥;, noise with noise poweNy. A bound on the variance of
be described by the evolution of the matiiX) given in (6), an estimate of the parametdrmay be useful in determining
whose eigenvalues outsida| < 1 correspond to solitons. the demodulation performance of a parameter modulation
By considering the effects of small amplitude perturbations &/stem, where the component soliton wavenumbers are slightly
the entriesa,, (t) and b,(t) on the eigenvalues of(t), we modulated. Whe() contains two solitons that are separated
can observe the effects on the soliton dynamics through tagime and therefore are not interacting, the multisoliton signal

corresponding eigenvalues. o appears as a linear superposition of the two, i.e.,
Following [20], we write theN x N matrix L in the form

L = Lo+ D, where L is the unperturbed symmetric matrix ) )
corresponding to the noise-free soliton signal, dds the s(t) ~ 7 sech (B (t — 61)) + B7 secR (Ba(t — 62))
symmetric random perturbation resulting from additive noise. =s1(t) + s2(¢). (15)
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As such, each of the component solitons can be treatedn the communication context, we are generally interested in
separately. As we shall see, for large separations, the abiliigrameter estimation with an unknown relative spacing among
to estimate the parametefs and 3, from s(¢) is the same as the solitons. Either the relative spacing of the solitons has been
estimatings; from s;(¢t) and 3, from s2(t), respectively. modulated and is therefore unknown to the receiver, or the
If the time locations of each soliton are known, then thparameterg?;, and 3, are modulated, and the induced phase
variance of any unbiased estimatéy of 8; must satisfy the shift in the received solitong is unknown. In either case, the

Craner—Rao lower bound [21] Cramér—Rao bound for jointly estimating the parameters of a
multisoliton signal from observations eft) can be obtained
5 No numerically by forming the Fisher information matriX©)
Var(3) > . 16 '
)= /tf Js;(t; 3) th (16) where © = [§;, &, B1, 3] T
' 7 1 [ [9s(t; ©) ds(t; ©)
SIS SIS
1(©);, ;= — : : dt 22
For the infinite observation intervatoco < t < oo, the O, NOA < 99, 00; ) (22)

Cramér—Rao Bound (16) can be evaluated to be [13]
where ©; is theith element of®. The usual resulting bound

Var(/?) > No ; ~ No ' 17) on the estimation variance for paramegris given by [21]
8 N 4r 5 3.54473 A
3 45 Var(©;) > [I74(0)]u. (23)

A Cramér—Rao bound would also be useful for determiningor large separation$= &, — &,, the Cranér—Rao bound for
the demodulation performance of pulse position modulatiogstimating the parameters of either soliton will be unaffected
where the soliton position is slightly modulated. For each @y the parameters of the other. As shown in Fig. 9(a), when the
the separated solitons;(¢) = 32 secti(5;(t — 6;)), wheres;  component solitons are well separated, the bound for either
is the relative position of the soliton in a period of the carriebr /3, approaches the bound for estimation of a single soliton

the Cranér-Rao bound fob is given by with that parameter value in the same level of noise. The
bounds for estimating’; and 3, are shown in Fig. 9(a) as
Var(S) > No a function of the relative separatio#,

Note that both of the bounds are reduced by the nonlinear

S
6 _ 2 _
/ 4p° sectt(B(t - 8)) tanh’(8(t — 6)) dt superposition, indicating that the potential performance of

No the receiver is enhanced by multiplexing. As was shown in
~ 716\ - (18)  section IV-B, the energy of the signal is reduced by multi-
<E>/3O plexing, which indicates that this performance enhancement is

achieved at a lower signal-to-noise ratio since the noise power

More generally, when the received signal is a multisolito}f@S held fixed. However, as we let the parameter difference
waveform where the solitons are multiplexed in time, thé2 — A1 increase, we notice a different character to the bounds.

signal shape is sensitive to the relative positions of the solitoote that in Fig. 9(b), the performance of the larger soliton is

and parameter estimation becomes more difficult. We wilihibited by the nonlinear superposition, whereas the smaller

focus our attention on the two-soliton solution to the TogsPliton is still enhanced. In fact, the bound for the smaller
soliton becomes lower than that for the larger soliton near the

lattice
rangeé = 0.
B2 sech(n) + (3 secH (1) + A sech (1) sech (1) The ability to simultaneously enhance estimation per-
s(t) = (cosh(¢/2) + sinh($/2) tanh(n;) tanh(n;))2 formance while decreasing signal energy is an inherently
(19) nonlinear phenomena. Using (16), we obtain the familiar
Cramér—Rao bound for linear estimation, which is inversely
where proportional to the signal energy
. . A N
A= sinh(¢/2)((B2 + B2) sinh(¢/2) + 26182 cosh(/2)) Var() > ————2
(20) / 90s(t) &t
” ap
with both solitons traveling in the same direction and with =— No - 1 . (24)
B > P, /'[ s2(t) dt SNR
t;

¢=1In

sinh((p1 — p2)/2)
<Sinh((p1 +p2)/2) (21) However, when the signal has a nonlinear dependence on
the parameter, the bound is a function of the energy in the

where 3, = sinh(p;), andn; = 3;(t — &). derivative of the signal with respect to the parameter rather
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Fig. 9. Cranér-Rao lower bound for estimating; and 8> with all pa-  Fig. 10. Cranér-Rao lower bound for estimating: and 3> with all
rameters unknown in white Gaussian noise witlh = 1. The bounds parameters unknown in white Gaussian noise. The bounds that result from

are shown as a function of the relative separatton= 6, — é>. The multiplexing the solitons without signal rescaling are shown with dashed lines.
Cramér—Rao bound for estimating: and 3. of a single soliton with the The bounds that result from maintaining a constant SNR for all separations
same parameter value is indicated with “0” and™“marks, respectively, as are shown with solid lines. (@ = sinh(2) and 32 = sinh(1.75). (b)

given by (17). (8)81 = sinh(2) and 32 = sinh(1.75). (b) /1 = sinh(2) 3, = sinh(2) andB3; = sinh(1.3).
and 82 = sinh(1.25).

. . . . . i i 8 or about
than signal energy. Bounds for estimating the times of arri f\rameter estimation error. of 0.1011 and 0.077
9 o g \%15% and 3.62%, respectively.

6; of the two component solitons can also be shown i i i
agree with the single soliton bounds for large separations and the transmitter sent the same information embedded
are qualitatively similar to those for estimating the scalinlj the parameters but prior to transmission multiplexed the
parameters. Solitons using the Toda lattice, then the performance of the
To illustrate the combined effects of the energy reductidiceiver would be bounded by the solid and dashed lines
and parameter estimation enhancement that occurs durig™ig- 9(a). For this example, this corresponds to a mean-
multiplexing, in Fig. 10(a), the Craén—Rao bounds are shownsquared parameter estimation error of 0.0412 and 0.0540
for a fixed SNR, rather than a fixed noise pow®p. If Of about 1.14% and 1.94%, respectively. This reduction in
the transmitter were to send information embedded in tfigean-squared parameter estimation error is a result of the
parameters?; of a carrier with separated solitons at an SNRicreased sensitivity of the multiplexed soliton signal to the
of about 19.7 dB, then the performance of the receiver woup@rameters and was accomplished with less transmitted signal
be bounded by the Cra&&n-Rao bounds for separated solitongqower. If the SNR of the transmitted signal were the same
e.g., the points labeled “x” and “0” in Fig. 9(a) as given byor the multiplexed and separated signals, for this example,
(17). For this example, this corresponds to a mean-squathd resulting mean-squared parameter estimation error would
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decrease even further to 0.0362 and 0.0475 or to 1.0% and
1.7%, respectively. This additional 14% reduction in parameter
estimation error is due to the effective increase in available
SNR, which is made possible by the reduction in energy of
the multiplexed signal.

Fig. 10(a) and (b) explicitly show the mean-squared errée(t) = 7(t) in (2), then as the signal is processed by the
reduction that results from boosting the SNR of the multlattice, the component solitons will naturally separate, owing
plexed signal to that of the separated solitons. The origiri their different propagation velocities. This gives rise to the
Cramér—Rao bounds for each parameter are indicated usf@aowmg strategy for estimating the positions of each of the
dashed lines and are the same as those in Fig. 9(a). The bouRHYiplexed solitons: First, use the Toda lattice to separate each
that result from rescaling the multiplexed signal are indicaté the component solitons in time; then, estimate the positions
in solid lines and lie below the original bounds. To furthepf each of the separated solitons using a matched filter as
illustrate the potential for exploiting the energy reduction, iRéfore. By the invertibility of the Toda lattice equations, the
Fig. 10(b), the same process was repeatedsior= sinh(2) ML estimate of the positions of the_z sepa_lrated solitons are
andp; = sinh(1.5). Note that in this example, prior to energyldentical to those based on the received sigrta).
normalization, the mean-squared estimation error for the largeMVhen the signal(t) is used to drive the lattice, each of
soliton is increased from multiplexing. However, once thEe component solitons in(t) will propagate down the lattice
SNR of the multiplexed signal is brought to the same lev@PPearing in the signal(¢) at nodek. For each signaiy(t)
as the separated solitons, the overall mean-squared estimalfiolie solution to the dynamic equations (2), there will be a
error for the larger soliton is reduced. contribution from both the signal componeiit) giving rise to
si(t) and the noise componentt) giving rise ton,(t), i.e.,

w(t) = si(t) + ni(t), wherengy(t) is the stationary white
_ _ . Y Gaussian noise procesgt), and so(t) is the multiplexed

In this section, we consider estimating the parameters gf|iton signals(¢). From our linear noise analyses, at high
soliton signals by first demultiplexing and, therefore, deCOGNR, the noise component of the solutien(¢) is well
pling the component solitons. Once separated, more CQfyproximated as bandlimited white Gaussian noise, whereas
ventional techniques can be applied to parameter estimatigye signal component, (t) propagates unaffected by the noise.
The algorithms described are representative of the types|ofhe component solitons of the signialt) are well separated
operations that might appear in a receiver for the COMBy the time they appear in the signal(¢) at nodeXN, then
munication techniques suggested in Sections Il and IV. ARe ML estimate of the positions of each of the component
such, the bounds presented in the previous section and §afitons based on the signaf(¢) can be obtained by standard
performance of the algorithms in this section should give somgsiched filtering. Not only are the position estimates equal to
indication of potential receiver performance. As a model fqhose that would be obtained directly frortt), but they are
the receiver structure, we will focus on the diode ladder circUiiso much simpler to compute.
implementation of the Toda lattice equations (2), whej€)  To examine empirically the performance of this approach,
is the current through theth diodeio(t) = (), and for e consider soliton signals in white Gaussian noise with noise
simplicity, the parameters of all circuit elements have be%wer Np. Rather than using the circuit hardware that was
normalized to unity. . . o . developed and presented in [14], computer simulations are

When the component solitons in a multisoliton signal afgsed for the experiments in this paper. These simulations are
separated in time, the positions of each of the solitons can IS@rformed using a Runge—Kutta integration routine with a
estimated independently. Consider estimating the posi#jonfixed step sizeA. Since the bandwidth limitations of the chan-
of one of the separated component solitons in a solution to (23| and receiver will restrict the possible range of parameters,

and to simplify our simulations, we assume that the receiver
sift = 6i) = 7 sechi (B,(t — &) @9 isa lowpass filter followed by a Toda lattice circuit, as shown
in Fig. 11. We also assume that the bandwig@tty A of the
lowpass filter in Fig. 11 is wide enough to pass the soliton
Lﬁﬂmponents of-(¢) completely. The input to the Toda lattice
{reuit i0(t) then contains the soliton signal in bandlimited
white Gaussian noise.

r(t)—> | LPF |/ fy(t) —> | Toda |—> i,(t)

Fig. 11. Toda lattice receiver model.

A. Estimation Based on Demultiplexing

with the parametef; known. This is classical time-of-arrival
estimation. For observationst) = s;(¢) + n(t), wheren(¢)
is a stationary white Gaussian process, the familiar maxim
likelihood estimate can be obtained through convolution wi
a matched filter followed by a peak detector [21]. . i : : .
When the signak(¢) contains a multisoliton signal in which For the two-soliton signal in (19), if the component solitons

the solitons are multiplexed and overlapping in time, then tf?é; weltlhsep_aratled as wev;/e(:) on Fﬁh node of th.ff TOdf i
estimation of the vector of parametessfrom the received atlice, the sighal appears 1o be a finéar superposition of two

signalr(t) = s(t; 3, ) +n(t) becomes more involved. If the solitons

component solitons are not well separated, their parameters are 5 (¢) ~ 37 secH (5, (t — 6,) — ;1 N — ¢/2)

tightly coupled to the entire signal and should not be estimated 32 sech (8o (t — 65) — po N 9 26
independently. However, the parameters can be decoupled 2 (2 2) =N +¢/2)  (26)

by preprocessing the signal¢) with the Toda lattice. By where ¢/2 is the time-shift incurred due to the nonlinear
driving the Toda lattice with the received signal such thatteraction. Matched filters can now be used to estimate the
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10° ' and then sampling the circuit waveforms to constriict)
at a fixed time.
» If the current at each node evolves according to the Toda lat-
10 ¢ . tice equations, then the eigenvalues of the md(ix) are time
3 N o B invariant, and the eigenvalues for which| > 1 correspond to
107 <, ° soliton solutions, with3; = sinh(cosh™(\;)) = /A — 1. In
S 5 o 3 Section V-B, it was shown that in additive noise at high SNR,
10 It 1 the eigenvalues of.(t) are, to first order, jointly Gaussian
= o e and distributed about the true eigenvalues of the original
Em“‘» - multisoliton signal. Therefore, the eigenvalues of the matrix
B . L(t) generated fromr(¢) constitute ML estimates of the
B -7 underlying eigenvalues. ML estimates of the parametgrs
10 = can be obtained through the one-to-one mapping fignto
B, ;i = sinh(cosh™ (\;)).
1078 - - = . In order to perform eigenvalue estimation, the finite length
10 LI, power, N01 10 of a practical implementation of the Toda lattice must be

appropriately accommodated. This can be resolved by either
Fig. 12. Craref—Rao bounds faf; andé- are shown with solid and dashed using the periodic Jacoby matrixt) that results from making
lines, whereas the estimation error results of 100 Monte Carlo trials P . _ . .
indicated with ‘0" and S marks. respoctively. He periodic assumptiom () = ao(t) or by simply truncating
the matrix. It can be shown that for the periodic Toda lattice,
_ _ _ the eigenvalues of the periodic Jacoby matrix are also time
time of the arrival of each soliton at the/th node. We invariant and correspond to periodic soliton solutions [4].
formulate the estimates An example of the joint estimation of the parameters of
a two-soliton signal is shown in Fig. 13(a). The estimation
¢ (o PN+ /2 : : :
b=t 1——F5— error variance decreases with the noise power at the same

P exponential rate as the Crém-Rao bound.
by = <t7\r ,— P2V — WZ) (27) To verify that the performance of the estimation algorithm
’ B2 has the same dependence on the relative separation of solitons

as previously indicated, the estimation error variance is also
indicated in Fig. 13(b) versus the relative separatiom the
q‘rgure, the mean-squared parameter estimation error for each
of the parameters; are shown along with their corresponding
ner—Rao bound. At least empirically, we see that the
. . ) fidelity of the parameter estimates are indeed enhanced by
error variance still approaches the bound in an absolute Seﬂﬁﬁtiplexing, even though this corresponds to a signal with

as Ny — 0. . . .
, . . lower observational SNR since the noise pow&rwas held
The scaling parameters; can also be estimated by firs i P

demultiplexing the component solitons. In [13], an algorithm
that uses velocity filtering techniques to estimate the parame-
ters 3; of the separate solitons through their soliton velocities VIl. DETECTION OF SOLITON SIGNALS

is presented and analyzed. The performance of such techniquePh inh ¢ difficulties that arise i timating th
is similar to that of the time-of-arrival estimation techniques, € inherent difficutties that arise in-estimating the pa-

although this does not constitute an ML approach rameters of soliton signals also make detecting solitons a
' difficult task. If the soliton multiplexing strategy described in

Sections Il and IV were used to send signals from a base
station to many receivers, each of the receivers may need
Because of the nonlinear manner in which the parametaesidentify whether or not the received signal contained any

S, appear in a multisoliton signal, it is difficult to formulateinformation directed to them. If their receivers were tuned to

an ML estimate directly from the received signdt), even specific soliton parameter values, then they would first need to
when the solitons are not multiplexed. However, we can udetect the presence of a soliton at the prescribed value prior to
the inverse scattering framework along with some of the resuttemodulation. This would correspond to detection of a single
from Section V-B to construct their ML estimates at higlor of multiple solitons that have been multiplexed and received
signal-to-noise ratios. in additive noise.

Since the transformation from the signalt) to the Detection of either a single soliton or of a signal composed
eigenvalue-eigenvector representation of the inverse scatterirignultiple nonoverlapping solitons in additive white Gaussian
transform is invertible, then ML estimates of the parametenmise falls within the context of classical detection. The
fB; can be formulated using this representation. The matriptimal receiver for a variety of measures, including the Bayes
L(¢) and its inverse scattering decomposition can be obtainedNeyman—Pearson criteria, involves a matched filter followed
from the signal(t) by first driving the lattice with the signal by the usual likelihood ratio test.

wheret§, ; is the time of arrival of theth soliton and node
N.The rierformance of this algorithm for a two-soliton sign
with § = [sinh(2), sinh(1.5)] is shown in Fig. 12. Note that
although the error variance of each estimate is apparentl
constant multiple of the Craen—Rao bound, the estimation

B. Estimation Based on Inverse Scattering
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1 ‘ . of their relative separation, and the optimal processor is no

10 longer a single matched filter. This leads to the composite
hypothesis test
-2
O Ho: r(t) =n(t) Hy: r(t) = sa(t; 82) +n(t)
o
'§1o'3 Hi:r(t) =s1(¢ 61) +n(t), Hio:r(t) = s12(t; 8) +nle)
g wheres; (t), s2(t), andsi2(¢) are soliton one, soliton two, and
& the two-soliton signals, respectively, afig= [6;, ] T, which
-%10‘4 usually results in a generalized likelihood ratio test.
£ Typically, when the waveform shape varies significantly as
¢ s a function of the unknown parameter, multiple hypotheses
10 are used with one for each value of the parameter sampled
over a prespecified range. This is often the approach used
107 , . for detection of a signal of unknown frequency or unknown
107t 10° 1072 107" spatial direction. For soliton detection, this approach would
noise power, No turn the current problem into one with hypothesdés, Hi,
(@) and H, as before, and an additiona¥ hypotheses: one for
10" each value of the parameigsampled over a range of possible
35 T ' T T ' ' ' ' v values. The resulting complexity increases exponentially with
the number of component solitod$; and requires a number
3r y y 1 of hypothesis tests given by
I o x X o | N, N - (M + 1)]\"S -1
25 x x s =1 _
. § . ;<L>M = i + 1. (28)

However, as with parameter estimation in Section VI, mul-
tisoliton detection can be decoupled by demultiplexing the
o o 1 component solitons in the signa(¢) with the Toda lattice.

If the component solitons are separated as viewed onvithe
node, then detection can be more simply formulated using the
signaliy (¢). The invertibility of the lattice equations implies
that a Bayes optimal decision based+gh) must be the same
as that based ofw (¢) since the likelihood functiom\(r(¢))

1.5F

Estimation Error Variance

QT8 06 w4 02 o oz o2 o8 s 1 andA(in(t)) = A(T{r(t)}) are identical for any invertible
Separation, 3 transformationZ’{-}.
(b) Although a generalized likelihood ratio test still must be

Fig. 13. Estimation error variance for the inverse scattering-based estiméﬁ.sseq_a where the value dfy;, iS_ needed for the l_mlfnown

of 81 = sinh(2), 32 = sinh(1.5). The bounds fop; andj. are indicated positions of the component solitons, the ML estimajg;,

with solid and dashed lines, respectively. The estimation results for 100 Mo ; - ; :

Carlo trials with a diode lattice oV = 10 nodes for3; and/3> are indicated @5“ be Slmply fo.rmUIated froniy (t) usm,g matched filters.

by the points labeled “0” andx,” respectively. Since the ML estimates based oft) and<y(¢) must be the
same, as shown in Section VI, then the detection performance

) ] ) o . of ageneralized likelihood ratio test using those estimates and
When the received signal(t) contains a multisoliton sig- 1,4 signaliy (¢) must also be the same.

nal where the gomponent solitons' are muItipIexgd and notp; high SNR, the noise component of the signal#) can
resolved, detection becomes more involved. Specifically, CQfls \well modeled as bandlimited white Gaussian noise, as in
sider a two-soliton solution to the Toda lattice, where one @ tion vi. Therefore, the generalized likelihood ratio test for
four decisions must be made. detection can be performed by first demultiplexir@) with

1) Neither soliton is present. the Toda lattice equations followed by matched filter process-
2) Only soliton one is present. ing. We have therefore reduced generalized detection from
3) Only soliton two is present. a case where the composite sign4t) varies significantly

4) Both solitons are present. as a function of the unknown parameters to one in which

If the relative positions of the component solitons were knoweach of the separated component solitons varies through only

a priori, then detection reduces to deciding which one amorgtime shift. This reduces the complexity significantly while

four known signals is present. Once again, this falls within threaintaining Bayes optimality.

scope of standard Gaussian detection theory. To illustrate this detection algorithm, a hypothesis test
If the relative positions of the solitons were unknown, alsetweenH, and H;- is considered, where the separation of

would be the case for a modulated soliton carrier, then tiiee two solitonsé; — 62 is varied randomly in the interval

two-soliton signals;2(t) will vary significantly as a function [—1/832, 1/8:]. A set of Monte Carlo runs has been completed
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of detectionPp for this soliton is shown as a function of
- the false alarm probability’». For comparison, the receiver
| operating characteristic that would result from a detection
of the soliton alone at the same noise level and with the
time-of-arrival known is also shown. The detection index
1 d = /E/Ny is indicated for each case, whete is the
energy in the component soliton. The corresponding results
for the larger soliton are qualitatively similar, although the
{ detection indices for that soliton alone, with = sinh(2),
are 5.6, 4.0, and 3.3, respectively. Therefore, the detection
probabilities are considerably higher for a fixed probability
4 of false alarm. Note that the detection performance for the
smaller soliton is well modeled by the theoretical performance
for detection of the smaller soliton alone. This implies, at least
{1 empirically, that the ability to detect the component solitons
in a multiplexed soliton signal is unaffected by multiplexing

0 01 02 03 04 05 06 07 08 09 1 Wwith other solitons. Further, although the unknown relative

0 1 1 It '

Pr— . . . \pe .
F separation results in significant waveform uncertainty and

Fig. 14. Set of empirically generated receiver operating characteristics g@uld require a prohibitively complex receiver for standard

shown for the detection of the smaller soliton from a two-soliton signal. F etection techniques, Bayes optimal performance can still be
each of the three noise levels, the receiver operating characteristic for detection

of the smaller soliton alone is also indicated with the dashed line, along wichieved with a minimal increase in complexity.
the corresponding detection index

for each of three different levels of the noise powi. VIIIl. CONCLUDING COMMENT

The receiver operating characteristic for the soliton with This paper can be viewed as an exploration of some of the
B2 = sinh(1.5) is shown in Fig. 14, where the probabilityproperties of soliton signals and systems from the framework

dv(t) = (25 SeCH(ﬁlt) +20 SeCﬁ(m) 2 AseCH(ﬁlt) SeCﬁ(m)) x sinh(%) tanh(31£)(1 — tanh2(772))/32

dé 3
2 <cosh<§> + sinh<§) tanh(f¢) tanh(m))
233 secl (1) tanh(n) 4+ 2 A secH(51t) secH (12) tanh(n,)32

2
<COSh<§) + Sinh<§> tanh(/t) tanh(m))

_4p3sech{r2)? tanh(7)? — 283sech{r2)?(1 — tanh(r)?)

2
p2=0 <COSh <§) + sinh <§> tanh(7y) tanh(w))

4 Asech{r;)?sech{r,)? tanh(m2)?/33 — 2Aseclt{r; )?sect{2)?(1 — tanh(m2)?)33

<cosh<§> + sinh @) sanh(r1) tanh(72)> 2

(833sect{r2)? tanh(rs) + 8Asech{r; )?sech{r)? tanh(72)532) Sinh<§> tanh(71)(1 — tanh(72)?)32

<cosh<§) + sinh<§) samh(r:) tanh(TQ))

3
2
(6p%sechfr;)? + 6p3sech{r>)? + 6A sect{r;)*sech{2)?) Sinh<§> tanh(7;)2(1 — tanh(72)?)?332

1
<COSh <§ ) + sinh <§) tanh(7y ) tanh(w))

(4p%sechfr;)? + 4p3sech{rz)? + 44 sect{r; ) sech{2)?) Sinh<§> tanh(7; ) tanh(72)(1 — tanh(m2)?)33)

3
<COSh <§) + sinh <§ ) tanh(7y ) tanh(w))

(30)

+

+

+

(33)
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of a communication paradigm. Many of the issues that ariS§nceduv(t)/db2|s,—o is real, the first term in (32) is positive.

in the analysis of this potential communication system aféhe second term containg¢), which is real and positive,
derived from detection and parameter estimation of the trareid d?v(t)/dé3|s,—0, Which can be seen to also be positive,
mitted multisoliton signals, including soliton multiplexing,as in (33), shown at the bottom of the previous page, where
energy compaction, and enhanced estimation and detectipn= ;¢. Since each term in (32) is positive, the integral is

performance. Although the multiplexed communication tecltherefore positive, and, = 6; is indeed a minimum.

nigues suggested in this paper are highly simplified, they serve
to illustrate that with their rich properties, tractability, and

relatively simple hardware implementations, soliton signals
and systems more generally may ultimately form the basr%
of advanced systems for a wide variety of communication and’
signal processing applications. Possible applications includ
power-efficient joint modulators and multiplexors. These sys-

tems could operate purely in analog and be nonlinear, yet have
performance that is characterized in closed form. (1]

(2]
(3]
(4]
(5]
(6]

APPENDIX

A. Proof of Energy Minimization for Two-Soliton Solution

Without loss of generality, we assumie = 0 and seek the
value ofé; that minimizes (11). Differentiation of (11) yields

(8]

We now seek the value @f that makes the integral (29) equal
to zero. This is accomplished by first noting that witer= 6.

in (10), thenu(t) is an even function of time, centered about
81 = 82. In this case, setting> = 6; = 0 makesu(t) even.

If it can be shown that by settingy = 0 that dv(t)/dé» is an
odd function, then the integral in (29) is trivially zero. Thid11l
indeed turns out to be the case in (30), shown at the bottom
of the previous page. Note that settidg = 0 makes each [12]
of the terms in the numerator of the first term of (30) even.
Settingé, = 0 also makes the denominator of the first term ap3)
even function. This term is then multiplied by the second term
of (30), which is a constantinh(¢/2) times an odd function [14]
tanh(/¢) times an even function. Hence, we have severgls)
even functions multiplying an odd function, making the entire
first line in (30) an odd function. The second line is also seef!
to be an odd function by similar analysis. As a restit=0 [17]
is a stationary point of (11). To check that this is a minimum,
we need to verify that

a5 _
déy

du(t)
dbs

dt. [7]

(29)

El

[18]
L / T 2mat >0 @1 ™
a3 )"
[20]
First, we note that
[21]
d? /°° 2
— v (t) dt
dé% oo §,—0
2
b du(t) d*v(t)
= 2 2 .
/—oo <d62 52_0> +2u(t) ds3 52:0dt 5
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