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A Minmax Approach to Adaptive Matched Field
Processing in an Uncertain Propagation Environment

James C. Preisig

Abstract—Adaptive array processing algorithms have achieved
widespread use because they are very effective at rejecting un-
wanted signals (i.e., controlling sidelobe levels) and in general
have very good resolution (i.e., have narrow mainlobes). How-
ever, many adaptive high-resolution array processing algorithms
suffer a significant degradation in performance in the presence
of environmental mismatch. This sensitivity to environmental
mismatch is of particular concern in problems such as long-
range acoustic array processing in the ocean where the array
processor’s knowledge of the propagation characteristics of the
ocean is imperfect. An adaptive minmax matched field processor
is formulated which combines adaptive matched field processing
and minmax approximation techniques to achieve the effective
interference rejection characteristic of adaptive processors, while
limiting the sensitivity of the processor to environmental mis-
match. An efficient implementation and alternative interpretation
of the processor are developed. The performance of the processor
is analyzed using numerical simulations.

I. INTRODUCTION

HE signals received by spatial arrays of sensors are often

composed of the sum of signals emitted by both point
and spatially spread sources at different locations. In order to
estimate the signal, or the parameters of the signal, emitted by
a source at a particular location, the array processor must often
separate that signal from the other signals which are received.
The separation of signals based upon the location of the source
is referred to as spatial filtering.

Array processors achieve spatial discrimination through
filtering by exploiting the fact that the spatial characteristics
of a propagating signal as received at an array of sensors
depend upon the location of the source of the signal. However,
the spatial characteristics of a propagating signal also depend
upon the characteristics of the medium through which the
signal is propagating. Therefore, if a processor has inaccurate
or incomplete information concerning the characteristics of
the propagation environment, it may be unable to determine
the spatial characteristics which should be exhibited by a
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signal emitted by a source at the location of interest. Thus,
the environmental mismatch may result in a signal model
mismatch. In these cases, the processor may have difficulty
in accomplishing the spatial filtering necessary to estimate the
parameters of the signal of interest.

Adaptive array processors have achieved widespead use
because of their good resolution and their ability to adjust their
sidelobe pattern to minimize interference from noise sources.
However, they have also been shown to be very sensitive to
the signal model mismatch caused by environmental mismatch
[11-[3]. In ocean acoustic array processing problems where
it is impractical for the processor to access detailed and
precise environmental information, this sensitivity poses a
serious problem. This paper proposes an approach to array
processing which yields a processor capable of operating with
only approximate environmental information, while at the
same time achieving levels of spatial resoltuion close to those
achieved by adaptive processors having accurate and detailed
environmental information.

The processor, which is referred to as the adaptive minmax
matched field processor, is developed within the framework
of minmax signal processing. Given a range of environ-
mental conditions over which the processor is expected to
operate, the weights of the processor’s linear weight-and-sum
beamformer are adaptively adjusted to minimize the worst
case processor error criterion evaluated over this range of
environmental conditions. Thus, rather than needing precise
information as to the state of the propagation environment,
the processor can operate effectively when it knows only
that the environmental conditions fall within a reasonable
range. The details of the minmax framework, error criterion,
and the proposed array processor are covered in Section
HIL

While the processor has its foundation in the framework
of minmax signal processing, it can also be shown to be
equivalent to both a particular type of Wiener filter and
a combined signal model estimator and minimum variance
distortionless response (MVDR) array procedssor [4], [5]
(also referred to as the maximum likelihood array processor).
The Wiener filter relationship is used to develop an efficient
algorithm for implementing the matched field processor. The
MVDR processor interpretation of the minimax processor is
developed in Section IV and leads to a slight modification of
the algorithm. )

The signal model used throughout this paper is described
in Section II. Numerical results generated using a normal
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mode propagation model and a simple class of environmental
uncertainty are presented and analyzed in Section V.

II. SIGNAL MODEL

The signal received by the array of sensors is assumed 1o be
the sum of uncorrelated wide-sense stationary signals emitted
by point sources (z(t,() where ¢ is the source location),
signals emitted by spatially spread sources such as breaking
waves on the ocean surface, and sensor noise. The individual
frequency components of each point source signal can be
expressed as

a(t,¢) = A(f, Q)e’**

where the A(f,() are uncorrelated, zero-mean, complex ran-
dom variables with a variance of o2(f, ). For the purposes of
this paper, the point and spatially spread sources are assumed
to emit narrow-band signals.

The signal emitted by the point source at location ¢; and
received at the array of sensors will be denoted by the vector
time series z(t, (;) and can expressed as

2(t,G:) = AC.Ca(]-Gir )™, W

Vector quantities are denoted by boldface. ¢(f,(,¢) is the
signal replica vector which accounts for the apparent atten-
uation and phase delay in the sum of the signals which
propagate along each of the possibly multiple paths from
the source to each array sensor. Here, it is assumed that the
environment is time-invariant. This assumption is reasonable
when the time scale of environmental change is much longer
than the observation interval. ¢ is a vector of parameters
used to describe relevant characteristics of the propagation
enviornment. Thus, the spatial structure exploited by the array
processor to achieve spatial discrimination is quantified by the
signal replica vector.

The received signal, denoted by the vector time series y(t),
is then given by

y(t) = 3" (t.G) + n(t)
=PI AL G d) i) @)

where n(t) is the sum of the propagating background noise
emitted by spatial spread sources, sensor noise, and signals
emitted by point sources as frequencies other than f.

III. MINMAX ARRAY PROCESSING

A. The Minmax Signal Processing Framework

The adaptive minmax matched field processor is developed
within the framework of minmax signal processing. In general
terms, the framework addresses the problem of developing
a processor whose worst case performance evaluated over
a given class and range of uncertainties is as favorable as
possible. Specifically, let g(y, w) be a processor parameterized
by the vector w which maps an observed signal (y) to an
estimate of some signal or parameter of interest (z where £
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denotes an estimate of the vector z). The set of allowable
values for the parameter vector w is denoted by W. For
example, if g(y, w) is a linear beamformer for an N-element
array, the vector w contains the filter weights, and W' is the
space of the N -dimensional complex numbers ch.

The parameters which are not of direct interest but which
affect the characteristics of £ or y, or those which govem
the relationship between the observed signal and the signal
or parameter of interst are referred to as the environmental
parameters and will be denoted by the vector ¢.

The ability of any particular processor as determined by
the choice of w to estimate z depends upon the particular
environmental condition under which the processor operates.
Thus, a particular value of w which yields good processor
performance under one environmental condition may yield
very poor performance under another environmental condition.
In the problem of interest here, a set of array weights which
yield good performance if the signal emitted by a source
at the location of interest has one particular signal replica
vector (corresponding to a particular set of environmental
conditions) may yield very poor results if that signal has
another signal replica vector. A real-valued error function
e(w, @) is used as a figure of merit to evaluate the performance
of any particular processor operating under any particular
environmental condition.

Under the assumption that £(w, ¢) is a continuous function
of ¢ for every w € W and @ is a compact set contained in a
metric space, the extremal value for the processor parameter
vector w, denoted by A(w), is the worst case performance of
the processor over the range of the environmental parameters.
That is,

é maxelw .
A(w) - ¢g¢ ( 7¢)

The optimal minmax processor parameter vector is then de-
fined as that which minimizes this extremal value. That is,

A . .
Wyt = arg min = A(w) = arg min maxe, (w, ).
opt gwevlv ( ) g‘UIGW ¢€q) 9 ( 7¢)

The extremal point set, denoted by M (w), is the set of all
extremal points. That is,

M(w) 2 {$ € ®le(w,$) = Aw)}.

The use of minmax signal processing techniques to deal with
uncertainty in environmental parameters has been proposed
previously. Examples of such techniques and much of the
theoretical development of minmax techniques are contained
in [6}-[10]. Recently published work [11] applied this theory
in the context of matched field processing by developing
a minmax matched filtering technique. Unlike the processor
developed herein, that technique uses a nonadaptive filtering
approach, and thus does not realize the potential for improved
interference rejection offered by adaptive techniques.

B. The Adaptive Minmax Matched Field Processor

1) Processor Structure: The adaptive minmax matched
field processor takes as its input the time-sampled signal
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received by an array of sensors which has been low-pass
filtered prior to sampling to prevent frequency domain aliasing.
This input is denoted by the discrete-time vector time series
y[m]. Consistent with the notation in Section II, the vector
time series z|[m, {] denotes the time-sampled received signal
which was emitted by a point source at a position (.n[m]
denotes the interfering noise from various sources.
Equation (1) can be manipulated to yield

z[m, (] = za[m, f,CJa(f, ¢, 4)

where

GG alf.6d)

W 6B =1 TP @
and

za[m, f,¢] = 2™ A(f,0)la(f, C,¢)I|Z—:E%%~ “)

Here, the superscript * denotes complex conjugate, 7 is the
sampling period, §(f,(,¢) is the normalized signal replica
vector, and x4[m, f,(] is the desired signal. The first factor
in (3) normalizes the phase so that the arbitrarily selected kth
term of the normalized replica vector is real and nonnegative.
The denominator of the second term normalizes the magnitude
of the replica vector to equal one. The phase normalization
allows the processor to estimate z4[m, f, (] by exploiting the
phase differences between the signal as received at each sensor
in the array without having to account for common fluctuations
in the signal travel time between the source and each sensor.

The quantity estimated by the processor is the average
power in the desired signal at a selected frequency emitted
by a source at a location of interest. The average power is
given by

o3(£,¢) = |A(f, O)Pla(f. ¢, ).

The location of interest is referred to as the array focal point.
Here, ¢ is the array focal point. The desired signal is the
selected frequency component of the signal emitted by a
point source at the array focal point scaled to account for
propagation-induced attenuation and phase shifts as given in
(4). The array focal point can be swept through space, and
the selected frequency can be swept through the frequency
spectrum to generate an estimate 63(f, ¢) of the average power
in the desired signal as a function of spatial location and
temporal frequency.

Conceptually, the processor which generates this estimate
consists of three modules (Fig. 1). The first module divides the
time-sampled signal received by the array y[m] into segments
M samples in length, and computes the vector discrete-time
Fourier transform of each segment at the selected frequency
given by

{ 1 = l —j2w fmr,
YI(f) = 57 2 ¥lmle

m=0

&)

where [ indicates the segment number, y'[m] is the mth sam-
ple of the /th segment, and the term 1/M is a normalization
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Fig. 1.

Adaptive minmax MFP structure.

term. Here, f is the frequency expressed in cycles per second
which satisfies |f| < 1/27s.

Ignoring the spectral leakage from adjacent frequency com-
ponents due to the finite length of the segments, (2) and (5)
can be combined to yield

Y => X", O+N(f)
¢

= Y Xi(£.0af.¢.4) + N'(f)
¢

where

XﬂﬁO:AUKMU£¢m%U£¢) ©)

lax(f,C. #)

The summation is over the locations of the point sources. The
transformed segments are known as “snapshots” and X l( 75,0
denotes the snapshot of the Ith segment of z[m,(].Y}(f)
denotes the snapshot of the Ith segment of the signal received
by the ith array sensor and X(f,¢) denotes the snapshot of
the desired signal. The phase term in X é( f,¢) which results
from the shifting of the time origin for the Fourier transform
of each segment has been dropped in (6) because it has no
effect on the performance of the array processor.

The snapshots of the received signal are the inputs to the
second module which is a linear weight-and-sum beamformer.
This beamformer computes an estimate of the snapshot of the
Ith segment of the desired signal using

Xi(£,0) =w"Y'(f) @)
where w is the array weight vector and the superscript A
denotes Hermitian. The final module computes an estimate of-
the average power in the desired signal. The overbar in Fig. 1
indicates the sample mean taken over all . That is, if L is the
number of segments used in estimating o3(f,¢), then

.
63(0.0) = 7 S IXHUL QP ®)
=1

While this structure is the same as that used by many array
processors, such.as Capon’s MVDR processor, the unique fea-
ture of this processor is the manner in which the array weight
vector w is calculated. For this processor, the array weight
vector is the solution to a minmax optimization problem where
the error « is a meausre of the spatial filter’s ability to pass the
desired signal without distortion while rejecting the interfering
signals in a given propagation environment.

2) The Minmax Array Weights: For any particular array fo-
cal point, frequency, array weight vector, and propagation
environment, the error function for the adaptive minmax
matched field processor is the a priori mean-squared error in
the estimation of X4(f,¢) conditioned on the characteristics
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of the propagation environment, that is

e(f,¢,w,8) = E[|Xa(f, Q) - Xa(£,)I*I¢]
= E[|Xa(f,Q) - Y (£)]*|¢] ®

where the characteristics of the propagation environment are
parameterized by the vector ¢.

For a given array focal point and frequency, the optimal
array weights are defined as

wopt(f’ () = arg ‘ll)néiCnN bnea‘?; E(fv C’ w, ¢) (10)
where N is the number of array sensors and & is the user-
specified range of the environmental parameters over which
the processor must operate.

Under the assumption stated earlier that the desired sig-
nal and the interfering signals are uncorrelated, (9) can be
rewritten as

(£, ¢, w, ) = E[Xa(f,O)X}(f,O)X5(f, O)ld]
— 2Real(E[X(f,0)X;(f,¢)|¢]"w)
+wE[Y ()Y (f)"|dlw. an

The expectation in the last term of (11) is the cross-
spectral correlation matrix of the received signal conditioned
on the environmental parameter ¢. The cross-spectral corre-
lation matrix is the parameterization used by the processor
to characterize the spatial structure of the total signal field,
and it is the input which enables the processor to adapt to
reject unwanted signals. Here, the matrix will not be treated
as a function of the particular environmental conditions or the
characteristics of any particular propagating signal. Instead,
it will be treated as a property of the total signal field.
Therefore, the conditioning of the expectation in the last term
of (11) is dropped and the actual ensemble cross-spectral
correlation matrix S(f) is used. In most cases, this ensemble
cross-spectral correlation matrix is unknown to the processor.
Therefore, the sample cross-spectral correlation matrix given
by $(f) & (1/L)SL,Y'(f)Y*(f)* will be substituted for
S(f). Nothing in the derivation of the algorithm in the
remainder paper depends upon this substitution.

Assuming that the environmental processes which cause
changes in the signal replica vector and the signal source phase
and amplitude term A(f,() are statistically independent, the
expectation in the second term of (11) can be expressed as

ElXa(f,OX3(f,)IA1Ea(f, ¢, )] (12)

Herein, the normalized signal replica vector will be assumed
to be uniquely determined by. the environmental parameters ¢.
Given this assumption, the expectation in the second factor of
(12) can be removed.

In realistic ocean environments, the normalized signal
replica vector is not uniquely determined by a finite set
of parameters. It is possible to calculate the conditional
expectation of the normalized signal replica vector as a
function of the temporal and spatial condition cross-correlation
function of the propagating signal where the conditioning
is on the parameter vector ¢ [12]. Extensive literature has
been published relating the characteristics of ocean processes
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to the cross-correlation functions required to compute the
conditional expectation of the normalized signal replica
vector. Examples of two different approaches are contained in
[13]-[15]. While the above assumption of a unique relationship
between the normalized signal vector and the environmental
parameter vector ¢ is not valid in realistic ocean environments,
the essential results of this work are not affected by this
assumption.

The expression E[X(f,()X}(f,¢)|¢] appears in the first
term of (11) and in (12). This expression is the condi-
tional average power in the desired signal, and will be re-
placed by the actual average power in the desired signal
a2(£,¢) E E[X4(f,{)X;(f,¢)]- Given the factorization and
the substitutions detailed above, the error criterion can be
expressed as

E(fy Cw, @, Ui) = 03 - 203 Rea*](&h(fv ¢ ¢)w) + whS(f{'I;))

(
where the dependence of the error on the average power in
the desired signal is explicitly shown and the dependence of
the average power on the frequency and focal point has been
suppressed for notational convenience.

The optimal array weights minimize the maximum value of
this error evaulated over the operating range of the environ-
mental parameters. Conceptually, they can be considered those
of a data-adaptive Wiener filter which is robust with respect to
changes in the spatial correlation of the signal to be estimated.

3) Characterization of wopi(f,¢,02): From (10), the min-
max problem which must be solved is

2y _ s i 2
Wopt(£,€, 0q) = arg min, glgga(f, Cw,é,05)

where £(f,(,w, ¢,02) is given in (13).

The following characterization theorem for the minmax
array weight problem states the necessary and sufficient con-
ditions satisfied by wop(f,{,02). A proof of this theorem
is contained in [12]. In (16), the notation H({}) denotes the
convex hull! of the vectors contained in the set {} and 0 is
the vector of zeros.

Array Weight Characterization Theorem: Let ® be a com-
pact set contained in a metric space, and let §(f,(,é) be a
continuous function on ®. Then, a necessary and sufficient
condition for wp to be a solution to the minmax problem

2 . 2
,¢,03) = arg_min maxe(f,(,w, ¢,
Wopt(f, ¢, 03) arg min ¢€¢€(f (w,é,05)

is that
3J>0 (14)
and
IM(wo) = {1, -, s} C M(wo) (15)
such that
0 € H({(S(fwo — 03d(£,¢, 9)l$ € M(wo)}).  (16)

!'The convex hull of a set of vectors is the larger set of vectors which are
expressible as a convex combination of the vectors in the original set. That is,
if A={ay,---,as}, then H(A) = {a|3p1,--.p1; T pi = L;p: > 0;
and & = &, pia;}.
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An upper bound can be placed on the number of extermal
points which must be simultaneously considered in testing
for or constructing an optimal solution. In [12], it is shown
that wo is a solution as described above if and only if
3J € {1,---,2N + 1} for which (15) and (16) are satisfied.
Thus, while it may be possible to find multiple sets of extremal
points satisfying (15) and (16), at least one of these sets will
contain only 2N + 1 or fewer elements.

Equation (16) is satisified if and only if 3p1,---,py such
that p; > 0,5/ ,p; = 1, and

J
0= n(5(fHw, — o3a(f, ¢, 6:)- an
=1

Manipulation of (17) yields the following expression for
wopt(fs(vag):

J
Wopt(£,¢,03) = a35()' D_pia(f,¢,4:)- (18
i=1

Therefore, if the appropriate set of extremal points and con-

vex weights can be determined, the optimal array weight vector
can be calculated directly. The minmax problem can there-
fore be reformulated as jointly finding the wop(f,¢,03) €
CN,J, ¢y, s, and p1,---,py which satisfy (18). The
key to finding the appropriate set of extremal points, convex
weights, and array weight vector lies in reformulating the
minmax estimation problem as a Wiener filtering problem with
the uncertain environmental parameter treated as a random
parameter.
4) The Least Favorable pmf Random Parameter Framework:
For most classes of realistic environmental uncertainty, the
error function ¢ : C¥z® — IR does not contain a saddlepoint
solution (see [10] for a definition and discussion of saddle-
point solutions). However, following what is referred to as
a randomizing startegy in [10], the original minmax problem
can be rtecast as a minmax problem for which a saddlepoint
does exist.

The randomizing startegy is to interpret the uncertain envi-
ronmental parameter as a random parameter with a particular
probability distribution. The conditional mean-squared error
e(f, v, w, ¢, 02) is then averaged over the environmental con-
ditions to yield a mean-squared error. This mean-squared error
does contain a saddiepoint with respect to the probability
distribution and the array weights. Thus, the minimum mean-
squared error (Wiener filter) array weights corresponding to the
probability distribution at the saddlepoint are also the weights
which minimize the maximum value of the mean-squared error
evaluated over all possible probability distributions. The Least
Favorable pmf theorem given in this section establishes the
equivalence between this saddlepoint solution and the minmax
solution to the original array weight problem.

As a computational necessity and to ensure that @ f,¢,9)
is a continuous function on @, the range of the environmental
parameter will be sampled (ie., ® = {$1,- ", $K}), and
the minmax problem will be solved on this discrete set of
environmental conditions. Therefore, the probability function
assigned to the environmental parameters will take the form
of a pmf (probability mass function).
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The pmf will be denoted by p € R¥ and must satisfy

K

pi > Oandei =1.
i=1

For any pmf and array weight vector, the mean-squared
estimation error is

(. Gwpod) £ BIXL(SQ) = Kl OF]
=Y pie(f.¢w b 0%). (A9
=1
Define the minimum mean-squared error weight vector to be
wmmse(fa C’ o‘:‘;’?) é arg mln 6(-f’ CVw’p’ 03)'
wecN

Then, = substituting (13)
some algebraic manipulation yields
and convex quadratic minimization problem for
Wamse(f> (0%, p). Defining the matrix Q(f,{) as

Q<) = [ﬁ(f,C,¢1),"‘»fl(f,C,‘i’K)], the solution is
given by

into (19) and carrying out
an unconstrained

K
Wamee(f,,03,2) =038(H) 1 Y_pia(£, ¢, 6)
=1

=038(f)7'Q(£,Op.

Equations (18) and (20) differ only in the respect that in
(18), the summation is over J extremal points contained
in M(wo), while in (20), the summation is over all
environmental conditions contained in ®. Therefore, if a
pmf p can be found such that p; is greater than zero
only if ¢; € M(Wmmse(f,¢,05,p)), then the summation
in (20) will be over only the extremal points contained in
M (Wemse(f, ¢, 03, p)). In this case, the sufficient conditions
in the array weight characterization theorem will be satisfied
by K,p1, Pk, b1, -+, Pk, and wmmse(f,C,U:‘;,P)-

The characterization of the desired pmf is given in the
following theorem. A proof of this theorem and an intuitive
explanation of this result are contained in [12].

Least Favorable pmf Theorem: Let P be the set of
all possible pmf’s which may be assigned to ®, and define the
least favorable pmf as

(20)

A : 2
Py = arglax min e(f,¢, w,p,03)
= argglggﬁ(f,(,wmmse(f, ¢,0%,p),p,03). 21
Then

wopt(f7 G ‘73) = Wmmse(f, ¢, Uﬁ:?lf)-

5) Solving for the Least Favorable pmf: By combining
(13), (19), and (20) and carrying out algebraic manipulation,
the minimum mean-squared estimation error can be expressed
as

e(f, ¢, Wmmse(f, ¢, 05,9), P, 03)

= 03(1 - a2p'Q(f,O"S(N) QRS Op). (22
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Finding the p to maximize this quantity is equivalent to
finding the p to minimize the matrix quadratic product in the
second term. Therefore, (21) can be rewritten as

Py £ argmax min e(f,¢,w,p,03)
PP wecN
= arg min p'T(f,()p (23)
P>o
etp=1

where T(f, ¢) =Real(Q(f,)"S(f) 7' Q(f, Q) e=[1,---, 1],
and the set P is explicitly defined.

A solution to (23) is guaranteed to exist because p*T(f,{)p
is a continuous function of p and the set P is a compact
set. T(f,() is a positive semi-definite symmetric matrix so
p'T(f,¢)p is a convex function of p. There are a number of
algorithms available for solving linearly constrained convex
quadratic minimization problems such as (23).

An algorithm, based on the complementary pivot theory,
was proposed by Lemke in [16] and is described in a more
readable form in chapter 11 of [17]. The basic intuition behind
the use of the complementary pivot theory to solve a quadratic
problem is that the necessary and sufficient conditions, known
as the Kuhn-Tucker conditions [17] for p, to be a solution
to the problem in (23), are a set of linear equations with one
nonlinear constraint referred to as the complementary slack-
ness condition. In concept, the complementary pivot algorithm
is very similar to the simplex method [17] for solving linear
programming problems, with an additional constraint on which
variables can be pivoted into the basis at each iteration. This
additional constraint ensures that the complementary slackness
condition is met at each iteration.

For all nondegenerate systems of equations, the complemen-
tary pivot algorithm is guaranteed to converge to a solution in
a finite number of iterations [18]. In most cases, the use of this
algorithm is sufficient. However, should the degeneracy of the
system be a concern, a modification of the complementary
pivot algorithm can be used (see Section 7 of [18]). The
problem considered here meets the necessary conditions stated
in Theorem 2 on p. 618 of [18], which guarantees that the
modified algorithm will converge to a solution in a finite
number of iterations. A clear explanation of the modified
algorithm is given on pp. 80 and 81 of [19].

6) Finding a Consistent 03: From the least favorable pmf
theorem and (20), the optimal minmax array weights are given
by

wopt(£,¢,08) = 03S(£) T QS Opyy- 24)
These weights depend upon 03, which is itself an unknown
parameter to be estimated. Combining (7) and (8), the estimate
of 02 is

07 = wope(f,(,0D)S(Nwope(£,C. 00 (29)
Therefore, the optimal array weights depend upon the average
power in the desired signal, and the estimate of this average
power depends upon the array weights. This interdependence
makes in necessary to calculate the optimal array weights and
estimate the average power jointly.
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Fig. 2. Two-stage MVDR matched field processor.
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This joint calculation and estimation problem is addressed
by requiring that the assumed average power in the desired
signal used when calculating the optimal array weights (o2 in
(24) and (25)) be equal to the estimated average power in the
desired signal resulting from the use of those weights (63 in
(25)). A trivial solution to the problem is wep(f,¢,0) = 0
and ?73 = 0. Since the calculation p;; in (23) does not depend
on 03, the nontrivial solution can be found by substituting (24)
into (25) and requiring that o = 3. This yields

&% = 01U, OSSN TU Op) ™ (26)

7) The Adaptive Minmax MFP Algorithm: The calcula-
tions in (23) and (26) and the substitution of the resulting
&3 into (24) can be combined to yield the following three-
step algorithm for implementing the adaptive minmax matched
field processor.

1) Use the (modified) complementary pivot algorithm to
calculate

— ; 2
Py = arg win p T(f,0)p-
€etp=1

2) 63(£,¢) = (i T(f.Omyg) i

3) wopi(f,¢,63(f,€)) = 63(f,O)S(N)71QS, O)pyy.

Here, the dependence of the average power on the frequency
and array focal point is shown. Slight modifications to steps 2)
and 3) of this algorithm which are motivated by the analysis
in Section IV are detailed at the end of that section.

IV. THE JOINT REPLICA ESTIMATOR/MVDR PROCESSOR
INTERPRETATION OF THE ADAPTIVE MINMAX MFP

In Section III, the interpretation of the adaptived minmax
matched field processor as a Wiener filter for the least favor-
able pmf led to the development of an efficient implementation
of the processor. The adaptive minmax matched field processor
can also be interpreted as the combination of an -algorithm
which calculates an effective replica vector, denoted by g g,
and an MVDR matched field processor which uses g.4 as the
replica vector of the desired signal (Fig. 2). This interpretation
is useful for several reasons. First, it relates the minmax array
processor to an array processor whose properties are well
understood. Second, it makes possible a qualitative analysis
of the properties of the minmax array processor. Finally, the
interpretation motivates a modification to the algorithm which
improves the performance of the

As noted in Section III, the structure of the MVDR processor
is identical to the structure of the adaptive minmax processor.
The arrays weights of the matched field implementation of the
MVDR processor [4] in a known, time-invariant environment
are given by

Wope = argugxéian w"S(f)w

st. §'(f,¢dpw=1 @7
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where ¢y is the parameterization of the known environmental
conditions. The solution of (27) is given by

_ S(H~'af,¢8,) (28)

' (f,C,0,)8()a(f. ¢, o)

and the resulting estimate of the average power in the signal
emitted by the source at the array focal point is

83(1,¢) = (@ (f.C..)S(N) 7 a(f. ¢ b,)) 7"

The relationship between the adaptive minmax matched field
processor and the MVDR matched field processor is built upon
the similarity between the form of the solutions in (28) and
(29) and the solutions for the weights and estimated average
power in steps 2) and 3) of the algorithm which implements
the adaptive minmax processor.

wopt

29

A. The Two-Stage MVDR Matched Field Processor

The interpretation of the adaptive minmax matched field
processor as the two-stage MVDR matched field processor
shown in Fig. 2 is motivated by noting that the three-step
algorithm detailed at the end of Section III can be rewritten
as follows.

1) Use the (modified) complementary pivot algorithm to

calculate

Py = arg win PR, 08(H) R Op.
€tp=1

2) 63(£,0) = @} Q (S, OS() 1 QU Opiy)

3) wopt(f7 C»&d(fv C)) = &g(f, C)S(f)_lQ(fv C)plf‘

The set {Q(f,{)plp > O and e’p = 1} is the con-
vex hull of the set of column vectors in Q(f,() (ie.,
{Q(f, C? ‘I)l)a Ty Q(fv C7~¢K)})

Therefore, defining Q(f,{) to be the set of column vec-
tors of Q(f,¢), the following algorithm is equivalent to the
adaptive minmax matched field processor.

1) Use the (modified) complementary pivot algorithm to

calculate
g =arg min  ¢"S(f)7'q.
qeR(Q(£,C))
) 62(f,¢) = (a'5(f) qeq) " .Use the (modified) com-
plementary pivot algorithm to calculate
min  ¢"S(f)"'q.
qeH(Q(£.6))

3) wopt(fﬂ Cv Us(fv C)) = (S(f)~lqeff/q2ﬂ'5(f)~lqeﬂ")'

Steps 2) and 3) of this algorithm are the MVDR matched
field processor given the replica vector g ¢ (i.e., (28) and (29)).

From steps 1) and 2) of the two-stage MVDR matched field
Processor, ¢ g is the vector contained in H(Q(f,¢)) which
maximizes the power passed through the resulting MVDR
matched field processor. A detailed qualitative analysis of
the adaptive minmax MFP based on this two-stage MVDR

interpretation is contained in [12].

gesf = alg

1311

Vacuum
R i
[ |
[ |
e =
|Zgl o 1
HI 1 of
: [ source
L
| array Is
| S >

§Infinitely Rigid Bottom §
AAEERRRRRRRRRRRRRRRRRNRRNSNNNRNANNANSNNNNNNN

Fig. 3. Waveguide environmental model.

B. Adaptive Minmax MFP Modification

g can be interpreted as the basis for what the processor
estimates to be the rank one subspace of the signal of interest.
Intuitively, the energy which the processor measures in this
subspace should not depend on the norm of this basis vector.
While all the vectors in Q(f,¢) have a norm of one, there
are vectors in H(Q(f,¢)) with norms of less than one. This
motivates a normalization of g.g to have a norm of one prior
to calculating the estimate of the average power or the optimal
array weights. With this modification, steps 2) and 3) of the
adaptive minmax MFP alogorithm become the following.

2) 63(£,0) = (aaes)(@aS()) qer) ™
3) wopt(Afvaﬁg(fa g)) = (Qgﬂqeff)(l/Q)(S(f)—lqeff/
05 S(F) " ert)-
Numerical results generated using the modified processor
are presented in the following section.

V. NUMERICAL PERFORMANCE ANALYSIS

The performance of the adaptive minmax matched field
processor is analyzed and compared to the performance of the
MVDR and Bartlett matched field processors using numeri-
cal simulations. Throughout these simulations, the processors
were assumed to have a perfect estimate of the cross-spectral
correlation matrix S(f) so Monte-Carlo type simulations are
not used.

A. The Simulation Environment and Normal Mode Model

The environment used for the simulations is a range- -
invariant waveguide with a free surface and a rigid bottom
(Fig. 3). The ocean depth (H) is 500 m. The array is a 15-
element vertical array with the first sensor at 5 m depth, the
15th element at 495 m depth, and an interelement spacing
of 35 m. The frequency of interest is 20 Hz. The Cartesian
coordinate system of range and depth [¢ = (r,2)] is used,
with the origin located at the ocean surface immediately
above the array. z is positive at locations below the surface.
r is the horizontal range from the array to a point and is
always nonnegative. The sound speed within the waveguide
is assumed to be a function of depth only and is given by the
sound speed profile ¢(z).

Let ;(z. ) be the shape of the ith normal mode of the
waveguide, let k;(¢) be the horizontal wavenumber of the
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Fig. 4. Upwardly refracting sound speed profile.

ith normal mode, and assume that |k;(¢)r,| is large enough
so that it justifies the use of a large argument approxima-
tion to the Hankel function of the second kind [20]. Then,
using an adiabatic propagation model and letting ¥;(¢) =
[¥i(21,8), -+, ¥i(zn, )]t where 2 is the depth of the kth
array sensor, the signal replica vector for a source at the
location (75, zs) can be expressed as

a(f70070,9) =152 D ilen, KT (#)
IRy (4).

For the interested reader, a number of standard texts such as
[21], [22] present a detailed treatment of adiabatic, normal-
mode propagation theory.

For the values of ¢ for which k?(@) is negative, the hori-
zontal wavenumber will be purely imaginary with a negative
coefficient and the term e~/ (@®)rs—rl will decay exponen-
tially with increasing range from the source. These modes are
referred to as evanescent modes, and will be ignored due to
their rapid decay. The summation in (30) can then be carried
out over only the modes for which kZ(¢) is positive (i.e., the
propagating modes).

The assumed sound speed profile is an upwardly refracting
profile (Fig. 4) which is typical of the oceans at high latitudes.
The sound speed profile varies linearly between a known value
(1490 m/s) at a depth of 52 m and a known value (1500 m/s)
at the bottom (depth of 500 m). The sound speed profile is
assumed to be unknown in the top 52 m of the water column.
What is known is that the sound speed profile varies linearly
between an unknown value at the surface and the known value
at the depth of 52 m. Therefore, the range of environmental
conditions under which the processor must operate (i.e., the
set ®) is parameterized completely by the range of surface
sound speeds. Throughout the tests, the adaptive minmax
matched field processor was given the range of 1483-1487
m/s as the range of possible surface sound speeds. While this
class of uncertainties is extremely limited, it is sufficient to
demonstrate the robust performance of the mimax processor
and the degradation in the performance of the MVDR and
Barlett processors in the presence of environmental mismatch.

(30)
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The background noise is assumed to consist of both sensor
noise and propagating surface-generated noise. The sensor
noise is modeled as being spatially white, and the surface-
generated noise is modeled using the normal mode noise
model developed in {23] and is summarized in (30) and (B7)
therein. Through the simulations, the SNR with respect to the
sensor noise is 20 dB and the SNR with respect to the surface
generated noise is 5 dB. These SNR’s are defined to be the
signal-to-noise ratio in a single-frequency bin of the first-stage
DTFT filter evaulated at a frequency of 20 Hz. (i.e., the SNR’s
are evaluated after the signal has passed through the DTFT
filter.)

The results for tests of several principle attributes of the
processors are presented here. These are the sensitivity to en-
vironmental mismatch and the required sampling density of the
uncertainty set ® (Section V-B), and the spatial resolution of
the processors (Section V-C). Finally, 2-D ambiguity functions
for the processors are presented and analyzed (Section V-D).

B. Environmental Sensitivity and Sampling

A set of tests were run to compare the sensitivity to
environmental change of the MVDR, Bartlett, and adaptive
minmax matched field processors. In addition, the effect of
the density of the sampling of the range of environmental
conditions (®) on the performance of the adaptive minmax
matched field processor was evaluated. For these tests, a single
source was located at a depth of 150 m and a range of 100
km, and the actual surface sound speed was varied between
1488 and 1483 m/s.

A total of six processors were tested. The processors were
environmentally matched MVDR and Bartlett matched field
processors, environmentally mismatched MVDR and Bartlett
matched field processors, and three-point and five-point adap-
tive minmax matched field processors. In each test, the en-
vironmentally matched MVDR and Bartlett processors were
provided with the true value of the surface sound speed, while
the mismatched MVDR and Bartlett processors were given a
value of 1487 m/s for the surface sound speed. The three-point
processor used three samples of the set ® at 1487, 1485, and
1483 m/s, while the five-point processor used samples at 1487,
1486, 1485, 1484, and 1483 m/s.

The array focal point was swept in range and depth around
the actual source location, and the location and value of
the peak response were noted. If the location of the peak
response was significantly different from the true source
location, the processor response at the true source location was
also recorded. The loss in peak response of the mismatched
MVDR and Bartlett and adaptive minmax processors, when
compared to the peak response of the matched processors, is a
measure of the signal loss due to environmental mismaich or
uncertainty. The displacement of the peak response position
away from the true source position is a measure of the bias in
source location estimation due to environmental mismatch.

Table I lists the peak response loss of the mismatched
MVDR and Bartlett processors and the two minmax processors
as a function of the actual surface sound speed (csyrf). For
the cases of the MVDR and the minmax processors, the peak
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TABLE I
PeAK RESPONSE Loss FOR VARIOUS PROCESSORS VERSUS Cgyrf

Csurf (M/S)

mismatched MVDR (dB) mismatched Bartlett (dB)

3-pt Minmax (dB) 5-pt Minmax (dB)

1488.00 5.23
148775 -3.62
1487.50 -1.96
1487.25 0.56
1487.00 0.00
1486.75 0.61
1486.50 197
1486.25 357
1486.00 -5.10
1485.50 -7.61
1485.00 9.65
1484.00 —7.24

—13.03
1483.00 —6.28

0.15 5.23 523
-0.08 -3.62 -3.62
-0.03 -1.96 -1.96
-0.01 0.56 -0.56
0.00 -0.02 0.02
-0.01 0.15 0.07
-0.03 033 -0.08
-0.07 043 -0.06
-0.14 -0.50 0.04
032 032 -0.10
057 -0.06 -0.06
=052 057 -0.07
—0.21 0.02 0.02
—3.90

loss is with respect to the matched MVDR processor; and
for the mismatched Bartlett processor, the peak loss is with
respect to the matched Bartlett processor. (The peak response
of the matched Bartlett processor was 0.07 dB above that
of the matched MVDR processor. This reflects the superior
ability of the MVDR processor to reject the surface-generated
noise.) In all cases except for the mismatched MVDR and
Bartlett processors when the actual surface sound speed is
1484 or 1483 m/s, the peak displacement is less than 1.4 m.
For those two cases, the peak displacement is approximately
74 m. The two values listed in Table I for these cases are the
peak response and the response at the true source location,
respectively.

These results clearly show the serious performance degra-
dation of the MVDR processor and the moderate performance
degradation of the Bartlett processor as the actual surface
sound speed varies from that assumed by the processor.

The results generated with the minmax processors high-
light several important points. First, when the actual surface
sound speed falls outside the specified environmental operating
range (®), the processor’s performance experiences the same
degradation as the MVDR processor. This is to be expected
because when the actual environmental condition is outside
®, the processor is unable to find a replica vector within
the convex hull of the replica vectors corresponding to the
sample points of ® which matches the actual replica vector.
Referring to the two-stage MVDR processor interpretation of
the minmax processor, this results in a mismatch between the
actual and effective replica vectors in the second-stage MVDR
processor. Therefore, in this case, the Minmax and standard
MVDR processors exhibit the same performance degradation.

The results also clearly show that when the surface sound
speed variations fall within the environmental operating range
(®), the minmax processor has a minimal performance loss.
Note that when cgu ¢ equals 1486 m/s, the difference be-
tween the actual surface sound speed and nearest sample
points of the set ® for the three-point minmax processor
(1487 and 1485 m) is 1 m/s. The peak response loss for
the three-point processor in this case is —0.50 dB. Under
these same conditions, the mismatched processors also have a
surface sound speed mismatch of 1 m/s and the mismatched

MVDR processor has a peak response loss of —5.10 dB.
This improved robustness of the minmax processor is due
to the fact that the processor can use any vector within the
convex hull of the set of replica vectors corresponding to the
sample points of & (ie., Q(f,7,2)) as the effective replica
vector. Thus, an effective replica vector, which is close to
the actual replica vector, can be constructed using a convex
combination of the replica vectors corresponding to surface
sound speeds of 1487, 1485, and 1483 m/s. The minmax
processor’s use of all of the vectors in the convex hull of
Q( f,r,z) makes it possible to achieve a reasonable level
of robustness with a limited number of sample points of
.

Wriile the peak response loss of the Bartlett processor is
comparable to that of the minmax processor for small surface
sound speed mismatches (< 1 m/s), the results in the following
two subsections show that resolution and the sidelobe control
of the Bartlett processor are far inferior to those of the minmax
Processor.

C. Spatial Resolution

The next results allow for a quantitative comparison of
the spatial resolutionof the matched MVDR, matched Bartlett,
and the five-point adaptive minmax processors. In order to
compare the vertical spatial resolution, two equal-strength
sources were placed at a range of 100 km and a depth
of 150+Agepth m where 2Agepen is the depth separation
between the two sources. In order to compare the horizontal
spatial resolution, two equal-strength sources were placed at
a depth of 150 m and a range of 100000 =+ Arange M
where 2A;ange is the range separation between the sources.
Fig. 5 shows characteristic ambiguity functions as a function
of depth evaluated at a range of 100 km. In the case of Fig.
5(a), the processor is able to resolve the two sources, while
in the case of Fig. 5(b), the processor is unable to resolve the
two sources.

As a quantitative measure of the processor’s ability to
resolve two sources, the response ratio, which is defined as
10 log;(62,) — 10 log;(62), is used. The definitions of 67,
and 2 depend on whether or not the processor is able to
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Fig. 5. Ambiguity functions for two source separations: (a) Two sources
resolved; (b) two sources not resolved.

resolve the two sources. In the case of Fig. 5(a) where the
processor is able to resolve the two sources, &fn is defined
as the minimal value of the ambiguity function between the
two peaks and 62 is defined as the smaller of the two peak
values. In the case of Fig. 5(b) where the processor is not able
to resolve the two sources, 62, is defined as the peak value of
the ambiguity function between the two source locations and
&2 is defined as the smaller of the values of the ambiguity
function evaluated at the two source locations. The vertical
lines in Fig. 5(b) mark the two source depths of 145 and 155
m. If the response ratio is positive, the processor is not able to
resolve the two sources; and if it is negative, the processor is
able to resolve the two sources. The more negative the value
of the response ratio, the deeper the valley in the ambiguity
function between the two peaks and the easier it is for the
processor to resolve the sources.

Fig. 6(a) and 6(b) show the response ratios for the MVDR,
Bartlett, and minmax processors as a function of range and
depth separation, respectively. The spatial resolution of the
adaptive minmax processor can be seen to be substantially su-
perior to that of the matched Bartlett processor and marginally
inferior to that of the matched MVDR processor. The loss of
resolution with respect to the matched MVDR processor can
be attributed to the lack of precise environmental information
available to the Minmax processor.
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Fig. 7. Ambiguity function for matched Bartlett processor.

D. Ambiguity Functions

Finally, the 2-D ambiguity functions for each of the proces-
sors are presented for visual analysis. A source was simulated
at a range of 100 km and a depth of 95 m. The actual surface
sound speed was 1484.75 m/s and the mismatched processors
were given a value of 1487 m/s for the surface sound speed.
The adaptive minmax processor utilized five samples of the set
® as described in Section V-B. Figs. 7-11 show the ambiguity
functions covering the ranges of 99.8-100.2 km and the depths
of 35-155 m.
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Fig. 9. Ambiguity function for matched MVDR processor.

The figures clearly show the superior spatial resolution of
the MVDR and adaptive minmax processors with respect
to the Bartlett processor, and the reduced requirement by
the adaptive minmax processor for precise environmental
information when compared to the MVDR processor. The
peak response levels for the matched Bartlett, mismatched
Bartlett, matched MVDR, mismatch MVDR, and adaptive
minmax processors are 0, —.30, —0.5,—6.76, and —0.09 dB,
respectively. The peak response locations for the matched
Bartlett, matched MVDR, and adaptive minmax processors
are at the actual source location. The peak response locations
for the mismatched Bartlett and MVDR processors are at
the actual source depth, but are displaced by approximately
76 m in range from the actual source location. This peak
displacement for the mismatched processors correlates closely
with the peak displacement found for some of the cases
considered in Section V-B. The displaced peak location corre-
sponds to a location where the replica vector for the assumed
environmental conditions closely matches the replica vector
for the actual source location and environmental condition.

It is interesting to note that the adaptive minmax processor
has a sidelobe peak of —6.76 dB at the same location as
the displaced peaks of the ambiguity functions of the mis-
matched processors (95 m depth, 99.925 km range). This
sidelobe highlights a fundamental ambiguity which can affect
the performance of a processor which has only approxi-
mate environmental information. In this case, the replica
vector corresponding to a surface sound speed of 1487 my/s
and a source location of 95 m depth and 99.925 km range
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closely matches that corresponding to a surface sound speed
of 1484.75 m/s and a source location of 95 m depth and 100
km range. Both environmental conditions fall within the range
of environmental conditions over which the adaptive minmax
processor is designed to operate. Therefore, when focusing
at the sidelobe location, the processor finds that one surface
sound speed within the designated range yields a signal replica
vector which closely matches the observed spatial structure
of the received signal. This results in a sidelobe peak in
the processors response at this location. Such a fundamental
ambiguity will exist whenever multiple environment/source
location pairs yield approximately equal signal replica vectors,
and it accounts for the generally higher sidelobe levels in the
ambiguity function of the adaptive minmax processor when
compared to those of the MVDR processor.

VI. CONCLUSIONS

Many array processors experience environmental mismatch
because they do not have access to accurate and precise envi-
ronmental information. This environmental mismatch results
in a signal model mismatch which itself leads to a severe
degradation in performance in many adaptive processors. The
adaptive minmax matched field processor has been proposed.
Its spatial resolution is close to that achieved by adaptive pro-
cessors operating with complete environmental information,
while at the same time requiring only approximate environ-
mental information and exhibiting none of the sensitivity to
environmental mismatch which is characteristic of the adaptive
Processors.
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The central element of the processor is a linear weight-
and-sum beamformer, the weights of which are the solution
to a particular minmax problem. Two theorems have been
derived which allow the problem of finding the optimal
minmax array weights to be recast as a linearly constrained
quadratic programming problem for which an efficient, finite
convergence algorithm is available. In addition, the theorems
also motivate the interpretation of the minmax processor as
a joint signal replica vector estimator/MVDR matched field
processor. This interpretation relates the minmax processor to
the traditional MVDR processor, motivates a modification to
the minmax processor, and aids in the analysis of the minmax
Processor.
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