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Abstract

Bacterial chemotaxis is the locomotory response of bacteria to chemical stimuli. E.coli
movement can be described as a biased random walk, and it is known that the gen-
eral biological or evolutionary function is to increase exposure to some substances
and reduce exposure to others. In this thesis we introduce an algorithm for surface
mapping, which tracks the motion of a bacteria-like software agent (based on a low-
level model of the biochemical network responsible for chemotaxis) on a surface or
objective function. Towards that end, a discrete Markov modulated Markov chains
model of the chemotaxis pathway is described and used. Results from simulations
using one- and two-dimensional test surfaces show that the software agents, referred
to as bacterial agents, and the surface mapping algorithm can produce an estimate
which shares some broad characteristics with the surface and uncovers some features
of it. We also demonstrate that the bacterial agent, when given the ability to reduce
the value of the surface at locations it visits (analogous to consuming a substance on
a concentration surface), is more effective in reducing the surface integral within a
certain period of time when compared to a bacterial agent lacking the ability to sense
surface information or respond to it.
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Chapter 1

Introduction

Many algorithms draw their inspiration from phenomena in nature. For example,

genetic programs and genetic algorithms borrow ideas from evolution and Mendelian

genetics such as selection, reproduction and mutation to produce programs and solu-

tions to problems [13, 27]. Simulated annealing is a local search optimization method

employing monte carlo techniques, based on an analogy with the thermodynamic pro-

cess by which cooling metals find a low energy state [12]. The concept of self-similarity

and fractals, which occur in several contexts in nature and man-made systems, serve

as a basis for novel approaches and directions in signal processing and communica-

tions [28]. Artificial neural networks use interconnected processing elements to form

an information processing and storage system, often with the capacity for adaptive

learning, much like neurons in a biological nervous system [29]. Other examples in-

clude work with solitons [25] and quantum signal processing (QSP) [8]. In a similar

spirit, this thesis will explore the possibility of exploiting the talent of E.coli bacteria

at seeking out higher or lower concentrations of certain substances for the problem of

surface mapping. The locomotory response of bacteria to chemical stimuli is referred

to as chemotaxis [19, 10].
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1.1 Surface Mapping Based on Chemotaxis

We are often interested in uncovering features of an unknown function of one or more

independent variables, or finding an approximation to it. However, in many problems

in science and engineering the observations we can make of the functions are limited

[20, 16]. These constraints on the possible sampling of the function or surface can arise

from the nature of the application or from the physical limitations involved in making

measurements in a real-world application. In many machine learning applications an

algorithm will attempt to learn a function from examples, i.e. from knowledge of

the values the function takes at a limited number of points in the function domain.

However, we are interested in the cases where such information about the function

is not globally available, and we do not have direct access to the true value of the

function at any point. This shares some similarities with the premise behind many

problems and applications that use hidden Markov models, where a Markov chain

model is assumed as an underlying stochastic process which affects the observable

output, but whose states are not directly observable [21]. Another problem in which

this constraint applies is the estimation of a probability distribution function of a

random variable. The value of the distribution function cannot be observed, but

rather the result of probabilistic experiments influenced by the probability distribu-

tion function are available, as instances of random variables with that distribution,

or measurements of a quantity modeled as such, are instead used to estimate it. The

surface mapping algorithm proposed in this thesis tracks a software agent, which

simulates a model of the protein network that controls chemotaxis, as it explores the

domain space of the function of interest and samples it locally. This is formulated

by analogy to the way an E.coli cell travels in a three-dimensional volume where the

concentration varies as a function of the spatial coordinates. Since an E.coli cell uses

the concentration values it encounters to bias its swimming behavior, one may be

able to find an approximation to the concentration surface based on the observed

trajectory of one or more bacteria on that surface. The algorithm described in this

thesis monitors the behavior of this agent, which is influenced by the surface it is

16



navigating, to form an estimate of the function.

Some optimization algorithms such as Ant Colony Optimization and Particle

Swarm Optimization are based on analogies with the behavior of certain organisms

[6]. Optimization algorithms often involve two competing components: exploration

and exploitation [15, 22]. Exploitation is the use of the information encountered so

far in the search process to guide the algorithm to solutions with a higher or lower

value of the objective function as desired, whereas exploration emphasizes a choice

of subsequent trial points that helps explore a wider area of the search space, which

is crucial to the discovery of a global optimum in problems with a multitude of local

extrema. For example, gradient search methods shift the balance completely towards

exploitation, as the direction of the evaluated gradient of a surface at one point com-

pletely determines the choice for the next trial solution. The mechanism by which

E.coli search a three-dimensional environment using information about changing con-

centration of certain substances potentially suggests a mechanism for algorithmically

exploring the domain of an objective function. While optimization algorithms at-

tempt to find a global maximum or minimum of an objective function that can be

evaluated at any point in the search space, we will employ a chemotactic strategy

to map or find an estimate of an unknown scalar-valued function (i.e. a function

that can be sampled by the surface mapping agent, but whose value at any point in

its domain cannot be used directly in the formation of the estimate). Although the

chemotaxis system allows the bacterium to fare better in an environment with a vary-

ing abundance of nutrients and beneficial substances, its purpose is not necessarily to

enable the bacterium to quickly find a location where there is an absolute maximal

exposure to the desired substance.

1.2 Bacterial Chemotaxis

The biological network in E.coli bacteria that controls chemotaxis is one of the most

well-studied signaling pathways in cell biology [11]. Bacteria move in their environ-

ment in an informed way, seeking out higher concentrations of attractants and lower

17



concentrations of repellents [5]. While concentrations of a certain substance may

vary spatially, the bacterium can only sample the concentration locally at its current

position. As the cell moves in a certain direction, spatial concentration gradients are

perceived as temporal gradients [14].

The swimming behavior of an E.coli cell is controlled mainly by its helical tails, or

flagella, which can turn clockwise or counterclockwise. The bacterium alternates be-

tween a run mode and a tumble mode. A run is a period of smooth swimming, which

results when the flagellar motors turn counterclockwise and propel the bacterium

forward. Runs are interrupted by tumbles, which are random re-orientations of the

cell direction with little or no displacement that occur when the flagellar motors turn

clockwise [26]. When looking at a typical path an E.coli cell takes, approximately

straight lines of motion would represent runs, and the changes in direction between

connected lines represent the effect of tumbles. The movement of an E.coli cell in

its environment can be modeled as a biased random walk [1], since the cell compares

external environmental conditions at different time instances and adjusts its swim-

ming behavior accordingly. If an increasing gradient is sensed, tumbling is suppressed

and the cell is more likely to move further in that favorable direction. If decreasing

attractant is sensed, tumbling is favored and the cell will tend to turn away from that

direction.

After a prolonged absence of attractant, the swimming of an E.coli cell can be

modeled as a random walk, and the run and tumble durations will be (approximately)

exponentially distributed with a mean λr and λt respectively. One can think of

the binary state switching between runs and tumbles as a two-state continuous-time

Markov chain [3]. The flagellar motors can be in an anticlockwise (run) state or a

clockwise (tumble) state, with λr or λt as a constant probability per unit time of a

transition, or average switching frequency. Assuming this simplified model, in the

general case with a changing input concentration, these parameters are time-varying

and the chemotaxis network effectively has the ability to modulate these instantaneous

average switching frequencies between the states or, equivalently, the expected time

until the next transition out of the current state. If the bacterium is exposed to the
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same concentration for a sufficiently long period of time, its internal chemical states

reach a steady state and consequently the average switching-frequency parameters

controlling its swimming behavior also reach a steady value. If attractant is suddenly

added and the concentration is increased, the cell will respond to the stimulus and

swimming behavior will change, most likely resulting in longer runs. However, if the

new perceived attractant concentration persists and remains constant for an extended

period of time, the swimming behavior of the cell will return back to its pre-stimulus

condition. This property of the chemotaxis network is called adaptation, which means

that the steady state swimming behavior does not vary significantly with the absolute

value of the steady state input concentration. The bacterium therefore responds to

changes in the input stimulus, and the absolute value of the attractant concentration

does not play a major role in the observed flagellar motor response.

1.3 Outline of the Thesis

Chapter 2 presents some background on the biological mechanism responsible for

bacterial chemotaxis. That chapter also begins the specification of the software agent

that plays a central role in our surface mapping algorithm, by introducing a model

of the protein network that is responsible for the chemotactic response in E.coli. The

model was simulated to verify that certain aspects of the simulated response to an

input concentration signal that are crucial to the surface mapping algorithm match

those from experimental results and findings about E.coli cells. In Chapter 3, we

describe how the surface mapping agent moves to different locations on a surface,

and present the major steps of the surface mapping algorithm, which we refer to as

the Bacterial Algorithm for Surface Mapping (BASM). Chapter 4 contains further

specifications for and results from various BASM simulations using one- and two-

dimensional surfaces. We also demonstrate that the bacteria-like agent, when given

the ability to reduce the value of the surface at locations it visits (analogous to

consuming a substance on a concentration surface), is more likely to reduce the surface

integral to a lower value within a certain period of time when compared to a bacterial
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agent lacking the ability to sense surface information or respond to it.
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Chapter 2

A Biological Model of Bacterial

Chemotaxis

The proposed surface mapping algorithm, inspired by the swimming response of E.coli

cells in a chemical environment, uses an agent-based approach to form an estimate

of a surface. The behavior of the surface mapping agent is largely described by a

biological model of the protein network underlying chemotaxis. In this chapter we

review the biological background relating to the inner workings of the chemotaxis

system, as reported in the literature. We then present the model of the chemotaxis

biochemical network, developed in [23] and based on the Markov modulated Markov

chains framework, which is integral to our software agent and consequently our surface

mapping algorithm. Some liberty is taken to make modifications to the parameters

of the model and diverge from the biological basis to produce more practical or

interesting behavior in the surface mapping context.

2.1 Chemotaxis Biological Network

The biological network controlling the chemotaxis response to aspartate, a type of

attractant, consists of a small set of proteins, namely Tar, CheA, CheB, CheR, CheY,

CheW and CheZ [4]. Figure 2-1 illustrates the components of the chemotaxis network

and the interactions among them.
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Figure 2-1: Illustration of the components of the chemotaxis network, reproduced
from Bray et al [4].

The following three types of reactions are relevant to the operation of the chemo-

taxis network:

1. Phosphorylation reactions: A phosphorylated protein is one with a phos-

phoryl chemical group attached to it. A phosphorylated CheA, CheB or CheY

protein is considered to be activated. An active protein is able to perform cer-

tain functions an inactive protein cannot, including the activation of another

protein. The phosphorylated forms of these proteins are denoted by CheAp,

CheBp and CheYp.

2. Binding reactions: The Tar protein is a type of receptor. Information about

the external concentration of the attractant is conveyed through the binding

of aspartate molecules, also called the ligand molecules, to Tar. Binding to a

ligand leads to a conformational (structural) change of the receptor, affecting

other reactions involving the receptor.

3. Methylation reactions: A number of methyl groups (CH3) can be attached

to the Tar receptor. Methylation of the receptor effectively increases the rate

of CheA phosphorylation. CheR adds methyl groups, while the active form of

CheB (CheBp) removes methyl groups from the receptor.
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2.1.1 The Excitation Pathway

The Tar receptor, CheA and CheW form what is referred to as the receptor complex.

The Tar receptor, with the help of CheW, affects the phosphorylation activity of

CheA [26]. The receptor complex can be in an active state or an inactive state, and

the CheA protein is able to phosphorylate only in an active receptor complex. The

probability that a certain receptor complex will be in the active state depends on the

methylation state and whether or not it is bound to a ligand (aspartate in our case).

Ligand binding decreases the probability that the receptor complex is active, while a

higher number of attached methyl groups increases the activity probability.

A series of phosphorylation reactions carries the effect of the external ligand con-

centration sensed at the receptor to the flagellar motor [4]. The flagellar motor is

made up of about 40 proteins [17]. In the absence of active CheY, the default rota-

tion direction of the motor is counterclockwise. The phosphorylated form of CheA

can activate both CheB and CheY. As more CheYp proteins bind to the flagellar mo-

tor, it is more likely to turn clockwise, so active CheY promote tumbling. CheBp and

CheYp can de-phosphorylate (i.e. lose their phosphoryl group), and CheZ catalyzes

the removal of phosphoryl groups from CheYp.

To illustrate the immediate response to a change in chemical stimulant, consider

an example scenario: As a bacterium runs in a certain direction, a sudden decrease

in input attractant concentration would decrease the number of receptors bound to

an aspartate molecule. This increases the rate at which CheA proteins phospho-

rylate, which then transfer these added phosphoryl groups to CheY proteins. More

CheYp molecules then bind to the flagellar motors, inducing more tumbling, therefore

resulting in runs of shorter duration (on average) in that direction [4].

2.1.2 The Adaptation Pathway

Adaptation in the chemotaxis pathway occurs through the methylation and de-methylation

of the receptor by CheR and active CheB, respectively. Since CheAp can pass its phos-

phoryl group to CheB, an increase in active CheA will lead to an increase in active
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CheB. CheBp can de-methylate the receptor, therefore leading to a reduced activity

of the receptor complexes on average. The system thus relaxes back to a state with

a lower number of active CheA, CheY and CheB.

The receptor methylation state modification reactions occur on a slower timescale

than the activation or phosphorylation reactions, and therefore allow for a transient

response to a change in stimulus before the system relaxes or adapts back to its steady

state activity.

2.2 The Markov Modulated Markov Chains Model

of Chemotaxis

The Markov Modulated Markov Chains (3MC) framework is a new approach to mod-

eling biological signaling networks [23]. The model consists of v nodes, where each

node represents a k-state discrete-time Markov chain. A Markov modulated Markov

chains network is defined as one where the state of one chain Xr at time index n,

denoted by Xr [n], can affect the transition probability from state i to j of another

chain Xp at time n, denoted by p
Xp

ij [n]. The interaction between the two nodes in the

network is represented by:

p
Xp

ij [n] = f (Xr [n]) (2.1)

where f (·) is referred to as themodulating function. In this framework, each chain rep-
resents a component of a biochemical network. The transition probabilities describe

the effect of chemical reactions and other interactions between the components, and

incorporate any relevant biochemical parameters [24]. Since the model uses a proba-

bilistic description, it offers the advantage of being able to compute state occupancy

probabilities for the nodes that are equivalent to results produced from a determin-

istic model of the system (such as those obtained from a model using non-random

differential equations), and perform stochastic simulations that describe the stochastic

nature of the underlying chemical or biological processes.

To perform a stochastic simulation of a 3MC network such as the one described
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above, a group of identical Markov chains corresponding to the node Xp are inde-

pendently simulated. At each time instance a chain from this group is paired with

a chain in a group corresponding to the node Xr from a concurrent simulation. The

state of the selected Xr chain determines the transition probability to be used for the

Xp chain according to the modulation relation in equation (2.1). A random number

is generated for each chain and compared against the time-varying transition prob-

abilities to decide if any state transitions occur. The state evolution of a Markov

chain in the Xp or Xr group following this procedure defines a random process Xp[n]

or Xr [n] respectively. Each simulation of a Markov chain constitutes a realization of

the random process, and each realization of Xp [n] is dependent on the realizations of

Xr [n].

In this thesis we use the aprioriMarkov Modulated Markov Chains (a3MC) model

approximation of the chemotaxis network from [23]. With this approximation, equa-

tion (2.1) is replaced by

p
Xp

ij [n] = fa(Pr(Xr [n] = m)) (2.2)

where Pr(Xr[n] = m) is the probability that chain Xr is in the m
th state at time index

n. The a3MC modulating function is derived from the state dependency described by

the 3MC modulating function f (·), and is used to compute the transition probabilities
in an a3MC stochastic simulation using state occupancy probabilities. In more general

cases where more than one node interacts with Xp , fa(·) can be a function of several
state occupancy probabilities [23]. The essential difference in the a3MC case is that

the state evolution in a stochastic simulation of the Xp chain is now independent

of any realization of the random process Xr [n]. This allows the use of a stochastic

simulation with chain Xp or the computation of state probabilities for it, using only

the time-evolving state probability vector for the Xr chain. When calculating the
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state probability vector

pXp
[n] =




Pr(Xp[n] = 1)

Pr(Xp[n] = 2)
...

Pr(Xp[n] = k)




T

, (2.3)

the recursive relation for conventional Markov chains still applies, with the exception

that the transition matrix is time-varying. The transition matrix AXp [n] is populated

by state transition probabilities which could generally be dependent on time-varying

state probabilities of other chains in the network, as specified by the a3MC influence

relations of the form of equation (2.2). More specifically:

pXp
[n + 1 ] = pXp

[n]AXp [n] (2.4)

and

AXp [n] =



p

Xp

11 [n] . . . p
Xp

1k [n]
...

. . .
...

p
Xp

k1 [n] . . . p
Xp

kk [n]


 (2.5)

A full stochastic simulation of all the components in the chemotaxis network is

therefore not necessary if we are interested in a stochastic simulation of one (or more)

component(s).

The states and interactions of the a3MC chemotaxis model from [23] are shown

in Figure 2-2. Interactions are indicated by the dashed lines and each protein is

represented by a Markov chain. The model approximates the Tar receptor as having

only two possible methylation states (methylated and unmethylated). We use a time

step of dt = 10−3s corresponding to the time interval between successive updates of

the Markov chain states. With this value for the time step we ensure that none of

the calculated transition probabilities for any of the chains exceed 1 or are less than 0

at any time index. The model assumes that the state of one molecule is independent

of all other molecules of the same type. For example, every CheY protein has some
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probability of being in the active state yp at time n, which does not change with

information about the state of other CheY molecules in the system.

Figure 2-2: States and interactions in the Markov modulated Markov chains model
of chemotaxis.

2.2.1 Effect of the External Ligand Concentration Input

In Figure 2-2 the input attractant concentration is denoted by [L]. The attractant

concentration determines the fraction, on average, of Tar receptors in an E.coli cell

that are bound to an aspartate molecule. At steady state, for some concentration L,

this can be shown to be [4]:

β(L) =
L

L+KD

(2.6)
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where KD is the dissociation constant of the binding and unbinding reactions between

the receptor and aspartate. We use a KD of 1µM from [4]. In the a3MC model, β(L)

is interpreted as the probability that a receptor is bound to a ligand (aspartate in

this case), and we refer to it as the receptor occupancy. From Figure 2-2 we can

see that the receptor occupancy affects transition probabilities of the CheA and Tar

receptor chains, both of which are part of the receptor complex. The ligand binding

and unbinding reactions occur on a much faster timescale than the other reactions

described in the model, so we use the approximation that the ligand binding reactions

reach steady state equilibrium instantaneously. This is coupled with a zero order hold

approximation to the external ligand concentration input, so the receptor occupancy

is updated at the beginning of every time step, and is assumed to be constant until

the beginning of the next time step. The input concentration at time index n is

denoted by Ln. We also assume that the probability that a receptor is ligand bound

is independent of the methylation state of the receptor.

2.2.2 Interactions and Transition Probabilities

The parameters of the modulating function f (·) are determined from the chemical rate
constants and total intracellular concentrations of the different proteins obtained from

Spiro et al [26] and Barkai and Leibler [2]. The values used are listed in Tables 2.1

and 2.2. A receptor complex in an E.coli cell can be either in an active or inactive

state at any point in time. The a3MC model uses the receptor activity probabilities

in Table 2.3 that are approximated from the probabilities for all five methylation

states in [18]. As the activity probabilities show, the receptor is more likely to be in

an active state when it is methylated, and less likely to be in the active state when

it is bound to a ligand (an aspartate molecule). Table 2.4 contains the transition

probabilities for the a3MC model depicted in Figure 2-2, which are computed using

the rate constants, total protein concentrations, receptor activity probabilities and

the modulating function. pT [n] and pTm[n] denote the probabilities that the Tar

chain is in the unmethylated and methylated states respectively. py[n] and pyp[n] are

the probabilities that the CheY chain is in the unphosphorylated and phosphorylated
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state respectively, and similar notation is used for the state occupancy probabilities

of the CheA and CheB chains. Only CheA proteins associated with active receptor

complexes are able to phosphorylate, so it is not surprising that the transition from

the inactive to the phosphorylated state of CheA depends on the receptor occupancy,

the receptor methylation state probability and the conditional activity probabilities.

The model also uses the assumption from [2] that active CheB can only de-methylate

receptors that are in the active conformation. We demonstrate how such constraints

are incorporated and the reasoning involved in obtaining the transition probabilities

through an example. To find the backwards transition probability for the Tar chain,

corresponding to the demethylation of the receptor complex by CheBp, we need to

determine the probability that a methylated receptor is active:

Pr(active|methylated)
=Pr(active|methylated and ligand bound)Pr(ligand bound)

+ Pr(active|methylated and not ligand bound)Pr(not ligand bound)

=Pr(active|methylated and ligand bound)β(Ln)

+ Pr(active|methylated and not ligand bound)(1− β(Ln))

=α4β(Ln) + α2(1− β(Ln))

which is the term that appears in the expression for ptb[n] in Table 2.4.

ktf = 7.9992× 104Ms−1

ktlf = 7.9992× 104 × 1.43Ms−1

ktb = 7.9992× 104Ms−1

ktlb = 7.9992× 104Ms−1

kaf = 45s
−1

kab = 8× 105Ms−1

kay = 3× 107Ms−1

kbb = 0.35s
−1

kyb = 20s
−1

Table 2.1: Reaction rate constants.
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[Atot] = 8µM
[Btot] = 1.7µM
[Ytot] = 20µM
[Rtot] = 0.3µM

Table 2.2: Total intracellular concentrations used in the a3MC model.

Receptor complex state Activity probability
Non-methylated and not ligand-bound α1 = 0.07
Methylated and not ligand-bound α2 = 0.88
Non-methylated and ligand-bound α3 = 0
Methylated and ligand-bound α4 = 0.74

Table 2.3: Receptor activity probabilities.

ptf [n] = (ktlfβ(Ln) + ktf (1− β(Ln))) [Rtot]dt
ptb[n] = (α4β(Ln) + α2(1− β(Ln))) [Btot]pbp[n]ktbdt
paf [n] = (α4pTm[n]β(Ln) + α1(1− β(Ln))pT [n] + α2(1− β(Ln))pTm[n]) kafdt
pab[n] = kab[Btot]pb[n]dt+ kay[Ytot]py[n]dt
pyf [n] = kay[Atot]pap[n]dt
pyb[n] = kybdt
pbf [n] = kab[Atot]pap[n]dt
pbb[n] = kbbdt

Table 2.4: Transition probabilities for the a3MC model of chemotaxis.
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Much like other existing computer models, the a3MC model cannot faithfully re-

produce some aspects of the chemotaxis pathway that are demonstrated experimen-

tally [7, 17]. However, for our purposes the model adequately captures the dynamics

of the network and its response to external attractant concentration inputs. Figure

2-3 shows the result of suddenly changing the concentration to 1mM after the system

has reached a steady state with a zero input concentration, from a simulation of the

model. We see that after the initial decrease in the probability that a CheY protein is

in the phosphorylated state, it returns to the same steady state level after an extended

constant exposure to 1mM of ligand concentration, therefore the system adapts be-

tween zero and 1mM input levels. The accompanying plot from the simulation in

Figure 2-4 shows how the system eventually compensates for the activity-inhibiting

effect of increased ligand binding with increased methylation of the receptors, sim-

ilar to the observed adaptive response in E.coli cells [26]. The exhibited adaptive

response between different input levels will be important for our intended use of the

a3MC model. At high (or low) concentrations, through adaptation, the ability of

an E.coli cell to respond to further increases (decreases) in receptor occupancy (an

increasing function of input concentration) is not diminished [2]. This return to pre-

stimulus behavior after an initial transient response, and habituation to an increased

background or average input level, will allow the a3MC model-based surface mapping

agents to keep seeking out areas with higher input levels, and be sensitive to more

localized changes in the landscape of the objective function.

2.2.3 Flagellar Motor

E.coli bacteria have about 5 to 10 flagellar motors per cell [5]. In the a3MC model, il-

lustrated in Figure 2-5, each flagellar motor is represented by an 8-state chain adapted

from the model in [17], where each state represents a different number of CheYp pro-

teins bound to the motor. This model assumes that a motor in any of the states

1 through 5 will turn counterclockwise (run mode), otherwise it is in clockwise or

tumbling mode. The chemical rate constant values used in the a3MC model of the

flagellar motor are obtained from [17] and listed in Table 2.5. Table 2.6 contains the
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Figure 2-3: Response of phosphorylated state probabilities for CheA, CheB or CheY
to a step input, the attractant concentration changes from zero to 1mM at 100 sec.

transition probabilities for the model. We define the bias as the probability that a

motor will be in any of the 5 states which correspond to a run. Figure 2-6 shows the

corresponding bias time plot for the step attractant input response plot of Figure 2-3.

Since CheYp promotes tumbling in the motor, the bias increases with the decreasing

CheY activity probability. The transient decrease in the probability that a CheY

protein is phosphorylated leads to a decrease in the forward transition probabilities

(pmf1 through pmf7) given in Table 2.6, and the probability that the motor will be in

any of the first five states increases.
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Figure 2-4: Probability that a receptor is in the methylated state during a step input,
the attractant concentration changes from zero to 1mM at 100 sec.

kmf1 = 7× 106Ms−1

kmf2 = 6× 106Ms−1

kmf3 = 5× 106Ms−1

kmf4 = 4× 106Ms−1

kmf5 = 3× 106Ms−1

kmf6 = 2× 106Ms−1

kmf7 = 1× 106Ms−1

kmb1 = 1.43s
−1

kmb2 = 2.86s
−1

kmb3 = 4.29s
−1

kmb4 = 5.72s
−1

kmb5 = 7.15s
−1

kmb6 = 8.58s
−1

kmb7 = 10.01s
−1

Table 2.5: Flagellar motor rate constants.
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pmf1[n] = kmf1[Ytot]pyp[n]dt
pmb1[n] = kmb1dt(1− kmf2[Ytot]pyp[n]dt)
pmf2[n] = (kmf2[Ytot]pyp[n]dt)(1− kmb1dt)
pmb2[n] = kmb2dt(1− kmf2[Ytot]pyp[n]dt)
pmf3[n] = (kmf3[Ytot]pyp[n]dt)(1− kmb2dt)
pmb3[n] = kmb3dt(1− kmf2[Ytot]pyp[n]dt)
pmf4[n] = (kmf4[Ytot]pyp[n]dt)(1− kmb3dt)
pmb4[n] = kmb4dt(1− kmf2[Ytot]pyp[n]dt)
pmf5[n] = (kmf5[Ytot]pyp[n]dt)(1− kmb4dt)
pmb5[n] = kmb5dt(1− kmf2[Ytot]pyp[n]dt)
pmf6[n] = (kmf6[Ytot]pyp[n]dt)(1− kmb5dt)
pmb6[n] = kmb6dt(1− kmf2[Ytot]pyp[n]dt)
pmf7[n] = (kmf7[Ytot]pyp[n]dt)(1− kmb6dt)
pmb7[n] = kmb7dt

Table 2.6: Transition probabilities for the a3MC model of the flagellar motor.
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Figure 2-5: a3MC model of flagellar motor.
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Figure 2-6: Motor bias in response to a step input, at the time step corresponding to
100 seconds the attractant concentration changes from zero to 1mM.
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2.3 Modifications to the a3MC Model

This section discusses the modifications that are made to the parameters of the bi-

ological a3MC model of chemotaxis in order to make it more suitable for use in the

surface mapping algorithm. To obtain a larger expected change in observable behav-

ior (mainly through run and tumble durations or frequencies) with a changing input

concentration, some of the biological parameters in the model are changed to the val-

ues listed in Tables 2.7 and 2.8. The factors multiplying the original rate constants

are also picked to ensure that the model still adapts between a zero input and a 1mM

input. Additionally, the rate constants for the flagellar motor are increased to the

values listed in Table 2.9 to obtain a larger steady state bias. This allows the surface

mapping agent to spend a greater fraction of its total time changing location and

exploring the surface due to the increase in run durations.

We can see from the bias response using the new parameters to a 1mM step con-

centration input in Figure 2-7 that a larger change in bias is obtained when compared

to the result using the original parameters in Figure 2-6.

Receptor complex state Activity probability
Non-methylated and not ligand-bound α1 = 0.15
Methylated and not ligand-bound α2 = 0.95
Non-methylated and ligand-bound α3 = 0
Methylated and ligand-bound α4 = 0.4

Table 2.7: Modified receptor activity probabilities for use with the surface mapping
algorithm.

ktf = (7.9992× 104 ÷ 1.2)Ms−1

ktlf = (7.9992× 104 ÷ 1.2×√
8.433)Ms−1

ktb = (7.9992× 104 × 1.2)Ms−1

ktlb = (7.9992× 104 × 1.2÷√
8.433)Ms−1

Table 2.8: Modified rate constants for use with the surface mapping algorithm.
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kmb1 = 1.43× 2.5s−1

kmb2 = 2.86× 2.5s−1

kmb3 = 4.29× 2.5s−1

kmb4 = 5.72× 2.5s−1

kmb5 = 7.15× 2.5s−1

kmb6 = 8.58× 2.5s−1

kmb7 = 10.01× 2.5s−1

Table 2.9: Modified flagellar motor rate constants for use with the surface mapping
algorithm.
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Figure 2-7: Motor bias in response to step input after the modifications to the model
parameters, at 100 sec the attractant concentration changes from zero to 1mM.
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Chapter 3

Bacterial Algorithm for Surface

Mapping

In this chapter we present a surface mapping algorithm, which we refer to as the Bac-

terial Algorithm for Surface Mapping (BASM). The algorithm simulates trajectories

of a bacteria-like software agent in the domain space of a surface represented by a

function C (·), analogous to the movement of E.coli cells in a volume where they are
exposed to a concentration of attractant that changes with their location. Although

this thesis will often discuss the mapping of a concentration function C (·), whose
arguments are spatial coordinates, they are generally not restricted as such. The

surface mapping agent, which we will refer to as a bacterial agent, switches between

run and tumble modes to explore the surface, using the surface values at different

locations for guidance. We describe how the bacterial agent uses the surface values as

a time-varying input to an a3MC stochastic simulation of the model of the chemotaxis

network in Chapter 2 in its decision-making. In general, a maximum-seeking bacterial

agent tends to spend more time in the regions where the surface has a higher value

or a peak, so the behavior of the agent can be informative in cases where an explicit

or analytic expression of the function is not known or unavailable. The algorithm

computes an estimate of the surface based on the movement of the bacterial agent,

which we refer to as the density function. This thesis focuses on BASM simulations

that map one- and two-dimensional surfaces.
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3.1 Stochastic Simulation of Flagellar Motor Chains

An important aspect of the exploration of the surface by the bacterial agent is the

flagellar motor. With the input concentration to the a3MC model at any time index

set as the surface value at the current location, the state probabilities for all the

chains in the model are calculated according to the prescription in Table 2.4 and

equation (2.4). An a3MC stochastic simulation is performed with 9 flagellar motors,

each of which can be in any of 8 states. The states are updated at every time step,

with the transition probabilities depending on the probability of the Y chain being

in the phosphorylated state (yp) as specified by Table 2.6. The motors are simulated

independently from each other, and using the voting hypothesis in [9] and [26], if more

than half of them are in a run state, the bacterial agent runs, otherwise it tumbles.

Using multiple motors and the voting hypothesis has an amplification effect on the

individual motor bias to obtain the cell bias, i.e. the probability that the bacterial

agent will be in a run state. To obtain the cell bias we find the probability that 5 or

more of the 9 motors will be in a run state:

cell bias =
9∑

k=5

(
9

k

)
bk(1 − b)9−k (3.1)

where b is the individual motor bias. As the relation in Figure 3-1 shows, a motor

bias greater than 1
2
will be increased towards 1, and a bias less than 1

2
will be pushed

down towards zero.
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Figure 3-1: Probability that a bacterial agent using 9 motors will be in run mode as
a function of the single flagellar motor bias.

3.2 Surface Mapping Algorithm

We describe the motion and position of the bacterial agent in a two-dimensional

search space at a time index n in terms of the following parameters:

• ( x [n], y [n] ): position or current coordinates.

• θ[n] : angle or direction the bacterial agent is facing.

• The state of the motors. The bacterial agent can either be in run mode (flagella
rotating counterclockwise) or tumble mode (flagella rotating clockwise) between

time indices n and n+1. During a run, the position changes but the direction

does not, and during a tumble the direction changes while the position remains

the same.
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3.2.1 Tumbles

The simulations assume a simple model for the effect of a tumble. In BASM, for each

tumble the bacterial agent rotates counterclockwise or clockwise with equal probabil-

ity (in contrast with flagellar rotation, which is always in the clockwise direction for

tumbles). The rotation direction is constant throughout the tumble, and a constant

radial speed rs (in rad/s) is used to determine the total change in direction due to

the tumble. For every time step during which the bacterial agent is in tumble mode,

the angle or direction of the bacterial agent at time n is adjusted as follows:

θ[n+ 1] = θ[n] + sgn(U)× rs × dt (3.2)

where dt is the time in seconds that corresponds to a time step for the discrete-time

Markov chains, and U is a random variable generated at the start of the tumble

distributed uniformly in the interval [-1,1].

3.2.2 Runs

Once an E.coli cell is running, its speed moving forward is approximately constant

throughout the run, and does not vary significantly from one run to another [14].

While E.coli move in three dimensions, the algorithm carries this over to the two-

dimensional case, as in [19], using a constant running velocity v.

In the two-dimensional surface mapping simulations, a run changes the position

of a bacterial agent as follows:

x [n + 1 ] = x [n] + cos(θ[n])× v × dt (3.3)

y [n + 1 ] = y [n] + sin(θ[n])× v × dt (3.4)

where v is the running velocity in (length unit)/s.

In the one-dimensional case, the interpretation of the direction angle θ[n] is less

straightforward. In BASM, the bacterial agent still moves with speed v, but the angle
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θ[n] determines whether the displacement is in the positive or negative x direction.

More specifically:

x [n + 1 ] = x [n] + sgn(cos(θ[n]))× v × dt (3.5)

3.2.3 Algorithm Steps

At the beginning of the simulation, the bacterial agent position, direction, internal

state probabilities, and motor state (run or tumble) are set to an initial value or

state. At every iteration or time step n (each corresponding to a time duration dt)

the algorithm performs the following steps:

1: Determine the current position and direction (x[n],y[n] and θ[n]) using previous

position, direction and previous overall motor state(whether the agent was in run or

tumble mode at time index n− 1) according to equations (3.2)-(3.5).
2: Determine the current ligand input concentration for the agent as g[n] = C(x[n])

or g[n] = C(x[n], y[n]) in the case of one- or two-dimensional surfaces respectively.

3: Use previous concentration input g[n − 1] and previous internal states (state

occupancy probabilities for previous time step n − 1) to calculate current internal

state probabilities (for time index n).

4: Use previous internal states to check for transitions in any of the 9 motors, and

determine new motor state (whether the bacterial agent is in run or tumble mode at

time index n).

5: Go to 1 for next time step.

3.3 Calculation of the Density Function

The algorithm produces a histogram indicating the relative amount of time the bac-

terial agent spent near every position. We refer to this as the density function, which

varies with the spatial coordinates. Several simulations are performed and the results

from the different trajectories produced are averaged. Since the bacterial agent tends

to seek out higher concentrations, areas with higher densities indicate an increased
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likelihood of higher concentrations near these locations.

For one-dimensional surface mapping simulations a uniform grid of the spatial

dimension is formed, where each point on the grid is defined as:

xk = k × v × dt (3.6)

for integer k , such that the points are separated by vdt . Every simulation produces a

density function D[k], which is a histogram indicating the total number of time steps

during the entire simulated movement trajectory where the bacterial agent was in the

run state, and in a position that falls within the bin (of size vdt) centered at xk . At

the beginning of a simulation, D[k] is set to to zero for all k within a limited range.

At every time step, if the flagellar motors are in a run mode, the current position x [n]

is rounded to the nearest value of xk , and the density function D[k] is incremented at

the corresponding k.

Every run of BASM simulates the sample motion trajectory of the bacterial agent

for 1000 seconds (or 1000
dt
time steps) and produces an associated density function. An

average density function is then calculated using the results of N1 simulations:

Davg [k ] =
1

N1

N1∑
i=1

Di [k ] (3.7)

where i denotes the simulation number.

For two-dimensional surface mapping simulations a two-dimensional uniform grid

of the spatial dimensions is formed, with each point on the grid written as (xk1 ,yk2 )

where

xk1 = k1	x (3.8)

yk2 = k2	y (3.9)

such that adjacent points on the grid are separated by 	x and 	y distance units

in the horizontal and vertical dimensions respectively. Every simulation produces a

density function D[k1, k2], which is a histogram indicating the total number of time
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steps during the entire simulated movement trajectory where the bacterial agent was

in the run state, and in a position that falls within the bin (of size 	x	y) centered

at (xk1 ,yk2 ). At the beginning of a simulation D[k1, k2] is set to zero for all k1 and

k2 within a limited range. At every time step, if the flagellar motors are in a run

mode, the current position coordinates x [n] and y [n] are rounded to the nearest values

of xk1 and yk2 respectively, and the density function D[k1, k2] is incremented at the

corresponding k1 and k2.

Every run of BASM simulates the sample motion trajectory of the bacterial agent

for 2000 seconds (or 2000
dt
time steps) and produces an associated density function. An

average density function is then calculated using the results of N2 simulations:

Davg [k1 , k2 ] =
1

N2

N2∑
i=1

Di [k1 , k2 ] (3.10)

where i denotes the simulation number.
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Chapter 4

Simulations and Results

In this chapter we evaluate the surface mapping algorithm by running simulations on

one- and two-dimensional test functions and examining the results. We observe the

effect of changing the parameters v and rs, as well as a few modifications to the BASM

algorithm on the obtained averaged density function, which serves as an estimate of

the surface. The true value of the test function is accessible only to the bacterial

agent. The density function is computed based only on the behavior of the bacterial

agent in the surface mapping simulations, and can be compared against the test

functions used in this chapter. We also demonstrate that the bacterial agent, when

given the ability to reduce the value of the surface at locations it visits (analogous to

consuming a substance on a concentration surface), is more effective in reducing the

surface integral within a certain period of time when compared to a bacterial agent

lacking the ability to sense surface information or respond to it.

4.1 One-Dimensional Surface Mapping Simulations

In this section we present the results from one-dimensional BASM simulations using

two test concentration surfaces:

C1 (x ) = 10
−4 exp(−3

4
|x |) (4.1)
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C2 (x ) = (5× 10−5)

∣∣∣∣sin(
1
4
x )

1
4
x

∣∣∣∣ (4.2)

The unimodal function C1 (x ) and the multimodal function C2 (x ) are plotted in

Figure 4-1. The results presented in this section are all produced by running BASM

and using N1 = 40 simulations.
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Figure 4-1: The one-dimensional test surfaces C1(x) and C2(x).
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At the beginning of the i th simulation, the starting position x [0 ] along the x-axis

is set to the value of a random number X i
init, which is distributed uniformly between

-10 and 10. Furthermore, the bacterial agent is equally likely to be facing the positive

or negative x direction, as θ[0 ] is set to 0 or π with equal probability.

For BASM simulations on the unimodal concentration surface C1 (x), a default

run speed v of 0.75 s−1 and a tumbling rotation speed rs of π rad/s are used. For the

multimodal function C2 (x) we use v = 0.6s
−1 and rs = π rad/s. The averaged density

functions obtained are shown in Figure 4-2 for C1 (x) and 4-3 for C2 (x). We see that

the density function shares some broad characteristics with the surface and can shed

light on some properties of it, such as the approximate maxima and minima locations.

Both density functions are approximately symmetric, and the density function from

the simulations using the multimodal surface captures the main lobe and the adjacent

side lobes of lower height.

To remove some of the extraneous noise-like detail from the average density func-

tion, it is passed through an FIR smoothing filter. A 2001-point averaging filter

was used. The smoothed density function is then scaled to approximately integrate

to unity over a finite interval, for comparison against the similarly normalized test

surface. Figures 4-4 and 4-5 show a plot of the smoothed density function against

the test surfaces and the approximation error as an absolute difference. The global

maximum of the smoothed density function for the unimodal surface simulations was

found to be at x = −0.228, less than a quarter of a distance unit away from the true

maximum of the surface. For the multimodal surface simulations, the maxima and

minima locations are estimated by finding the highest or lowest value respectively

that the smoothed density function takes in a reasonable range around the true max-

imum/minimum locations (usually between the two adjacent extrema). Tables 4.1

and 4.2 summarize the estimated maxima and minima locations computed using the

smoothed density function from the multimodal surface simulations.
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Figure 4-2: Average density function result from one-dimensional surface mapping
simulations using C1 (x), v = 0.75s

−1, rs = π rad/s.

Maxima locations Measured location Error
−10π -28.694 2.7219
−6π -17.893 0.9566
0 4.667 4.667
6π 17.343 1.5066
10π 34.285 5.3309

Table 4.1: Maxima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = π rad/s.

Minima locations Measured location Error
−8π -25.955 0.8223
−4π -13.373 0.8066
4π 13.306 0.7396
8π 26.085 0.9523

Table 4.2: Minima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = π rad/s.

50



−40 −30 −20 −10 0 10 20 30 40
0

100

200

300

400

500

600

x axis

D
en

si
ty

Figure 4-3: Average density function result from one-dimensional surface mapping
simulations using C2 (x), v = 0.6s

−1, rs = π rad/s.
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Figure 4-4: Smoothed density function and absolute approximation error.
C (x ) = C1 (x ), v = 0.75s

−1, rs = π rad/s.
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Figure 4-5: Smoothed density function and absolute approximation error.
C (x ) = C2 (x ), v = 0.6s

−1, rs = π rad/s.
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Figures 4-6 to 4-9 show the results obtained when the running speed v is increased

for the C1 (x) and C2 (x) simulations to 1.25s
−1 and 1s−1 respectively. We can see that

the density function is more spread out, as the higher run speed allows the bacterial

agent to spend more time exploring areas further away from both its starting position

and the global maximum at zero. We also observe that the mapping of C2 (x) captures

the main lobe of the sinc function as well as three of the side lobes on either side of it.

Tables 4.3 and 4.4 summarize the estimated maxima and minima locations computed

using the smoothed density function from the multimodal surface simulations.
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Figure 4-6: Average density function result from one-dimensional surface mapping
simulations using C1 (x), v = 1.25s

−1, rs = π rad/s.
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Figure 4-7: Average density function result from one-dimensional surface mapping
simulations, using C2 (x), v = 1s

−1, rs = π rad/s.

Maxima locations Measured location Error
−14π -45.647 1.6647
−10π -30.288 1.1279
−6π -14.887 3.9626
0 -1.251 1.251
6π 18.211 0.6386
10π 31.887 0.4711
14π 41.139 2.8433

Table 4.3: Maxima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 1s

−1, rs = π rad/s.
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Figure 4-8: Smoothed density function and absolute approximation error.
C (x ) = C1 (x ), v = 1.25s

−1, rs = π rad/s.

Minima locations Measured location Error
−12π -38.603 0.9039
−8π -25.637 0.5043
−4π -13.246 0.6796
4π 13.384 0.8176
8π 25.886 0.7533
12π 38.029 0.3299

Table 4.4: Minima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 1s

−1, rs = π rad/s.
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Figure 4-9: Smoothed density function and absolute approximation error.
C (x ) = C2 (x ), v = 1s

−1, rs = π rad/s.
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Figures 4-10 to 4-13 show the results obtained when the rotation speed rs is

increased for the C1 (x) and C2 (x) simulations to
3π
2
rad/s and 5π

4
rad/s respectively.

We see that this has the opposite effect on the density function than increasing v,

as the density suggests that the bacterial agent did not spend a significant amount

of time outside a small range around the global maximum. This is expected as the

high tumbling rotation speed results in more frequent switches in running direction

and the bacterial agent is therefore not likely to travel far in one direction. Tables

4.5 and 4.6 summarize the estimated maxima and minima locations computed using

the smoothed density function from the multimodal surface simulations.
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Figure 4-10: Average density function result from one-dimensional surface mapping
simulations using C1 (x), v = 0.75s

−1, rs = 1.5π rad/s.
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Figure 4-11: Average density function result from one-dimensional surface mapping
simulations, using C2 (x), v = 0.6s

−1, rs = 1.25π rad/s.

Maxima locations Measured location Error
−6π -16.903 1.9466
0 -5.430 5.430
6π 16.08 2.7696

Table 4.5: Maxima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = 5
4
π rad/s.

Minima locations Measured location Error
−4π -13.325 0.7586
4π 13.350 0.7836

Table 4.6: Minima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = 5
4
π rad/s.
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Figure 4-12: Smoothed density function and absolute approximation error.
C (x ) = C1 (x ), v = 0.75s

−1, rs = 1.5π rad/s.
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Figure 4-13: Smoothed density function and absolute approximation error.
C (x ) = C2 (x ), v = 0.6s

−1, rs = 1.25π rad/s.
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4.1.1 Variations on the Algorithm

To better understand the effect of using multiple motors and the amplification effect

discussed in section 3.1, we ran simulations where only one flagellar motor is sim-

ulated. The state of that motor completely determines whether the bacterial agent

runs or tumbles. The results of the simulations are shown in Figures 4-14 to 4-17.

We can see that the quality of the surface mapping suffers, and this suggests that

the use of more than one motor can allow the bacterial agent to more effectively use

the information it encounters about the surface to guide its exploration. Tables 4.7

and 4.8 summarize the estimated maxima and minima locations computed using the

smoothed density function from the multimodal surface simulations.
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Figure 4-14: Averaged density function result using the single flagellar motor variation
of BASM and C1 (x), v = 0.75s

−1, rs = 1π rad/s.
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Figure 4-15: Averaged density function result using the single flagellar motor variation
of BASM and C2 (x), v = 0.6s

−1, rs = 1π rad/s.

Maxima locations Measured location Error
−6π -19.751 0.9014
0 3.463 3.463
6π 19.089 0.2394
10π 29.199 2.2169

Table 4.7: Maxima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = π rad/s, using one flagellar motor.

Minima locations Measured location Error
−4π -15.799 3.2326
4π 13.333 0.7666

Table 4.8: Minima locations estimated from smoothed density function. C (x ) =
C2 (x ), v = 0.6s

−1, rs = π rad/s, using one flagellar motor.
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Figure 4-16: Smoothed density function and absolute approximation error.
C (x ) = C1 (x ),v = 0.75s

−1, rs = π rad/s, using one flagellar motor.
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Figure 4-17: Smoothed density function and absolute approximation error.
C (x ) = C2 (x ),v = 0.6s

−1, rs = π rad/s, using one flagellar motor.
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Since subsequent tumbles may result in rotations in opposite directions, it is pos-

sible for one tumble to undo the effect of a previous tumble. Therefore, an increase

in tumbling time within some interval, likely due to a perceived decrease in the value

of the surface C (·) in a certain direction, will not guarantee a switch in running
direction. We experimented with a tumbling variation where the rotation direction

is consistent, and equation (3.2), the update equation for θ[n] due to a tumble, is

replaced with

θ[n+ 1] = θ[n] + rs × dt (4.3)

This leads to a more straightforward relation between tumbling and switches in

running direction, as the bacterial agent switches running directions after spending

enough time in the tumble state to correspond to an angular rotation of π. The results

from simulations implementing this modification are shown in Figures 4-18 and 4-19.

We also combined this variation with a modification to the a3MC model where the

rate constants for the flagellar motor in Table 2.9 are doubled. This results in a larger

bias, increasing the durations of runs and decreasing the durations of tumbles. The

average density function obtained from surface mapping simulations using C1 (x) is

shown in Figure 4-20. The flat density near zero suggests that switches in running

direction rarely occurred in that interval, and this may be attributed to the longer run

times resulting from the second modification. The density function is also smooth,

and it drops off from its maximum sharply, suggesting that the switches in direction

occurred mostly within a small interval centered a distance of 10 away from the

global maximum. The tumbling direction modification contributes to this increased

predictability of the bacterial agent behavior, because it eliminates the uncertainty in

one aspect of the process, namely the relation between the total time spent tumbling

in the time interval between two switches in running direction. Figure 4-21 shows the

state probability for the CheY chain and the concentration signal the agent perceives

during a typical run of this experiment. The concentration input signal is defined as

g[n] = C(x[n]). The CheY activity probability and the time-varying input signal both

63



oscillate with an almost consistent period. This highly predictable mode, approaching

a deterministic behavior, is lost if only a single flagellar motor is used or either of the

above mentioned modifications are not applied, as suggested by results from other

simulations. The long uninterrupted runs due to the increased bias from doubling

of the motor chain rate constants, the single motor bias amplification effect of the

multiple motors and the voting hypothesis, and the elimination of the random aspect

of tumbling rotation direction through the simplified tumbling update are all crucial

for this effect.
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Figure 4-18: Average density function result using the tumbling direction variation
of BASM and C1 (x), v = 0.75s

−1, rs = 1π rad/s.

64



−50 −40 −30 −20 −10 0 10 20 30 40 50
0

100

200

300

400

500

600

700

x axis

D
en

si
ty

Figure 4-19: Average density function result using the tumbling variation of BASM
and C2 (x), v = 0.6s

−1, rs = 1π rad/s.
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Figure 4-20: Average density function result using the tumbling variation of BASM,
modified rate constants and C1 (x), v = 0.75s

−1, rs = 1π rad/s.
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Figure 4-21: Internal state activity probability for CheY and the concentration at
the location of the agent versus time for a typical surface mapping simulation imple-
menting the tumbling direction modification, and using modified flagellar motor rate
constants and the C1 (x) surface.

67



4.2 Two-Dimensional Surface Mapping Simulations

In this section we present the results from BASM simulations using two test concen-

tration surfaces that are two-dimensional extensions of C1 (x) and C2 (x) :

C3 (x , y) = 10
−4 exp(−1

2

√
x 2 + y2 ) = (10−

4
3 )(C1 (

√
x 2 + y2 ))

2
3 (4.4)

C4 (x , y) = (5× 10−5)

∣∣∣∣sin(
1
4
x ) sin(1

4
y)

1
16
xy

∣∣∣∣ = (5× 105)C2 (x )C2 (y) (4.5)

The unimodal function C3 (x , y) and the multimodal function C4 (x , y) are plotted

in Figures 4-22 and 4-23. The results presented in this section are all produced by

running BASM with the spatial spacing parameters 	x and 	y set to 2 and using

N2 = 80 simulations.

In the two-dimensional simulations, the initial position of the bacterial agent is

always set to be a distance R away from the global maximum at the origin:

x [0 ] = R cos(Θi) (4.6)

y [0 ] = R sin(Θi) (4.7)

where Θi is a random number generated for the i th simulation distributed uniformly

between 0 and 2π. The initial angular direction θ[0] is also set to an independent

random number Φi with the same distribution. The results presented in this section

are from simulations that use an R of 7.
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Figure 4-22: The two-dimensional unimodal test surface C3 (x , y).

A default run speed v of 0.3 s−1 and a tumbling rotation speed rs of 10π rad/s are

used. The average density functions obtained are shown in Figure 4-24 for C3 (x , y)

and 4-25 for C4 (x , y). In the unimodal case, there is a single clear peak in the density

function. In the multimodal mapping, we can see the main lobe of the two-dimensional

sinc function, as well as the four neighboring side lobes. The oscillating nature of the

function is conveyed through the density function, and it is evident that the majority

of the highest peaks lie along the x- and y-axes.

69



−50

0

50

−50

0

50

0

1

2

3

4

5

6

x 10
−5

x
y

C
4(x

,y
)

Figure 4-23: The two-dimensional multimodal test surface C4 (x , y).
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Figure 4-24: Average density function result from two-dimensional surface mapping
simulations using C3 (x , y).
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Figure 4-25: Average density function result from two-dimensional surface mapping
simulation, using C4 (x , y).
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4.3 Range of Bacterial Agent Input Values

An important consideration when choosing a suitable value for the parameters of the

BASM algorithm is the range of values that the surface C (·) can take at all locations of
interest. As discussed in section 2.2.1, the a3MC model incorporates the effect of the

time-varying input g[n], where g[n] = C(x[n], y[n]) in the case of a two-dimensional

surface and g[n] = C(x[n]) for the one-dimensional case, by calculating the receptor

occupancy β(g[n]) = g[n]
g[n]+KD

. The bacterial agent can only experience the effect of

the input through the nonlinear function β(·), so the choice of KD can be crucial. All

the test functions used so far have been scaled to match the size of the dissociation

constant KD = 10
−6 obtained from the literature on E.coli chemotaxis. Consider the

one-dimensional test surface:

C5 (x ) = cos

(
x
2π

20

)
(4.8)

This cosine function oscillates between 1 and -1 with a period of 20 distance units.

However, this function takes on negative values which would not yield a meaningful

receptor occupancy probability. To remedy this problem, we can introduce an offset

variable O, that is added to the value of the surface input encountered by the bacterial

agent before the receptor occupancy is calculated. O can be set to +1, the additive

inverse of the minimum value of C5 (x ). A value of KD = 10−1 seems reasonable

for use with C5 (x ), since the minimum concentration encountered will lead to a

receptor occupancy of 0 percent, and the maximum possible receptor occupancy will

be approximately 95.24 percent with the additive offset. Figure 4-26 shows the results

of simulations using these parameters with v = 1.25s−1, rs = π rad/s, and the

initial position of the bacterial agent set to an independent random number uniformly

distributed between -50 and 50 for each simulation. A constant was subtracted from

the density function such that it sums to 0, and both the smoothed density function

and the surface are normalized such that their absolute value integrates to unity over

the -50 to 50 interval.
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Figure 4-26: Smoothed density and absolute error from one-dimensional surface map-
ping simulation using C5 (x ), KD = 10

−1, v = 1.25s−1, rs = π rad/s.

Some prior knowledge about the surface goes a long way towards setting up sur-

face mapping simulations with useful results. However, one cannot expect that such

predictions about the surface will be completely reliable. The value of KD might be

chosen based on inaccurate expectations or assumptions about the surface. Another

problem is that we may not be able to guarantee that the surface will not take on

negative values lower than some threshold. For that scenario, we can adjust our

algorithm such that O is an adaptive parameter, updated whenever an input lower

than O is encountered by the bacterial agent. Figure 4-27 illustrates the added steps

using a flowchart. We examined the case where, using the same surface C5 (x ), the

dissociation constant is quadrupled, i.e. KD = 4×10−1 and the offset was initially set
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to 0.5. The results are shown in Figure 4-28, the smoothed density function obtained

is comparable to the density function in the case with KD = 10−1 in terms of how

closely it matches C5 (x ). The algorithm therefore still performs well with a range of

possible settings for KD and initial values for O.

Figure 4-27: Adaptive offset parameter implementation.
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Figure 4-28: Smoothed density and absolute error from one-dimensional surface map-
ping simulation using C5 (x ), KD = 4× 10−1, v = 1.25s−1, rs = π rad/s.
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4.4 Surface Flattening

In some applications, it may be advantageous to use bacterial agents that actively

modify the function landscape as they use the information they gather about the

surface to bias their exploration. For example, consider a group of mobile active

sensors that transmit a signal that can be detected or measured by other sensors.

Such active sensors that move in a physical setting according to the BASM algorithm

and use total sensor signal strength at their position for their input can play the role of

bacterial agents exploring a sensor coverage surface. The bacterial agents can seek out

areas with a lower signal strength, while simultaneously affecting the (time-varying)

sensor coverage surface with their movement. This will effectively lead to a sensor

coverage function that is more evenly distributed across the spatial coordinates, or

said differently, a flattening of the surface that indicates a local time-averaged sensor

coverage or similar metric. In this section, the surface mapping algorithm is taken

a step further, by allowing the bacterial agents to consume or reduce the value of

a function at the locations they visit. The effects can be observed as the bacterial

agents are allowed to modify the surface they are navigating instead of just passively

sampling it. They essentially flatten the concentration surface (to approximately

zero) as they visit the areas with higher concentrations more often and reduce the

total amount of the substance.

In the one-dimensional surface flattening algorithm, a uniform grid of the x-axis

is formed as before:

xk = k × v × dt (4.9)

for |x | ≤ xmax or equivalently, |k | < xmax

vdt
. The time-varying concentration function is

denoted by C [k , n], where k is a spatial index and n is the time index. At the beginning

of the simulation C [k , n] is initialized to a sampled version of the concentration surface

C (x ):

C [k , 0 ] = C (xk) (4.10)

For every time step, if the flagellar motors are in a run mode, the current position x [n]

77



is rounded to the nearest value of xk and the discrete-space concentration function

C [k , n] is reduced at the corresponding k by a factor of γ:

C [k , n + 1 ] = γC [k , n] (4.11)

The surface value the bacterial agent reads at that location is the value of the time-

varying surface (interpreted as a concentration) at the nearest grid point, i.e. C [k , n].

Any position updates due to a run that would lead to a value of x[n] outside the range

|x | < xmax are prevented. We set xmax to 90 for the one-dimensional simulations.

We investigated whether the bacterial agent is more effective at reducing the total

amount of a substance than an unbiased version of the random walk, implemented

using a bacterial agent that always senses a complete lack of attractant everywhere

(zero concentration), and is therefore not influenced by the concentration surface.

Two sets of simulations were performed, and for each simulation, the total amount

of remaining substance, denoted by S[n], was used as a metric of how fast the two

algorithms flatten the surface. The surface sums from 20 simulations are averaged

to obtain an estimate of the expected amount of remaining substance at time n as

follows:

Savg [n] =
1

20

20∑
i=1

Si [n] =
1

20

20∑
i=1

xmax
vdt∑

k=− xmax
vdt

Ci [k , n] (4.12)

where i denotes the simulation number. We used C2 (x ) = (5× 10−5)
∣∣∣ sin( 1

4
x)

1
4
x

∣∣∣ as the
surface, a v of 0.75 s−1, a tumbling rotation speed rs of π rad/s, and a reduction

factor γ of 0.8. Figure 4-29 shows the obtained average running sum of the surface

for the surface biased and unbiased versions of the random walk.

4.4.1 Surface Flattening with Two Bacterial Agents acting

Simultaneously

In this section we explore the case where two bacterial agents are simultaneously

navigating and modifying the surface. Similarly, the ability of two bacterial agents
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Figure 4-29: Average remaining total substance on the one-dimensional concentration
surface from surface flattening simulations using the surface biased and unbiased
versions of the random walk.

working in concert to flatten the surface was compared with the performance of two

bacterial agents that always perceive a zero concentration and perform an unbiased

random walk. The result is shown in Figure 4-30, where again the biased random

walk is consistently more likely to be ahead in the race to reduce the total amount of

substance remaining (the surface sum).

4.4.2 Two-Dimensional Surface Flattening

In this section the surface flattening algorithm is extended to two-dimensional sur-

faces. We again attempt to gauge how much the bacterial agent benefits from sensing

concentrations locally and moving accordingly in such an experiment. In this case,

the time-varying surface is a function of two spatial indices k1 and k2 , related to the
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Figure 4-30: Average remaining total substance on the concentration surface using
the surface biased and unbiased versions of the random walk, from simulations where
two bacterial agents simultaneously modify the surface.

continuous spatial variables as follows:

xk1 = k1 × 50 × v × dt (4.13)

yk2 = k2 × 50 × v × dt (4.14)

This acts as a two-dimensional grid of finite size for |xk1 | ≤ xmax and |yk2 | ≤ ymax . At

the beginning of the simulation C [k1 , k2 , n] is initialized to a sampled version of the

concentration surface C (x , y):

C [k1 , k2 , 0 ] = C (xk1 , yk2 ) (4.15)
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For every time step, if the flagellar motors are in a run mode, the current position

coordinates x [n] and y [n] are rounded to the nearest values of xk1 and yk2 and the

sampled concentration function is reduced at the corresponding indices by a factor of

γ:

C [k1 , k2 , n + 1 ] = γC [k1 , k2 , n] (4.16)

Any position updates due to a run that would lead to a value of x[n] or y[n] outside

the range |x | ≤ xmax , |y | ≤ ymax are prevented. xmax and ymax are set to 90 for the

two-dimensional simulations.

The surface sums from 20 simulations are averaged to calculate an estimate of the

expected amount of remaining substance at time n, as follows:

Savg [n] =
1

20

20∑
i=1

Si [n] =
1

20

20∑
i=1

xmax
50vdt∑

k1=− xmax
50vdt

ymax
50vdt∑

k2=− ymax
50vdt

Ci [k1 , k2 , n] (4.17)

We used C4 (x , y) = (5×10−5)
∣∣∣ sin( 1

4
x) sin( 1

4
y)

1
16

xy

∣∣∣ as the surface, a v of 5 s−1, a tumbling

rotation speed rs of 5π rad/s, and a reduction factor γ of 0.8. Figure 4-31 shows the

obtained average running sum of the surface for the surface biased and unbiased

versions of the random walk.
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82



Bibliography

[1] W. Alt. Biased random walk models for chemotaxis and related diffusion ap-

proximations. J Math Biol., 9(2), 1980.

[2] N. Barkai and S. Leibler. Robustness in simple biochemical networks. Nature,

387(6636), 1997.

[3] S.M. Block, J.E. Segall, and H.C. Berg. Impulse responses in bacterial chemo-

taxis. Cell, 31(1), 1982.

[4] D. Bray, R.B. Bourret, and M.I. Simon. Computer simulation of the phosphory-

lation cascade controlling bacterial chemotaxis. Mol. Biol. Cell, 4(5), 1993.

[5] A. Bren and M. Eisenbach. How signals are heard during bacterial chemotaxis:

protein-protein interactions in sensory signal propagation. J. Bacteriol., 182(24),

2000.

[6] D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. McGraw-Hill,

1999.

[7] Bray D. Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci.

USA, 99(1), 2002.

[8] Y.C. Eldar. Quantum Signal Processing. PhD thesis, MIT, 2001.

[9] A. Ishihara, J.E. Segall, S.M. Block, and H.C. Berg. Coordination of flagella on

filamentous cells of escherichia coli. J. Bacteriol., 155(1), 1983.

83



[10] Segall JE, Block SM, and Berg HC. Temporal comparisons in bacterial chemo-

taxis. Proc. Natl. Acad. Sci. USA, 83(23), 1986.

[11] M.S. Jurica and B.L. Stoddard. Mind your b’s and r’s: bacterial chemotaxis,

signal transduction and protein recognition. Structure, 6(7), 1998.

[12] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598).

[13] J.R. Koza. Genetic programming: A paradigm for genetically breeding popula-

tions of computer programs to solve problems. Technical Report STAN-CS-90-

1314, Stanford University, Computer Science Department, 1990.

[14] R.M. Macnab and D.E. Koshland Jr. The gradient-sensing mechanism in bacte-

rial chemotaxis. Proc Natl Acad Sci U S A, 69(9), 1972.

[15] W.G. Macready and D.H. Wolpert. Bandit problems and the explo-

ration/exploitation tradeoff. IEEE Transactions on Evolutionary Computing,

2(1), 1998.

[16] P. Magni, R. Bellazzi, and G. De Nicolao. Bayesian function learning using mcmc

methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(12), 1998.

[17] C.J. Morton-Firth. Stochastic simulation of cell signalling pathways. PhD thesis,

University of Cambridge, 1998.

[18] C.J. Morton-Firth, T.S. Shimizu, and D. Bray. A free-energy-based stochastic

simulation of the tar receptor complex. J. Mol. Biol., 286(4), 1999.

[19] S. Mueller, J. Marchetto, S. Airaghi, and P. Koumoutsakos. Optimization based

on bacterial chemotaxis. IEEE Trans. on Evolutionary Computation, 6(1), 2002.

[20] J. Pallotta and L.G. Kraft. Two dimensional function learning using cmac neural

networks with optimized weight smoothing. Proceeding of 1999 ACC, 1999.

84



[21] L.R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 1989.

[22] J.-M. Renders and S.P. Flasse. Hybrid methods using genetic algorithms for

global optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part

B, 26(2), 1996.

[23] M.R. Said. Signal Processing in Biological Cells: Proteins, Networks, and Mod-

els. PhD thesis, MIT, 2005.

[24] M.R. Said, A.V. Oppenheim, and D.A. Lauffenburger. Modeling cellular sig-

nal processing using interacting markov chains. Proc. Int. Conf. on Acoustics,

Speech, Signal Processing (ICASSP), 2003.

[25] A.C. Singer, A.V. Oppenheim, and G.W. Wornell. Detection and estimation

of multiplexed soliton signals. IEEE Transactions on Signal Processing, 47(10),

1999.

[26] P.A. Spiro, J.S. Parkinson, and H.G. Othmer. A model of excitation and adap-

tation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 94(14), 1997.

[27] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65–85,

1994.

[28] G.W. Wornell. Signal Processing with Fractals: A Wavelet-Based Approach.

Prentice Hall, 1996.

[29] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9),

1999.

85


