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A Framework for Quality Versus
Efficiency Tradeoffs in STFT Analysis

S. Hamid Nawab and Erkan Dorken

Abstract—A framework is presented for increasing the computational
efficiency of STFT analysis by sacrificing the quality of each signal
frame’s DFT in terms of SNR, frequency resolution, and frequency
coverage. The resulting algorithms are dominated by a frame-adaptive
vector summation process designed to ensure that the number of additions
per frame does not exceed any desired limit.

1. INTRODUCTION

High-speed evaluation of the short-time Fourier transform (STFT)
[1] often involves fast algorithms for computing the discrete Fourier
transform (DFT). A prominent feature of most of these algorithms
is that their outputs are error-free DFT’s of their inputs, except for
the effect of finite-precision arithmetic. In contrast, the Poorman’s
transform [2] achieves computational efficiency at the expense of
error in the DFT samples, even when infinite-precision arithmetic
is used. The algorithm definition in this case requires the use of
highly approximate values for the complex exponential coefficients
multiplying the signal values in the DFT formula. Our framework
for DFT-based evaluation of the STFT also yields algorithms that
produce error in the DFT points in order to achieve computational
efficiency. However, our approach involves the application of coarse
quantization to signal values instead of multiplier coefficients. Most
importantly, this framework leads to the formulation of techniques
for systematically reducing output quality in order to ensure that the
number of arithmetic operations per DFT does not exceed a specified
limit.

Although efficient computation of the DFT plays a central role
in our framework for STFT analysis, it is important to observe that
certain aspects of the framework depend critically on the fact that
the DFT computations are embedded within the STFT. For example,
in some cases, it is possible to exploit the overlap between adjacent
signal frames to gain additional computational efficiency. Another
important consequence of the STFT context is that our framework
can be used to design techniques for frame-adaptive reduction of
output quality in order to keep the amount of computation per DFT
below a specified threshold.

II. BASIC THEORY

Let us consider the discrete STFT based on a causal analysis
window w(n) whose length is N,. If the temporal decimation
interval is denoted by the integer L, the mth N-point DFT (N > N,,)
in the discrete STFT of a signal z(n) may be defined as

mL—Ny+N
nzml,X—:NwH
k=0,1,---,N—1

XmL(k) = —j(?ﬂ'/N)kn;

Zmr(n)e

ey}
where Zmr(n) = z(n)w(mL — n) is the mth signal frame.
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Our approach to the evaluation of the STFT is based on first
performing a backward differencing operation on each signal frame
to obtain
Zmr(n) — Zmr(n+ N - 1)

forn=mL—- N, +1
Zmr(n) — Tmr(n — 1)
formL— Ny +1<n<mL—-Ny,+N

gmr(n) =

)]
It can then be easily shown that
mL—Ny+N
Xor(®)= Y, gmi(m)Wa(k)
a=mL—N,+1
k=1,---,N/2 3)
where
o327/ N)kn
Wak) = (m) @

The expression for X,z (k) in (3) has the form of a DFT whose mul-
tiplicative coefficients have been modified. Because of the backward
differencing operation, this expression is not valid at k = 0. However,
the dc. component is not of practical interest in many applications.
We have also excluded the values of k greater than N/2 under the
assumption that the signals of interest are real.

Suppose the samples in the signal frames .,z (n) undergo a Q-
level quantization. The quantized frames =&, (n) can be used to
obtain an “approximate” STFT:

mL—Ny+N
nzmgN w1
k=1,.--,N, / 2

X2,k = 92 L (MWa(k);

(&)

where g2, (n) is obtained by applying the backward differencing
of (2) to :rg (n). For brevity of presentation, we will assume that
the quantization is based on a rounding technique and that @ is an
odd integer. This type of quantization results in one zero-valued level
(@—1)/2 negative levels and (Q—1)/2 positive levels. It follows that
each sample in a differenced frame g,?t 1 (n) takes on one of 2Q - 1
possible values. The expression in (5) for Xf,f (k) can be viewed
in terms of a vector-summation operation performed among column
vectors. Let X<, be an (V/2)-point column vector in which the
kth element (1 < k < N/2) is X2, (k). In addition, let W, denote
an (N/2)-point column vector whose kth element (1 < k < N/2)
is the multiplicative factor W (k). It should be noted that there are
only N unique vectors of the form W, because W, (k) is periodic
in n with a period of N. Equation (5) can now be rewritten as
mL—Ny+N

D

n=mL—Ny+1

X2, = 92 L ()W ©®

Noting that there are only (2Q— 2) distinct nonzero values that
can be taken up by any sample of 93 1(n), the right side of (6)
may be viewed as a vector summation of prestored scalar multiples
each of W,,. This summation process is illustrated in Fig. 1 for the
eight-point DFT of a four-point frame = (n).

The quality of the approximate STFT may be measured in terms of
its error with respect to the exact STFT. When the highest magnitude
within a frame is A and the number of quantization levels is @,
we divide the amplitude range from —A to A into @ uniformly
spaced regions. The quantization levels are located at (24n/Q) for
-(Q@-1)/2 < n < (Q -1)/2. If z(t) is a zero-mean white
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Fig. 1. Number of nonzero samples (N, ) obtained after three-level quantiza-
tion and backward differencing of sinusoidal frames with different frequencies.
The curve joining the points marked with o’s represents the results for frames
of length 128 samples, whereas the curve joining the points marked with +’s
depicts the results for 64-sample frames.

noise signal with a uniform distribution between —A and A, the
SNR for its quantized version can be shown to be 10 log (Q?).
For practical implementations, it is generaily desirable to keep Q
very small since the storage requirement for the vectors of scaled
multiplicative coefficients is O(QN?). In our experiments with the
evaluation of the approximate STFT, we have used the values 3,
5,7, and 9 for Q. They result in SNR’s of 9, 14, 17, and 19 dB,
respectively.

Keeping the number of quantization levels small is also advanta-
geous for reducing the number, which is denoted by N,, of vector
additions needed for evaluating an approximate STFT frame. The
value of N, is equal to the number of nonzero samples in g© (n).
When Q is small and ©mz(n) is a slowly varying signal, 95.(n)
has significantly fewer nonzero samples than :cS, (n).

On the basis of an experimental study [3], we have obtained a
quantitative model for estimating the number of vector additions
(V) needed in the evaluation of Xg £ (k), where the approximate
STFT corresponds to a Q-level frame quantization. At a qualitative
level, our model indicates that the number of vector additions is
most sensitive to the highest energy regions of the frame spectrum.
To examine the detailed model, let us consider a signal frame
z(n) obtained by windowing a linear combination of sinusoids. In
particular, suppose that z(n) is given by

M
z(n) = Z Apsin(2n fon + 6,);

p=1

0<n<N,-1 @)

Our model states that the number of vector additions needed for the
mth frame in the evaluation of X 2 (k) may be approximated by
the following expression:

M 2

Ny = E MAP
p=1 ZA:L:

r=1

o fp) ®)

where o(f) is an experimentally determined function that specifies
the mean value of N, for frames obtained by windowing single
sinusoids of normalized frequency f. The expression in (8) was
obtained by first experimentally determining the function a(f) and
then comparing it with the actual number of additions obtained for
frames with arbitrarily chosen frequency content.
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Fig. 2. Exclusion of vector elements from the vector-summation process.
The columns of dots represent the N/2-element vectors gz 1 ()W, which

have to be summed to obtain Xﬁ 1 (k). Time-narrowing (loss of frequency
resolution) takes place when the vector-summation process is restricted to
region A. Restricting the vector-summation process to region B results in
frequency narrowing and consequently loss of frequency coverage. The type
of narrowing depicted by region C results in loss of frequency resolution but
no loss of frequency coverage.

As an example of the experimental formulation of the function
a(f), we considered the case where the frame length (N,,) is 128
and the number of quantization levels (Q) is 3. The argument of o(f)
was considered for a range of 60 values: 0.5k/60 for 1 < k < 60.
For each of these values of f, we generated 20 frames according to
the formula

_ [sin(2rfn+80) for0<n< N, -1

a(n) = {0 otherwise , ®
where the value of 6 was selected independently for each frame
through the use of a random number generator. After performing
three-level quantization and subsequent backward differencing on
each frame, we calculated the number of nonzero samples N,
in the result. The mean of these 20 numbers is displayed as a
function of frequency by the diamond (o) marks in Fig. 2. We
observe that this data can be segmented into three regions (for an
explanation, see [3]), each of which may be modeled by a straight
line with a different slope. The boundaries between these regions are
approximately located at 0.1 and 0.4 cycles/sample. We calculated
the standard deviation (averaged across frequency) of the number
of nonzero samples per frame to be approximately 0.6, 4.7, and 3.8
nonzero samples for the low-, middle-, and high-frequency regions,
respectively. The boundaries between these regions remain invariant
at other frame lengths, as is illustrated by the experimental data
plotted using + marks in Fig. 2 for the case of 64-point frames.
The standard deviation of the data in each region is approximately
half of that obtained for 128-point frames.

III. FRAME-ADAPTIVE APPROACHES

When the number of additions (as determined by the N, measure-
ment) required by the vector-summation in (6) exceeds the desired
limit B, frame-adaptive approaches may be utilized to sacrifice
frequency resolution, frequency coverage, or some combination of
the two in proportion to the number of additions that have to be
climinated. Furthermore, the reduction of frequency coverage can be
designed to be sensitive to the frequency content of the corresponding
frame.

The loss in frequency resolution or frequency coverage results
from the exclusion of a subset of vector elements from the vector-
summation process. As an illustration, consider the situations depicted
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Fig. 3. Comparison of the exact and the approximate STFTs corresponding to a violin playing a sequence of two notes. Approximate STFTs were calculated
using the hybrid narrowing approach with minimum frequency coverage constraint set to 2000 Hz. The plot in part (a) corresponds to the exact STFT. Plots
in (b), (c), and (d) correspond to approximate STFTs with arithmetic complexity relative to that of a pruned FFT restricted to 50, 25, and 12.5%, respectively.

in Fig. 3. Each column of dots represents for a particular value of
n an N/2-element vector g,?, £ (n)W .. Such vectors are summed in
accordance with (6) to obtain X 3 1, for the mth signal frame. When
the vector-summation process is restricted to region A in Fig. 3, the
“time narrowing” (complete exclusion of vectors for particular times)
results in a loss of frequency resolution. When the vector-summation
process is restricted to region B in Fig. 3, we say that “frequency
narrowing” (exclusion of a proper subset of each vector’s elements)
has taken place. In the case of region B, X 3 1, is computed only
for a subset of the frequency range (loss of frequency coverage) but
without any loss in frequency resolution. On the other hand, region C
depicts a type of frequency-dependent time narrowing, which results
in loss of frequency resolution but no loss of frequency coverage.

Our approach to frame-adaptive exclusion of vector elements
always excludes zero-valued vectors from the summation process.
Clearly, there is no loss of output quality due to such exclusions. Let
us assume that for the mth frame, there are N, vectors remaining
after the exclusion of zero-valued vectors. Since each vector is
N/2 elements long, and in general, each element is complex, the
unrestricted vector-summation process for the mth frame requires
N x N, real additions. The need for utilizing time narrowing andfor
frequency narrowing arises only if B< N x N,,.

In the case of frequency narrowing, it is usually desirable that
the restricted frequency coverage be centered around a frequency

component with significant energy. We have devised a heuristic
[3], [4] for the frame-adaptive selection of the “center frequency.”
This involves measuring the number of nonzero samples in g2 ; ()
and mapping it to a corresponding frequency in accordance with a
monotonic curve used to model the data in Fig. 2. Although this
technique is not guaranteed to give the best results in all situations,
its practical utility is illustrated in the example to be presented in
Section VI.

We have also devised a “frequency reversal” technique to help re-
duce the number of additions required whenever a frame is dominated
by high-frequency energy. For each quantized frame mg L(n), we
compute its backward difference g (n) as well as &, (n), which is
the backward difference corresponding to 78, (n) = (—1)"z%, (n).
Vector summation (with frequency and/or time narrowing) is then
applied to the differenced sequence with the smaller N,. If 32 L(n)
is selected (which would be the case if zmz(n) is dominated
by frequencies above 0.25 cycles/sample), vector summation yields
R, (k), and XZ, (k) is obtained as [R2, (N/2 — K)]* for 1 <
k < N/2-1.

IV. FRAME OVERLAP

Further computational savings may be obtained in the evaluation
of the approximate STFT when the analysis window is rectangular
and there is overlap between consecutive signal frames. For example,
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consider the case of half-window overlap. Let 2,,.1. () = ymr(n) +
hmi(n), where

Zmr(n) formL— N, +1
Ymr(n) = { <n<mL-(N,/2) (10)
0 otherwise
and
Zmr(n) for mL + (N, /2)
hmr(n) = { +1<n<mL (11
0 otherwise.

Then, the two signals ymz(n) and k.1 (n) are processed individually
to form their quantized and backward differenced versions 4%, (n)
and 713 1 (n), respectively. The approximate transform corresponding
to the mth frame then can be calculated as
mL—(Ny/2)
n=mLZN1,,+l
mL
>
n=mL—(N, /2)+1
k=1,---,N/2.

X2, (k) = §2 L (M)W (k)

A3 L ()Wa(k)

(12)

Let us denote the first sum with Y,%, (k) and the second sum with
HZ, (k). Since, for the next frame, F(int1yz (n) is equal to RE, (n),
the short-time transform for this frame can be calculated as

X(?n-}-l)L(k) = HSL(I") +H(‘3,.+1)L(k)- 13)
By saving HZ, (k) for every frame, the short-time transform for
the next frame can be calculated by performing operations only
on the second half of that frame. This reduces the number of
additions by approximately a factor of 2. The number of extra addition
operations required to evaluate (13) is negligible compared with the
number of additions saved on the basis of half-frame overlap between
consecutive frames.

V. QUANTIZATION OVERHEAD

We now consider the computational costs associated with frame
quantization. In particular, we illustrate a procedure for frame quan-
tization that is dominated by arithmetic operations. Furthermore,
in comparison with the FFT-based evaluation of a frame’s DFT,
the number of arithmetic operations in our quantization procedure
is smaller by more than an order of magnitude. In contrast, the
number of additions in the unrestricted vector summation process
can be as large as or, in some cases, greater than the number
of arithmetic operations involved in an FFT-based evaluation of a
frame’s DFT. Consequently, as compared with frame quantization,
the vector summation process provides a much larger playing field
for improving the computational efficiency of the approximate STFT.
However, the cost of frame quantization becomes a more significant
factor as the bound B begins to approach values that are an order of
magnitude smaller than the FFT’s arithmetic cost.

We have used the rounding technique for frame quantization into Q
uniform levels. This involves the assignment of each frame sample
to a quantization level of value 2A,,n/Q, where A, is a frame-
dependent parameter, and n is the level number that can take on one
of @ different integer values. We calculate the value of A, in terms
of the rms value of the samples in a frame, that is

mL 1/2

An=VEg= S

w n=mL—Ny+1

(14)

The /2 scale factor ensures that for a pure sinusoid, the value of A,,
is the same as the peak amplitude of the sinusoid. Each sample value
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TABLE 1
RATIO OF THE ARITHMETIC COMPLEXITY FOR THE QUANTIZATION PROCEDURE
(4N, OPERATIONS) TO THE ARITHMETIC COMPLEXITY OF A PRUNED N-POINT
FFT ALGoRITHM (N/2log (N,,) OPERATIONS). THE RATIOS ARE
CALCULATED FOR (N, N) PARS SUCH THAT N > 2N,,.

N=128 | N=256 | N=512 | N=1024
N,=64 0.06 0.03 0.015 0.0075
N,=128 * 0.05 0.025 0.0125
Ny=256 | * * 0.05 0.025
N,=512 * * * 0.044

may be divided by 24, /Q and rounded to the nearest integer in
order to determine the corresponding level number. To ascertain the
computational cost of this quantization procedure, we note that the
calculation of A, requires N,, squaring operations and N,, addition
operations. The assignments of level numbers to all the frame samples
requires a total of N,, divisions and N,, rounding operations. We
conclude that the complexity of the quantization procedure is on the
order of 4V,, arithmetic operations. In Table I, we have tabulated the
ratio of the arithmetic complexity for the quantization procedure to
the arithmetic complexity (NV/2)log(NN.) of a pruned N-point FFT
algorithm. It is observed from the table that for various values of N,
and N, this ratio is significantly lower than 0.1.

VI EXAMPLE

Our example corresponds to a 16 000-point signal obtained by
sampling at 8 KHz the sound of a violin playing a sequence of two
notes. We performed exact and approximate STFT analysis with a
128-point rectangular window, a DFT size of 256, and a decimation
interval of 64. Using a time-pruned FFT algorithm [5], the exact STFT
(displayed in Fig. 3(a)) required 8960 real arithmetic operations!
(40% multiplications) per frame. The rest of Fig. 3 corresponds to
various STFT approximations based on three-level quantization and
utilizing time and frequency narrowing with minimum frequency
coverage constrained at 2000 Hz. For parts (a)—(c), the number
of additions per frame relative to the total arithmetic complexity
(including the number of multiplications) of the FFT were restricted
to 50, 25, and 12.5%, respectively. Observe that the highest energy
harmonics are always captured (a result of the “frequency centering”
technique), and frequency resolution begins to decrease once the
2000-Hz constraint on frequency coverage is reached.
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