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ABSTRACT

In this paper, the class of stochastic resonance systems
based on M-level quantizer maps is developed. We derive
expressions for the output invariant density and autocor-
relation function of these maps when they are driven by
a square wave in noise. These systems are shown to pro-
vide signal-to-noise ratio enhancement and robustness to
noise characteristics. These properties render the quantizer
maps potentially appealing for a wide range of signal pro-
cessing applications such as interference suppression and ro-
bust communication. A framework for the analysis of more
general discrete-time stochastic resonance systems is also
precented, which is based on approximating these systems
via quantizer maps.

1. INTRODUCTION

Stochastic resonance is a phenomenon encountered in cer-
tain bistable nonlinear systems (i.e., systems with two sta-
ble points) when driven by a periodic signal in noise. Specif-
ically, for certain signal strength levels, and in the absence
of noise (or at small noise levels) the system output shows a
small-amplitude oscillation, while remaining in the vicinity
of a particular stable point. As the noise level is increased,
however, a regular large-amplitude oscillation of the output
between the two stable modes occurs at the period of the
drive. Naturally, these systems often display an enhance-
ment of output signal-to-noise ratio (SNR) in a given input
SNR regime. For this reason, such systems are appealing
candidates for use in a variety of engineering contexts. In
terms of signal analysis, such systems constitute potentially
useful models for natural phenomena such as the regularity
of appearance of earth’s ice ages [1], as well as for detection
mechanisms in certain species, such as predator sensing by
crayfish [2]. In terms of signal synthesis, the induced SNR.
enhancement renders them attractive in a number of ap-
plications in signal communication and processing, such as
robust communication and interference suppression. In or-
der to exploit the phenomenon of stochastic resonance in
such applications, there is a need for tools to analyze these
systems in the presence of various forms and degrees of dis-
tortion.

Several aspects of continuous-time systems exhibiting
stochastic resonance have been explored in the literature;
see e.g., [3] [4]. A variety of heuristic algorithms have also
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been proposed for using stochastic resonance systems as de-
tection devices in backgrounds of additive, stationary white
Gaussian noise given varying degrees of a priori informa-
tion; see e.g., [5] [6]. However, many of the characteristics
of such systems are not well understood.

In this paper, we focus our attention on the class of
first-order, discrete-time systems whose dynamics are gov-
erned by an M-level quantizer. For noisy periodic inputs,
we derive analytic expressions describing the evolution of
the output probability distribution as a function of time
and the output autocorrelation function, which are impor-
tant quantities for evaluating the degree of stochastic reso-
nance exhibited by these systems. The system correspond-
ing to M = 2 is the discrete-time counterpart of a Schmitt
trigger device, which has been shown to exhibit stochas-
tic resonance behavior [6] [7]. For this map we also derive
in closed-form the phase-averaged autocorrelation function.
This function conveniently decomposes into signal and noise
components, suggesting a natural definition for the output
SNR. The analysis of the systems for M == 2, in turn, leads
to a method for solving for the autocorrelation function
of the output for M > 2, which we explore. The class
of systems based on M-level quantizers capture the rich
structure and important features of more general stochas-
tic resonance systems, and they are potentially important
in a range of signal synthesis applications. Furthermore,
this class of systems can be used to approximate to arbi-
trary accuracy any of a much broader class of stochastic
resonance systems, governed by continuous maps. As an
example, we obtain the output invariant density for a map
governed by a continuous function, which is the discrete-
time counterpart of a well-known bistable continuous-time
system exhibiting stochastic resonance.

2. M-LEVEL QUANTIZER MAPS DRIVEN BY
PERIODIC SIGNALS IN NOISE

The sequences y[n] of interest in this work are generated
according to the following one-dimensional dynamics

yln +1] = F(y[n] + z[n]) , (1)

where z[n] is a drive signal, and F(-) is an M-level uniform
quantizer. Typically, F(-) is an approximation of a smooth

function F(-). The quantizer map F(-) can be conveniently
described in the form

F)= 3 Yela @), @
=0

£
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where Ia(+) is the indicator function on A, Ay = (X, Xe41]
for 0 < €< M -1, and Ay-1 = (Xm-1,00), and where
the Y;’s are the quantizer levels, satisfying Yz < Yp4q, for
all £. We also restrict our attention to functions F(-) that
are odd, so that the analysis presented in this paper ap-
plies to approximations of any odd bistable or multi-stable
mappings F'(-). For the remainder of this paper, unless we
specify otherwise, we will be considering F'(-) corresponding
to the piecewise-linear soft-limiter map

Py = 1% lz| < L/vy
Fle)= Lsgnz otherwise.

In this case, the quantizer level spacing is given by § =
2/(M — 1), the quantizer levels are given by Yy = L(¢6 — 1)
for 0 < €< M,and X¢e = L[(£~1/2)6 —1]/yfor 1 £ £<
M, Xo = —co. Without loss of generality, we restrict our
attention to the case L = 1.

We assume throughout that the mappings of interest
are driven by a periodic signal in noise, ¢.e.,

a[n] = s[n] +wn], ®3)

where s[n| is a period-N signal and w(n] is an i.i.d, evenly-
distributed noise sequence. The output y[n] of system (1)
with F(-) given by (2) and driven by z[n] in (3) has a
first-order probability density that is time-varying in n.
A particularly useful representation for y[n] generated by
the system (1) driven by z[n] in (3), is based on the two-
dimensional equivalent model

F(y[n] + 9(8[n)) + win]) (42)
Oln} + wo , {(4b)

yln +1]
On+1] =

where g(-) is a 2m-periodic function, and w, = 27/N. In
this paper, we focus on the case where s[n] = g(f[n]) is a
discrete-time square wave of amplitude A, i.e.,

-A —7<0<0
s ={ " Ji5i%! (5)

and 6[0] is uniformly distributed in (—m,7]. Via this for-
mulation, the invariant density for y[n] corresponding to (4)
can be used to obtain the sequence of densities for mappings
of the form (1) as a function of n.

3. INVARIANT DENSITY FOR QUANTIZER
MAPS

In order to compute the output statistics of systems of the
form (4), the invariant density of the pair (y,8) is required.
This distribution can be subsequently used to obtain the
periodic sequence of densities of y[n] corresponding to the
one-dimensional map (1) driven by a square wave, where
0[0] is known.

Proposition 1 Consider the map (4) with F(-) given by (2)
and g(-) given by (5), and let B(0) denote the M x M prob-
ability transition matriz for the output, i.e.,

[B(G)L»J = py[n+1]]y[n],6’[n](y[n+1] = Kly[n] =

Let p;[n] = p(Yi,won), where p(y, ) is the invariant density
for the map (4). Then for M > 2:

Y;,0[n] =0) .

<
x (6)

where A1 > A2 > --- > Am are the eigenvalues of B(0)
(B(x)), the k;’s (k;’s) are the associated eigenvectors of
B(0) (B(r)) suitably scaled, and ki ; = [k;]: (ki; = [kj]:)-
In particular, for M = 2, we have \1 = 1, A2 = 1—2 a;(0)
and

k11 =cen(0),

m2—cmmm—axwva+xwﬁ
k11 =caa(nm), N/z

k12 = —k1,2);

where ¢ = (2n(1 — X2)) ™}, and a;(8) = [B(6)h1-:4, denotes
the escape probability from state Y; as a function of 0.

Proof: Clearly, A1 = 1 since B(f) is a probability

transition matrix. Next, using Gr{-} to denote the density
evolution operator for the system (4), we have

Pyint1],6(n+1) (¥, 9)
= Gr{pym1 o) (¥, 9)}

=" Py, 0-wo) pyimiom(k, 0-wo) — (7)
k

where P(y; k,0) = pyfni1)jyin,om1(ylk, 0) is the kernel asso-
ciated with Gp{ }, and

=Pr [(wln] +k+9(6)) € F({y})] -

Let q(8) = [p(Yo,0), p(¥1,0), --- , p(Ym-1,0)]". By N
recursive applications of (7), we obtain

4(0) = B(9) a(9) ®)

5 T
where §(0) = [a(0)T, a(0—w,)", -+, a(0—(N—1)wo)"]",
and where the (k, j)-th M x M block of B(#) is given by

{ B(0 — kw,)

P(y; k,0)

ifk=j+1mod N

[B(e Tk = otherwise. o)

‘It follows readily from (5) that

2
ogel,ag<]—v75

which implies that q(#) is piecewise constant. We need only

B(91 - kwo) = B(92 - lcwo) Vk,

consider q E q(0) since it contains one sample from each
constant segment of q(#). Henceforth, whenever 6 = 0, the
0-dependence will be omitted with no risk of confusion.
We first consider the system corresponding to M = 2.
In this case (8) reduces to a system of N linear equations.
Specifically, let [p(6)]x = p(1,8 —(k —1)w,). We have

p(0) = D(9)p(f) + b(0) (10)
where [b(0)]x = a1(8 — (k — Dwo)/(27),
DOk = { 8(0 —kw,) ifk=j+1mod N

otherwise,

and d() = 1-3 . 0:(0), where a1 (8) = Pr[w[n] > 1+g()].
Using (5) and since w(n] is i.i.d. and evenly-distributed, we
obtain that «;(8) is two-valued for each 7 and that d(6) =
d(0) = X2. From this and (10), we obtain (6) for M = 2.

The proof for M > 2 is similar. Here we assume for
pi[n] the form specified by (6) and show how the k; ;’s are
determined. We can readily show that k; = ¢;v;, where
v; is the eigenvector associated with A;; and the ¢;’s are
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Figure 1: Output invariant density for a quantizer map
(M = 20) driven by a noisy square wave.

scalar constants, by substituting the expression in (6) for
§(0) in (8) and setting the coefficients of A; equal for each j.
The condition 17k; = 1/(2n) (1 is a column vector of 1’s)
gives ¢1 = (2r17v;)™. The boundary condition at n =0
and the symmetry condition p(Y;, 8) = p(~Y;, §—=) provide
the remaining c;’s. Specifically, let B = VAV~ denote the
eigenvalue decomposition of B, and I denote the M x M
permutation matrix with ones on the main anti-diagonal.
Then, the vector {c : [c]; = ¢;} is the eigenvector of the
matrix V — TVA~Y/2 associated with its zero eigenvalue.
Eqn. (6) can be readily verified by substituting for each
entry of § in (8) the appropriate expression from (6). m

Shown in Fig. 1 is the invariant density of the output
of a quantizer map with M = 20 and v = 1, driven by a
square wave of amplitude A = 0.4 and period N = 100, and
where w[n] is white normally-distributed with g2 = 0.16.
Note that the distribution for any particular value of y = Y,
as a function of § is piecewise constant, and takes one of
two values, except for the short transient in the transition
regions,

M-level quantizer maps can be used to approximate a
wide class of bistable and multi-stable systems. As an ex-
ample, we consider the system (4), where F(-) is a quantizer
approximating the following map

Fy) =Q+ey—e®

with ¢ = 0.08. The system is driven by a square wave
with A = 0.03 and N = 1000, in white Gaussian noise of
variance o2, = 0.01. The solid and dotted curves in Fig. 2
correspond to the limiting state densities as a function of
y, for s[n} = A and s[n] = —A, respectively. The map Fe(-)
has two stable fixed points. In the absence of noise, s[n]
cannot induce a transition from one stable fixed point to the
other. However, as Fig. 2 reveals, noise causes the output
of the map to follow the drive with very high probability.
This is the essence of stochastic resonance.

The resulting density function was obtained by approx-
imating F,(-) with uniform quantizers of successively larger
values of M until sufficient convergence was achieved. The
map F.(-) arises by uniform sampling of y(t) and approx-
imating the derivative with a forward difference, of the

Figure 2: Limiting output state densities for a bistable map
driven by a noisy square wave.

continuous-time bistable system ¢ = y—y>, a widely studied
system exhibiting stochastic resonance.

4. OUTPUT SNR FOR QUANTIZER MAPS

The notion of input SNR is well-defined for a period-N
square wave signal in i.i.d. finite-variance noise. For normally-
distributed noise, such a notion of SNR naturally relates to
the probability of detection for an optimal detector. One of
the commonly used notions of output SNR of a map in the
context of a periodic drive is based on comparison of the
signal power and noise power spectral density at the funda-
mental frequency w, = 2/N. We obtain the output SNR
for the quantizer maps for M = 2 through the autocorrela-
tion function of the output by separating it into signal and
noise components.

Proposition 2 Consider the map (4) where F(-) is given
by (2) for M = 2, g(-) is given by (5), and win] is an
i.43.d, evenly-distributed noise sequence. The phase-averaged
autocorrelation of the output y[n] can be decomposed into
periodic (signal) and aperiodic (noise) components, i.e.,

Rln] = Rsfrn] + Raln] -
The component Rg[n] is N-periodic, specifically
4 O n -—|n
Rsln] = Cs(1 = lnf) + 2 (5 = X727 (1)
for —=N/2 < n < N/2, where

LGB g Metd)
G OTEET Ty

The aperiodic component is given by Rn[n] = C'n/\lz,“| , where

B + 62 Bi=B)21 = 2" )
Ch = - .
n=4 (1 (1= A2)? +2(1-,\2)3(1+,\2)(1-,\;V/Z)

We note that for large N (i.e., N > 4(A2+2)/(1—)3)), the
second term in (11) is negligible, and the resulting Rs{n]
approximates the autocorrelation function of a period-N
square wave of amplitude v/Cs.

Proof: Using an approach analogous to the one used to
obtain (8), we can write an equation for the autocorrelation
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Figure 3: Noise and signal components of the phase-
averaged autocorrelation function for the output of a quan-
tizer map (M = 20) driven by a noisy square wave.

function for the systems corresponding to M = 2 given a
particular value of 6, i.e.,

¥[n; 6] = T"(6) 4(9)

where T(6) is given by the right hand side of (9), with B(6)
replaced by T(6), where [T(8)];,; = [B(0)}:,; Vi Y;. Since
F[n; 0] is constant over segments of length 27 /N,

2w 1. 2 Tpen o

R[n] = WlTr[n; 0= —ﬁlTTﬂq . (12)
The form of T implies that it has N eigenvalues uniformly
spaced on the unit circle, while the rest are uniformly spaced
on a circle of radius A2 < 1. The periodic component of R[n]
is associated with the unit-magnitude eigenvalues. It is con-
venient to separate the A;- from the A2-magnitude eigen-
values by setting T = Ts+ Tn, where Ts, Tn are obtained
from T, by setting to zero all As-, Ai1-magnitude eigenval-
ues, respectively. Then, R[n] = Rs[n] + Rn[n], where Rg[n]
(Rn[n]) are given by substituting Ts (Tn) for T in (12).
Since TZ is N-periodic, Rs[n] is also. It is convenient to
view TZ as a matrix composed of 2 x 2 blocks; the k-th
block row has all zero blocks except the (n + k) mod N-th
block, whose columns are both equal to q(—27k/N). Us-
ing this property and (6) for M = 2, we obtain (11). The
aperiodic component, Rn[n], can be similarly computed by
considering the eigenvalues of magnitude 2. m

It is worth noting that via this result we can readily de-
rive certain higher-order statistics for the map correspond-
ing to M = 2. In particular, since y™[n] = 1 for even m,
the higher-order statistics & [y""[n]yl [k]] are given in terms
of the first- and second-order statistics of the process.

Via a generalization of Proposition 2, we may also ob-
tain the autocorrelation function for M > 2 [8]. In Fig. 3 we
plot the noise and signal components of the phase-averaged
autocorrelation function for the system corresponding to
M = 20, v = 1, driven by a square-wave of amplitude
A = 0.4 and period N = 100, in white Gaussian noise of
variance o2, = 0.16. Note that, as N becomes large, the
coherent component Rs[n] approaches the autocorrelation
function of a square wave, i.e., a triangular wave.

SNR Gain (dB)

-5

° Input SNR (dB) °

Figure 4: SNR gain based on power spectra for a quantizer
map (M =2).

A natural notion of signal-to-noise ratio gain for these
one-dimensional systems is readily suggested by the above
decomposition of the output autocorrelation function. Us-
ing this measure, in Fig. 4 we plot the SNR gain for the
system corresponding to M = 2 driven by a square-wave
of period N = 1000 for various amplitude levels as a func-
tion of input SNR. In particular, input and output SNR
levels are computed as ratios of the respective coherent to
noise power spectral density at the fundamental frequency.
It is interesting to note that the SNR gain is positive for a
fairly wide input SNR range. The gain reduction at high
input SNR can be easily justified; the noise level is not high
enough to push the output over the short transition barrier
between the two stable points. The relationship of this SNR
gain to other quantities of interest that arise naturally in
signal processing applications is explored in [8].
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