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ABSTRACT

Bacterial chemotaxis refers to the locomotory response of bacteria to
chemical stimuli, where the general biological function is to increase
exposure to some substances while reducing exposure to others. In
this paper, we introduce an algorithm for surface mapping based on
a model of the biological signaling network responsible for bacterial
chemotaxis. The algorithm tracks the motion of a bacteria-like soft-
ware agent, referred to as a bacterial agent, on an objective function.
Results from simulations using one- and two-dimensional test func-
tions show that the surface mapping algorithm produces an informa-
tive estimate of the surface, revealing some of its key characteristics.
We also present a modification of the algorithm in which the soft-
ware agent is given the ability to reduce the value of the surface at
locations it visits (analogous to a bacterium consuming a substance
as it moves in its environment) and show that it is more effective
in reducing the surface integral within a certain period of time than
a bacterial agent lacking the ability to sense surface information or
respond to it.

Index Terms— biological control systems, estimation, biologi-
cal system modeling

1. INTRODUCTION

Many algorithms draw their inspiration from phenomena in nature.
Examples include genetic algorithms, simulated annealing, and ar-
tificial neural networks. In a similar spirit, this paper explores the
possibility of exploiting the ability of bacteria to seek out higher or
lower concentrations of certain substances, referred to as chemotaxis
[1], for the problem of surface mapping. In particular, we are inter-
ested in estimating a function where no direct access to any values of
the function is possible, i.e. none of the function values are globally
available. This is in contrast to many machine learning applications
where an algorithm attempts to learn a function from examples, i.e.
from knowledge of the values the function takes at a limited number
of points in the function domain [2]. The surface mapping algo-
rithm proposed in this paper tracks a software agent which simulates
a model of the biochemical network that controls chemotaxis as it
explores the domain of the function of interest and samples it lo-
cally. The algorithm estimates the unknown scalar-valued function
by tracking the movement of the software agent. This is formulated
by analogy to the way a bacterium, such as E.coli, travels in an en-
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vironment where the concentration varies as a function of spatial
coordinates.

Bacteria move in their environment in an informed way, seek-
ing higher concentrations of attractants and lower concentrations of
repellents [3]. Their movement is characterized by two modes of
operation: runs and tumbles. Runs correspond to periods of smooth
forward swimming and are induced by a counterclockwise rotation
of the bacterium’s helical tails (motors) referred to as flagella. In
contrast, tumbles correspond to random re-orientations of the cell
direction with little or no displacement and occur when the flagella
turn clockwise [4]. E.coli bacteria have about 5 to 10 flagellar mo-
tors per cell [3]. The movement of an E.coli cell in its environment is
characterized by runs interrupted by tumbles. At a high level, E.coli
motion can be modeled as a biased random walk where the cell com-
pares external environmental conditions at different time instances
and adjusts its swimming behavior accordingly. If an increasing at-
tractant concentration is sensed, tumbling is suppressed and the cell
is more likely to move further in that favorable direction. If a de-
creasing attractant concentration is sensed, tumbling is favored and
the cell tends to turn away from that direction.

The protein network underlying E.coli chemotaxis is one of the
most well-studied signaling pathways in cell biology. A mechanistic
model of the protein network underlying bacterial chemotaxis was
recently proposed using a framework referred to as Markov modu-
lated Markov chains [5]. This framework allows modeling at mul-
tiple resolutions by simultaneously studying the fluctuations of sig-
naling pathways (stochastic behavior) and computing their average
behavior. In the context of bacterial chemotaxis, it allows a more
detailed simulation of bacterial motion capturing some of the richer
behavior such as adaptation (the process by which the bacterial re-
sponse adapts back to its pre-stimulus response after a sustained con-
stant stimulus). We therefore use the Markov modulated Markov
chains model as a basis for the bacterial algorithm presented here.
Note that the main goal in this paper is to develop a surface mapping
algorithm based on a chemotactic strategy, and that the biological
model is used towards this end.

In the next section, we describe the surface mapping algorithm
by specifying the software agent and describing how it moves to
different locations on a surface. Simulation results using one- and
two- dimensional surfaces are then presented in Section 3.

2. BACTERIAL ALGORITHM FOR SURFACE MAPPING

The bacterial algorithm for surface mapping (BASM) is based on
simulations of a bacteria-like software agent which implements the
a priori Markov modulated Markov chains (a3MC) model of the



Fig. 1. Topology of the Markov modulated Markov chains model
governing the surface mapping agent

E. Coli chemotaxis network presented in [5]. Figure 1 presents the
topology of the underlying network where Tar, CheA, CheB, CheR,
CheY, and CheZ refer to the proteins of interest. The flagellar motor
(not shown in the figure) is represented by an eight-state Markov
chain. The reader is referred to [5, 6] for details regarding the model.
BASM simulates trajectories of this bacteria-like software agent in
the domain of a surface represented by a function C (·). Although
this paper will often discuss the mapping of a concentration function
C (·), whose arguments are spatial coordinates, they are generally
not restricted as such. The surface mapping agent, which we will
refer to as a bacterial agent, switches between run and tumble modes
to explore the surface using the surface values at different locations
for guidance. The algorithm computes an estimate of the surface
based on the movement of the bacterial agent. We next describe the
algorithm steps. A more detailed description can be found in [6, 5].

2.1. Algorithm Steps

An important aspect of the exploration of the surface by the bacterial
agent is the flagellar motor representation. With the input concen-
tration to the a3MC model (denoted by [L] in Figure 1) set as the
surface value at the current location, the state probabilities for all the
chains in the model are calculated. An a3MC stochastic simulation
is performed with 9 flagellar motor chains, each of which can be in
any of 8 states. The states are updated at every time step and the
motors are simulated independently from each other. Using the vot-
ing hypothesis in [7, 4], the bacterial agent assumes a run or tumble
state.
The motion and position of the bacterial agent in a two-dimensional
search space at a time n is described in terms of its current position
coordinates x[n] and y[n], its angular direction θ[n], and the state
of the motors (run or tumble state). For each tumble, the bacterial
agent rotates at a constant radial speed rs (in rad/s) counterclock-
wise or clockwise with equal probability. Thus, for every time step
in tumble mode, θ[n] is adjusted as follows:

θ[n + 1] = θ[n] + sgn(U)× rs × dt (1)

where dt is the sampling time for the discrete-time Markov chains,
set to 10−3s in our simulations, and U is a random variable uni-
formly distributed over the interval [-1,1]. The position updates for
a run are given by:

x [n + 1 ] = x [n] + cos(θ[n])× v × dt (2)

y [n + 1 ] = y [n] + sin(θ[n])× v × dt (3)

where v is the running velocity in (length unit)/s.
In the one-dimensional case, θ[n] determines whether the dis-

placement is in the positive or negative x direction as follows:

x [n + 1 ] = x [n] + sgn(cos(θ[n]))× v × dt (4)

After initializing all variables at the beginning of a simulation,
the algorithm steps can be summarized as follows:
1: Determine (x[n],y[n] and θ[n]) using (x[n − 1],y[n − 1] and
θ[n − 1]) and previous overall motor state according to equations
(1)-(4).
2: Determine the current ligand input concentration for the agent as
g[n] = C(x[n]) or g[n] = C(x[n], y[n]) in the case of one- or two-
dimensional surfaces respectively.
3: Use concentration input and internal state values at previous time
step n − 1 to calculate current internal state probabilities (for time
index n).
4: Use previous internal states to check for transitions in any of the
9 motors and determine new motor state.
5: Go to 1 for next time step.

2.2. Calculation of the Density Function

The algorithm produces a histogram indicating the relative amount
of time the bacterial agent spent at every position. We refer to this
as the density function. An estimate of the function is obtained by
tracking the motion of multiple bacterial agents. Density functions
from multiple simulations are averaged to calculate the estimate.
Since the bacterial agents tend to seek out higher values of the con-
centration function, areas with higher densities indicate an increased
likelihood of higher values near these locations.

For one-dimensional surface mapping simulations a uniform grid
of the spatial dimension is formed, where each point on the grid is
defined as:

xk = k × v × dt (5)

for integer k , such that the points are separated by4x = vdt . Every
simulation produces a density function D[k] corresponding to the
total number of time steps during the entire simulated movement
trajectory where the bacterial agent was in the run state, and in a
position that falls within the bin (of size 4x ) centered at xk .

For two-dimensional surface mapping simulations a two-dimensional
uniform grid of the spatial dimensions is formed, with each point on
the grid written as (xk1 ,yk2 ) where xk1 = k14x and yk2 = k24y

such that adjacent points on the grid are separated by 4x and 4y

distance units in the horizontal and vertical dimensions respectively.
Every simulation produces a density function D[k1, k2].

3. SIMULATIONS AND RESULTS

The surface mapping algorithm was evaluated by running simula-
tions on one- and two-dimensional test functions. The average den-
sity function was computed for different values of parameters v and
rs and was compared to the test function.

3.1. One-Dimensional Surface Mapping Simulations

One-dimensional BASM simulations were performed using a uni-
modal test surface C1 (x ) = 10−4 exp(− 3

4
|x |) and a multimodal

test surface C2 (x ) = (5 × 10−5)
˛̨
˛ sin( 1

4 x)
1
4 x

˛̨
˛. 40 simulations, 1000

seconds each, were run. The bacterial agent position at the start of



the simulation was initialized randomly according to a uniform dis-
tribution between -10 and 10. The initial direction, θ[0 ], was set to
0 or π with equal probability. For BASM simulations on the uni-
modal concentration surface C1 (x), a default run speed v of 0.75
s−1 and a tumbling rotation speed rs of π rad/s were used. For
the multimodal function C2 (x), the run speed and tumbling rotation
were v = 0.6s−1 and rs = π rad/s respectively. The average den-
sity function was then smoothed using a 2001-point FIR averaging
filter and normalized such that the integral is one. The results are
shown in figures 2(a) and 2(d). The density function provides an
approximation of the shape of the test function including the loca-
tion of its maxima and minima. Both density functions are approxi-
mately symmetric, and the density function from the simulations us-
ing the multimodal surface captures the main lobe and the adjacent
side lobes of lower height. The global maximum of the smoothed
density function for the unimodal surface simulations was found to
be at x = −0.228, less than a quarter of a distance unit away from
the true maximum of the surface.

Figures 2(b) and 2(e) show the results obtained when the run-
ning speed v is increased for the C1 (x) and C2 (x) simulations to
1.25s−1 and 1s−1 respectively. We can see that the density function
is more spread out, as the higher run speed allows the bacterial agent
to spend more time exploring areas further away from both its start-
ing position and the global maximum at zero. We also observe that
the mapping of C2 (x) captures the main lobe of the sinc function as
well as three of the side lobes on either side of it. Figures 2(c) and
2(f) show the results obtained when the rotation speed rs is increased
for the C1 (x) and C2 (x) simulations to 3π

2
rad/s and 5π

4
rad/s re-

spectively. This has the opposite effect on the density function than
increasing v, as the density suggests that the bacterial agent did not
spend a significant amount of time outside a small range around the
global maximum. This is expected as the high tumbling rotation
speed results in more frequent switches in running direction and the
bacterial agent is therefore not likely to travel far in one direction.

3.2. Two-Dimensional Surface Mapping Simulations

Two-dimensional BASM simulations were also performed using two
test concentration surfaces that are two-dimensional extensions of
C1 (x) and C2 (x) :

C3 (x , y) = 10−4 exp(−1

2

p
x 2 + y2 ) = (10−

4
3 )(C1 (

p
x 2 + y2 ))

2
3

(6)

C4 (x , y) = (5×10−5)

˛̨
˛̨ sin( 1

4
x ) sin( 1

4
y)

1
16

xy

˛̨
˛̨ = (5×105)C2 (x )C2 (y)

(7)
The multimodal function C4 (x , y) is shown in Figure 3(a). 80 sim-
ulations, 2000 seconds each, were performed with spatial spacing
parameters 4x and 4y set to 2. The initial position of the bacterial
agent was set to be a distance R away from the global maximum at
the origin, i.e. x [0 ] = R cos(Θi) and y [0 ] = R sin(Θi) where Θi

is a random number uniformly distributed between 0 and 2π. The
initial angular direction θ[0] was also set to an independent random
number Φi with the same distribution. The results presented in this
section are from simulations that use an R of 7. A default run speed v
of 0.3 s−1 and a tumbling rotation speed rs of 10π rad/s were used.
The average density functions obtained are shown in Figure 3(b) for
C3 (x , y) and 3(c) for C4 (x , y). In the unimodal case, there is a sin-
gle clear peak in the density function. In the multimodal mapping,
we can see the main lobe of the two-dimensional sinc function, as
well as the four neighboring side lobes. The oscillating nature of the

function is conveyed through the density function, and it is evident
that the majority of the highest peaks lie along the x- and y-axes.

3.3. Surface Flattening

In this section, we explore the use of bacterial agents that actively
modify the function landscape as they use the information they gather
about the surface to bias their exploration. Specifically, bacterial
agents are allowed to reduce the value of a function at the locations
they visit. They essentially flatten the concentration surface to ap-
proximately zero as they visit areas with higher concentrations more
often and reduce the total amount of the substance.

In the one-dimensional surface flattening algorithm, a uniform
grid of the x-axis is formed as in equation (5) for |x | ≤ xmax or
equivalently, |k | < xmax

vdt
. The time-varying concentration function

is denoted by C [k ,n], where k is a spatial index and n is the time
index. At the beginning of the simulation C [k ,n] is initialized to a
sampled version of the concentration surface C (x ), i.e. C [k , 0 ] =
C (xk ). For every time step, if the flagellar motors are in a run mode,
the current position x [n] is rounded to the nearest value of xk and
the discrete-space concentration function C [k ,n] is reduced at the
corresponding k by a factor of γ:

C [k ,n + 1 ] = γC [k ,n] (8)

The surface value the bacterial agent reads at that location is the
value of the time-varying surface (interpreted as a concentration) at
the nearest grid point, i.e. C [k ,n]. Any position updates due to a
run that would lead to a value of x[n] outside the range |x | < xmax

are prevented. We set xmax to 90 for the one-dimensional simula-
tions. We investigate whether the bacterial agent is more effective
at reducing the total amount of a substance than an unbiased ver-
sion of the random walk, implemented using a bacterial agent that
always senses a complete lack of attractant everywhere (zero con-
centration), and is therefore not influenced by the concentration sur-
face. Two sets of simulations are performed. For each simulation,
the total amount of remaining substance, denoted by S[n], is used
as a metric of how fast the two algorithms flatten the surface. The
surface sums from 20 simulations are averaged to obtain an estimate
of the expected amount of remaining substance at time n as follows:

Savg [n] =
1

20

20X
i=1

Si [n] =
1

20

20X
i=1

xmax
vdtX

k=− xmax
vdt

Ci [k ,n] (9)

where i denotes the simulation number. We use C2 (x ) = (5 ×
10−5)

˛̨
˛ sin( 1

4 x)
1
4 x

˛̨
˛ as the surface, a v of 0.75 s−1, a tumbling rotation

speed rs of π rad/s, and a reduction factor γ of 0.8. Figure 4(a)
shows the calculated average running sum of the surface for the sur-
face biased and unbiased versions of the random walk. The surface
flattening algorithm can be extended to two-dimensional surfaces. In
this case, the time-varying surface is a function of two spatial indices
k1 and k2 , in the two-dimensional simulations they are related to the
continuous spatial variables according to xk1 = k1 × 50 × v × dt
and yk2 = k2 × 50 × v × dt . Any position updates due to a run
that would lead to a value of x[n] or y[n] outside the range |x | ≤
xmax , |y | ≤ ymax are prevented. xmax and ymax are set to 90 for
the two-dimensional simulations. The surface sums from 20 simu-
lations are averaged to calculate Savg [n]. We use C4 (x , y) = (5 ×
10−5)

˛̨
˛ sin( 1

4 x) sin( 1
4 y)

1
16 xy

˛̨
˛ as the surface, and set v = 5s−1, rs = 5π

rad/s, and γ = 0.8. Figure 4(b) shows the calculated average run-
ning sum of the surface for the surface biased and unbiased versions
of the random walk.
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Fig. 2. Smoothed density function from surface mapping simulations using different values of v and rs
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Fig. 3. The two-dimensional test surface C4 (x , y), and average density function results from two-dimensional surface mapping simulations
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