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ABSTRACT

In some contexts, DACs fail in such a way that specific sam-
ples are dropped. For example in flat-panel video displays, one
of the pixel LEDs can malfunction and get permanently set to a
particular value. We refer to this as the “missing pixel” problem.
Under certain conditions, it may be possible to compensate for the
dropped sample by pre-processing the digital signal. This paper
describes a number of such compensation strategies. Each strategy
is analyzed and results from numerical simulations are presented.
Of particular interest is the relationship between compensation and
the class of discrete prolate spheroidal sequences.

1. INTRODUCTION

The “missing pixel” problem is of practical interest and some ad
hoc solutions have been proposed, [1, 2]. These patents use a
scheme where neighboring pixels are brightened in order to com-
pensate. The idea is based on the fact that the missing pixel looks
dark, so making the surrounding pixels brighter reduces the visual
distortion. Though several weightings are proposed, no theory is
developed. In this paper, we present a more rigorous treatment of
the problem and propose solutions which are optimal. The follow-
ing analysis and solutions have also been presented in [3, 4].

In one-dimension, the faulty DAC can be mathematically rep-
resented as in Figure 1(a). We adhere to the standard paradigm for
digital-to-analog conversion through an ideal low-pass filter. In
addition, we assume the original continuous-time signal, x(t), is
at least slightly oversampled. We assume specifically that 1/Ts =
RΩc/π, where x(t) is band-limited to Ωc and R > 1 is the over-
sampling ratio. We denote the ratio π/R by γ.

The dropped sample is represented as multiplication by (1 −
δ[n]) that sets x[0] = 0. Because of the dropped sample, the
reconstructed signal, r̂(t), is a distorted version of the desired re-
construction, r(t). Compensation is portrayed as a signal c[n] that
is added to x[n]. In general, compensation could be some compli-
cated function of the dropped sample and neighbors. In our devel-
opment, we restrict compensation to be an affine transformation.

We use the squared-L2 energy of the error signal, e(t) =
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r̂(t) − r(t), as the error metric:

E2 =

Z ∞

−∞
|e(t)|2dt =

Z ∞

−∞
|r̂(t) − r(t)|2dt (1)

The problem can equivalently be cast directly in the discrete-
time domain. Specifically, it is straightforward to show that Figure
1(a) can be equivalently represented by Figure 1(b). H(ejω) is an
ideal low-pass filter with cutoff γ = Ωc/Ts = π/R. Addition-
ally, we incorporate the missing sample into the compensation as a
constraint on c[n], specifically c[0] = −x[0]. We also equivalently
use the squared-�2 energy of e[n] as an error metric:

ε2 =
∞X

n=−∞
|e[n]|2 =

∞X
−∞

|r̂[n] − x[n]|2 (2)

In Figure 1(b), the error signal, e[n], can be expressed

e[n] = x[n] − h[n] ∗ (x[n] + c[n]) (3)

Since X(ejω) is band-limited to γ, our error (2) reduces to

ε2 =

Z
<2π>

|H(ejω)C(ejω)|2dω (4)

Thus, minimizing the squared-�2 error is equivalent to mini-
mizing the energy of C(ejω) in the band [−γ,γ], i.e. in the pass-
band of the filter. This also implies that x(t) must be at least
slightly oversampled for compensation, otherwise H(ejω) could
not be designed with a high-frequency stop-band.

Affine pre-compensation can in general alter any arbitrary set
of samples in x[n]. For clarity in the exposition, we focus on sym-
metric compensation, where (N − 1)/2 neighboring samples on
either side of the dropped sample are altered. Where the extension
to the more general case is obvious, we note the structure of the
asymmetric solution.

In Section 2 of this paper, we discuss the ideal solution in
which infinitely many samples may be adjusted. In Section 3, we
consider the case in which only a finite number of samples may
be adjusted, and we derive the optimal solution. Section 4 and 5
present two alternatives, an approximation to the optimal solution
and an iterative algorithm which converges to the optimal solution.

2. PERFECT COMPENSATION

If c[n] had no frequency component outside |ω| > π − γ while
meeting the constraint c[0] = −x[0], it would perfectly compen-
sate with zero error. There are an infinite number of signals that
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Fig. 1. Representation of faulty DAC with compensation

meet this criteria. For example, we can simply choose

cinf [n] = −x[0](−1)n (5)

This solution only requires in theory that R = 1 + ε, where ε is
non-zero but otherwise arbitrarily small. It can be shown that all
other perfect compensation solutions are signals band-limited to
|ω| < γ multiplied by cinf [n]. Of these choices, the minimum
energy solution is

csinc[n] = −x[0](−1)n sin(π − γ)n

(π − γ)n
(6)

Unfortunately, all of these signals, although resulting in zero
error, have infinite length, making them impractical to implement.

3. CONSTRAINED MINIMIZATION

Because of the impracticality of perfect compensation, we focus
next on finite-length compensation. We assume that the compen-
sation signal, c[n], is non-zero only for n ∈ N , where N is the
finite set of points to be adjusted. For simplicity in the presenta-
tion, we focus on symmetric compensation, N= [−N−1

2
, N−1

2
],

although the derivation is general for any set N .
We minimize ε2 =

P∞
n=−∞(

P
m∈N c[m]h[n−m])2 subject

to the constraint g = c[0]+x[0] = 0 using the method of Lagrange
multipliers. The minimization produces N + 1 linear equations
that have a unique solution, copt[n], corresponding to the optimal
compensation signal for the given value of N . We can write the
equations in block matrix form as

»
Θγ − 1

2
δ

δT 0

– »
cn

λ

–
=

»
0

−x0

–
(7)

λ is the Lagrange multiplier and δ is a vector with all zero entries
except for a 1 as the center element. Θγ is the autocorrelation
matrix for h[n]. Because h[n] is an ideal low-pass filter, Θγ is a
symmetric, Toeplitz matrix with entries Θγ(i, j) = h[i − j] =
sin γ[i−j]

π[i−j]
. We prove in Section 4 that Θγ is invertible. For now,

assuming we can invert Θγ , the optimal solution is

copt[n] = −x[0]

θ−1
c

Θ−1
γ δ (8)

θ−1
c = Θ−1

γ

`
N−1

2
, N−1

2

´
, the center element of the inverse ma-

trix. We refer to the algorithm represented by (8) as Constrained
Minimization (CM). Exploiting the Toeplitz, symmetric structure,
we can use a Levinson recursion to invert Θγ . CM can thus be
implemented with O(N2) multiplications and O(N) memory.

Figure 2(a) illustrates ε2 as a function of N . The graph shows
that ε2 decreases approximately exponentially in N . Since the CM
algorithm generates the optimal solution, the error curves shown
in Figure 2(a) serve as a baseline for performance of other finite-
length choices for c[n].

There is a limited set of parameters γ and N for which the
problem is well-conditioned. Beyond ε2 = 10−9, the solution
becomes numerically unstable beyond the precision of MATLAB.
Conditioning problems would be even more pronounced in fixed-
point DSP systems, but the inversion can be done off line on a com-
puter with arbitrarily high precision, since once copt[n] is found it
can be stored and retrieved when the algorithm needs to be im-
plemented. Also, in most contexts, an error of 10−9 = −180dB,
compared to the signal, is more than sufficient.

4. DISCRETE PROLATE APPROXIMATION

With CM, we construct a finite-length compensation signal di-
rectly from the imposed constraints. Alternatively, we can start
with the infinite-length signal, cinf [n] = −x[0](−1)n, and trun-
cate it through appropriate windowing. From this perspective, the
problem then becomes one of designing a finite-length window,
w[n], such that

c[n] = w[n]cinf [n] (9)

has minimum energy in the frequency band |ω| < γ. Since C(ejω) =
W (ejω)∗Cinf(e

jω), we design the window w[n] ∈ �2(−N−1
2

, N−1
2

),
to maximize the concentration ratio

α(N, W ) =

R W=π−γ

−W=−π+γ
|W (ejω)|2dωR π

−π
|W (ejω)|2dω

(10)

Slepian, Landau, and Pollak solved this problem in [5, 6, 7]
through the development of discrete prolate spheroidal sequences
(DPSS). Using variational methods [7] shows that the signal w[n]
that maximizes the concentration is an eigenvector of the N × N
symmetric, positive-definite, Toeplitz matrix, ΘW, with elements

ΘW[n, m] =
sin 2W (m − n)

π(m − n)
(11)

m,n=−(N−1)/2,...−1,0,1,....(N−1)/2

If W = γ, we obtain Θγ , the same matrix as in Section 3. By
the spectral theorem, the eigenvectors, vW

i [n], are real and orthog-
onal with associated real, positive eigenvalues, λW

i . In addition,
[7] proves that these particular eigenvalues are always distinct. The
eigenvectors, vW

i [n], are time-limited versions of discrete prolate
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Fig. 2. Error performance of CM and DPAX

spheroidal sequences (DPSS). They form a finite orthonormal ba-
sis for �2(−N−1

2
, N−1

2
), [7].

The first DPSS, v1[n], solves the concentration problem. The
maximum concentration is the eigenvalue, λ1. Consequently, the
optimal window in our formulation is vπ−γ

1 [n]. Modulating vπ−γ
1 [n]

up to π and scaling it to meet the constraint, c[0] = −x[0], pro-
vides a potential compensation signal

cdpax[n] = − x[0]

vπ−γ
1 [0]

(−1)nvπ−γ
1 [n] (12)

Every DPSS has a dual symmetric partner. In particular,

vW
N+1−i[n] = (−1)nvπ−W

i [n] (13)

The eigenvalues are related, λW
N+1−i = λπ−W

i . [3] provides a
comprehensive proof of this property using filter-banks. Dual-
ity implies that the compensation signal, cdpax[n] in (12), can be
equivalently expressed as

cdpax[n] = − x[0]

vγ
N [0]

vγ
N [n] (14)

Independent of which DPSS is used to express it, we denote
this solution the Discrete Prolate Approximation (DPAX). For asym-
metric compensation, the solution is the same, except the scaling
is relative to the dropped sample, vγ

N [k], for k �= 0.
It should be clear that cdpax[n] is not equivalent to the CM

solution, copt[n]. The window formulation starts with a finite-
energy signal, optimizes for that energy, and then scales to meet
the c[0] = −x[0] constraint. CM does not begin an energy con-
straint, thus it finds the optimal solution.

The exact relationship between cdpax[n] and copt[n] can be
found by decomposing copt[n] in the DPSS basis, {vγ

i [n]}. The
time-limited DPSS form the orthonormal eigenvector basis that di-
agonalizes Θγ = VΛVT. Since each DPSS eigenvalue is dis-
tinct, [7], this proves that Θγ is invertible and that copt[n] exists.
copt[n] is proportional to Θ−1

γ , so it can be expressed as

copt[n] = −x[0]

θ−1
c

`
λ−1

1 β1v
γ
1 [n] + · · · + λ−1

N βNvγ
N [n]

´
(15)

βi = vγ
i [0] and θ−1

c is the middle element of Θ−1
γ , which can be

expressed in the DPSS basis as θ−1
c =

PN
i=1 λ−1

i (vγ
i [0])2. The

eigenvalues, λi, are distributed between 0 and 1. The expression
for the optimal solution depends on the reciprocals 1/λi, so the
eigenvector with the smallest eigenvalue, vγ

N [n], will dominate.
Since scaling this vector produces cdpax[n], DPAX can be inter-
preted as a first-order approximation to copt[n].

Figure 2(b) plots the gain in error, ε2
dpss/ε2

opt, due to DPAX.
The gain becomes negligible as N increases and γ decreases. Ad-
ditionally, DPAX does not suffer from the same ill-conditioning
problems as CM, so, by increasing N , it can achieve values of ε2

in the range of ε2 = 10−20, i.e. about ten orders of magnitude
smaller than that using CM.

The near-optimal performance of the DPAX solution is ex-
plained by the eigenvalue distribution of Θγ . As N increases and
γ decreases, the reciprocal of the smallest eigenvalue, 1/λN , in-
creasingly dominates the reciprocals of the other eigenvalues. In
(15), vγ

N [n] dominates the other terms, making cdpax[n] a tighter
approximation

The DPAX solution can be computed directly as the first eigen-
vector of Θπ−γ . However, the eigenvalues of Θπ−γ are so clus-
tered around 0 or 1 that they are effectively degenerate when finite
machine arithmetic is used. Fortunately, the time-limited DPSS
are also eigenvectors of the symmetric, tri-diagonal matrix ρπ−γ

ρπ−γ [i, j] =

8>><
>>:

1
2
i(N − i) j = i − 1`
N−1

2
− i

´2
cos 2(π − γ) j = i

1
2
(i + 1)(N − 1 − i) j = i + 1

0 otherwise

(16)

i,j=−(N−1)/2,...−1,0,1,...(N−1)/2

which has eigenvalues that are well spread, [8]. Accordingly, the
first DPSS can then be computed using standard routines like the
iterative power method. DPAX is a powerful alternative algorithm
to CM. Its performance is nearly optimal, it is less complex, and it
has fewer stability problems.

5. ITERATIVE MINIMIZATION

In this section, as an alternative to the two closed-form algorithms,
we develop an iterative solution in the class of projection-onto-
convex sets (POCS). Figure 3(a) is a block diagram of the algo-
rithm, denoted Iterative Minimization (IM). Each iteration con-
sists of three sequential projections, PB onto �2(π − γ), PD onto



�2(−N/2, N/2), and P0 onto the hyperplane defined by the con-
straint c[0] = −x[0].

The iteration can be proved to converge uniquely to (−1)ncopt[n].
To facilitate proofs, we represent the projections in Figure 3(a) in
terms of the affine transformation of Figure 3(b). We first prove
that the linear operator, T , is strictly non-expansive, i.e. for w1 �=
w2, T (w1 − w2) < w1 − w2, using an argument based on the
fact that B, band-limiting, strictly reduces the energy in the time-
limited signal, w(i). A detailed proof is not presented here; [3]
develops the argument fully. A strictly non-expansive T implies
that IM converges strongly to a unique fixed-point, [3].

Next, we show that the fixed-point is w∗ = (−1)ncopt[n] by
direct substitution. In Figure 3(a), PB and PD can be conglom-
erated into a Toeplitz matrix, Θπ−γ . Using the decomposition
of copt[n], as per (15), and the duality of the DPSS, PBPDw∗

can be manipulated into two terms. βi is defined as in (15). The
first term is the fixed-point. The other, which is composed of
residual terms, is a decomposition of an impulse, δ[n], into the
DPSS basis. Projection with P0 removes this term and returns
w∗ = (−1)ncopt[n].

−x[0]

θ−1
c

(−1)n `
β1λ

−1
1 (vγ

1 [n]) + · · · + βNλ−1
N (vγ

N [n])
´

(17)

+
−x[0]

θ−1
c

(−1)n (β1(v
γ
1 [n]) + · · · + βN (vγ

N [n]))

= (−1)ncopt[n] + δ[n] (18)

Although IM converges to the optimal solution, it has a slow
convergence rate. Numerical simulation shows that, as N increases
and γ decreases, the convergence rate slows to the point of mak-
ing IM impractical compared to CM, i.e. convergence requires
greater than O(N2) iterations. Slow convergence is caused by the
eigenvalues of Θπ−γ being clustered near 1, so there is minimal
change between iterations. Though not studied in this treatment,
POCS relaxation techniques could potentially be used to speed up
the convergence rate.

6. CONCLUSION

In this paper, we present a number of variations on digital com-
pensation techniques to reduce the effect of dropped samples in
DACs. The ideal solution is a perfect, infinite-length compen-
sation signal, cinf [n]. For practical implementation, though, we
develop two algorithms to compute the optimal, finite-length solu-
tion: CM, a closed-form calculation, and IM, an iterative POCS al-
gorithm. Despite calculating the optimal solution, both algorithms
are found to be computationally expensive and ill-conditioned over
a large range of parameters.

As an alternative, we develop a compensation strategy using
discrete prolate spheroidal sequences. Our solution, termed DPAX,
is shown to be a tight, first-order approximation of the optimal,
finite-length solution in the DPSS basis. In addition, DPAX is less
complex and better conditioned than either CM or IM.

The pre-compensation problem was originally conceived in
the context of missing pixels on flat-panel displays. To this end,
we implemented a two-dimensional version of the CM solution
and applied it to actual images. The resulting compensated images
are presented in [4].
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