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ABSTRACT
This monograph addresses operating characteristics for bi-
nary hypothesis testing in both classical and quantum set-
tings and overcomplete quantum measurements for quantum
binary state discrimination. We specifically explore decision
and measurement operating characteristics defined as the
tradeoff between probability of detection and probability
of false alarm as parameters of the pre-decision operator
and the binary decision rule are varied. In the classical case
we consider in detail the Neyman-Pearson optimality of
the operating characteristics when they are generated using
threshold tests on a scalar score variable rather than thresh-
old tests on the likelihood ratio. In the quantum setting,
informationally overcomplete POVMs are explored to pro-
vide robust quantum binary state discrimination. We focus
on equal trace rank one POVMs which can be specified by
arrangements of points on a sphere that we refer to as an
Etro sphere.
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Preamble

Our intention while preparing this monograph has been for it to be read-
able and interesting to an audience with a wide range of backgrounds. It
is written to have a strong tutorial review flavor with some perspectives
that hopefully many readers will find to be interesting and somewhat
novel. We anticipate that many parts of the monograph will be familiar
to readers with a strong background in classical signal processing and
other parts to readers with a strong background in quantum mechanics.
And it is our hope that both audiences will find the perspectives on
the shared issues and overlap between the two fields to be interesting.
Some readers may find it helpful in acquiring a broad sense of the
scope of the monograph to start by reading the summary remarks
and further thoughts given in Section 7. It should be noted however,
that the discussion there uses terminology and notation introduced in
earlier sections. In writing a monograph intended for an audience with
diverse backgrounds part of the challenge is that there are many results
referred to in the presentation that will be well-known to readers with
backgrounds in one of the disciplines but less so in the other. And with
some of these results, we anticipate that some of the readers will want to
see or be reminded of a somewhat detailed explanation while others will
be very familiar with it. To accommodate these differences we identify
these as exercises for the reader to be worked out or not as they choose.
The details for verifying those results are contained in the appendix

iv
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denoted as Appendix A. A second appendix denoted as Appendix B
contains the details of a variety of possibly less familiar results that
would be included in a traditional appendix mainly for the purpose of
not interrupting the flow of the main body.



1
Introduction

Binary decisions guide our everyday lives in situations both critical
and trivial. The choices made by politicians and physicians may have
consequential implications on a global or individual scale. Perhaps
less consequential is whether or not we choose to carry an umbrella
on a cloudy day. Any choice made inherently involves a conscious,
subconscious, or formal tradeoff between benefits and detriments. The
defense of a country, the prolongation of life, the ability to keep dry in
a downpour, may come at the cost of soldiers’ lives, the quality of life
of an individual patient, or the wasted effort of toting an umbrella on a
rain-free day. In some cases our analysis of the compounding factors
may be informal and the worst case outcome fairly inconsequential. But
when the worst case outcome could have severe consequences as, for
example, in a clinical setting or when deciding whether or not to fire
a missile, it is much more desirable to have a structured analysis and
process for arriving at a final decision. This may be a complicated task
for many reasons, including the fact that the assignment of relative
costs to the outcomes of the two possible decisions is often a judgement
call itself. We may also lack a historical dataset that is large enough
to allow for accurate estimation of important quantities such as the a
priori probabilities, discussed further in Section 2.

1



2 Introduction

In this monograph we focus on a particular set of well-studied met-
rics for framing the problem of binary hypothesis testing, keeping in
mind that there are many alternatives, generalizations, and extensions
of the viewpoints and results expressed here. We specifically consider
the scenario in which one of two possible hypotheses, denoted as H0
or H1, is true. The objective is to make a decision as to which is true
using a sample value of a random variable often referred to as the score
variable, which is comprised of one or more numerical values associated
with the outcome of some measurement or observation. The score vari-
able may be a scalar or a vector and may have been constructed as a
composition of multiple measurements and observations. Traditionally
H0 is referred to as the null hypothesis and H1 as the positive hypoth-
esis, implying that H1 is the hypothesis of significance (the target is
present, the patient has the disease, etc.). In this monograph we use
that convention. For convenience we refer to the entire system used to
distinguish between the null and positive hypotheses as the discrimina-
tion system. The components of the discrimination system are defined
in Section 2. Historically a quantity considered to be of significance
in binary hypothesis testing is the probability of error, denoted as Pe

and defined as the probability of identifying H0 to be true given that
H1 is in fact true or vice versa. Other probabilities that may be of
interest are (i) the probability of detection, denoted by Pd and defined
as the probability of deciding that H1 is true given that it is indeed
true, (ii) the probability of a miss, denoted by Pm and defined as the
probability of deciding that H0 is true given that in fact H1 is true,
and (iii) the probability of false alarm, denoted by Pf and defined as
the probability of deciding that H1 is true given that H0 is in fact true.
Also of importance are the a priori probabilities associated with whether
H0 or H1 is true apart from any measurement or decision. Various of
these probabilities are connected mathematically through the rules of
probability. For example, the probability of error can be expressed as
a combination of the probability of detection, the probability of false
alarm, and the underlying a priori probabilities.

Since in many scenarios the a priori probabilities are difficult or
impossible to assess, it has become common in many contexts to formu-
late the decision making process without explicitly requiring knowledge
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of these probabilities. One approach that has become widespread for
accomplishing this is to focus on the tradeoff between Pf and Pd, often
displayed using what is commonly referred to as a receiver operating
characteristic (ROC). ROCs originated in the radar signal detection
community, where they were used to characterize systems that detected
the presence or absence of military targets during World War II [1].
The use of ROCs has become increasingly prevalent in a very broad set
of application areas including biostatistics and machine learning [2]–[8].
In contrast to the problem of radar signal detection for which there
are often good mathematical models for the signals and disturbances,
in other contexts the score variable is typically a finely-tuned combi-
nation of many measurements and is therefore often less amenable to
mathematical analysis and modeling.

More generally, the term operating characteristic is used in this
monograph to refer to any characterization, such as a curve, table, or
graph, of the tradeoff between Pf and Pd as one or more parameters of
the discrimination system is varied. When displaying operating charac-
teristics we will choose to utilize a two-dimensional graph of Pf versus
Pd. Consequently the parameter or parameters being varied are not
immediately visible or explicit. This is especially important in Sections
2.5.4 and 2.5.5 when we consider multiple operating characteristics that
were generated using variations of distinct parameters but have identical
graphs of Pf versus Pd. We take the viewpoint that an operating char-
acteristic itself is essentially a trajectory in a higher-dimensional space
with coordinates corresponding to all of the parameters being varied
in addition to Pf and Pd. A graph of Pf versus Pd is the projection
of this trajectory onto the Pf -Pd plane. Distinct trajectories including
those with different numbers of variable parameters may correspond to
the same Pf -Pd projection. For the majority of our discussion we will
be concerned only with the characteristics of the Pf -Pd projection of a
given operating characteristic. Thus, for the sake brevity we will only
explicitly distinguish between an operating characteristic and its Pf -Pd

projection when absolutely necessary, as in Sections 2.5.4 and 2.5.5.
Sections 2 and 3 of this monograph address operating characteristics

associated with binary hypothesis testing in the classical setting and the
setting of quantum mechanics, respectively. By “classical” we mean in
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particular that the measurement or observation processes that lead to a
realized value of the score variable are not constrained by the postulates
of quantum mechanics. The principles of classical binary hypothesis
testing are very well-understood and as outlined above, ROCs are widely
used in many classical settings. The principles of quantum binary state
discrimination are also well-formulated. As we discuss in Section 3, a
typical formulation of the quantum binary state discrimination problem
consists of a quantum mechanical system that has been prepared in
one of two quantum states by two distinct laboratory procedures or
physical environments, each corresponding to one of the two hypotheses
H0 or H1. The objective is to decide which procedure was used based
on the outcome of a measurement on the system. An elegant solution
to the problem of determining the measurement strategy that achieves
minimum probability of error was derived by Helstrom [9].

Just as in the classical setting, the above formulation of the quantum
binary hypothesis testing problem naturally involves a tradeoff between
Pf and Pd and therefore it also involves the notion of an operating char-
acteristic. But operating characteristics of any kind are significantly less
prevalent in the quantum binary hypothesis testing literature. Perhaps
one of the principal reasons for this is that although there are many
similarities between the classical and quantum scenarios, there are also
some fundamental differences that stem from the underlying differences
between the postulates of classical versus quantum physics. Of particu-
lar importance and as described in Section 3 are the stipulations made
by the postulates of quantum mechanics about the state of a quantum
system and about the concept of quantum measurement. Of particular
importance is the relationship between a specific quantum measurement
and a set of Hermitian operators that form a positive operator-valued
measure (POVM).

The theme of Sections 4 through 6 is how quantum measurements
that employ redundant, or overcomplete, representations of the state
of the system being measured can be used, at least in some cases, to
increase the robustness of binary discrimination strategies. We start in
Section 4 by describing our viewpoint on some of the basic concepts of
frame theory, with the main objective of introducing the mathematical
machinery and notation necessary to apply the concepts to quantum
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measurement. We then describe how these concepts can be applied to an
operator space consisting of all Hermitian operators on another Hilbert
space. The relevant operator space V in quantum mechanics contains
all density operators and POVM elements. This leads to a discussion in
Section 5 regarding informationally complete (IC) quantum measure-
ments, which are measurements that map every quantum state to a
unique probability distribution over the possible measurement outcomes
[10]–[22]. IC quantum measurements that are strictly overcomplete are
sometimes referred to as informationally overcomplete (IOC) quantum
measurements [19]. While the benefits of using IOC measurements have
been investigated in the context of quantum state estimation [19], [20],
less attention has been given to their utility in quantum binary state
discrimination. We review a fundamental result stating that every IC
or IOC POVM is a frame for V. IOC POVMs with a larger number
M of elements correspond to frame representations of V that are more
overcomplete.

A crucial concept in our discussion of the operator space V is a
specific direct-sum decomposition of V into two orthogonal subspaces
U and U⊥. All density operators have a constant component in U⊥

and can be distinguished from each other by their components in U .
For the density operator of a qubitthe component in U corresponds
to its Bloch vector. We define a counterpart to the Bloch ball and
corresponding Bloch sphere in relation to the class of POVMs that
we refer to as equal trace rank one (Etro) POVMs. An Etro POVM
corresponding to a qubit measurement can be fully specified by M

points on what we refer to as an Etro sphere of radius
√

2/M . This is
exactly analogous to how a pure state qubit density operator can be
specified by a single point on the Bloch sphere. POVMs constructed
using Platonic solids are Etro POVMs in our terminology and are used
often in the literature. We provide evidence through simulation that
when POVMs constructed from Platonic solids are used for qubit binary
state discrimination, there is a tradeoff in probability of error between
the number L of identically-prepared quantum mechanical systems and
the number M of POVM elements. POVMs constructed from Platonic
solids have been of particular interest in the quantum state estimation
community because they are all either IC or IOC, and because they
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all provide straightforward state reconstruction formulas. Since we are
interested in state discrimination rather than estimation, we do not
require the state to be reconstructed. Consequently in Section 6 we
also performed an exploratory investigation into IC and IOC POVMs
constructed using other arrangements of points on an Etro sphere. In
particular the problem we consider is that of distinguishing between
two pure state qubit density operators. It is assumed that the angle
between their Bloch vectors is known but that the overall alignment
of the Bloch vectors relative to the Bloch sphere is not. Equivalently,
it is assumed that the two Bloch vectors are known and the relative
rotational orientation of the Bloch and Etro spheres is unknown. We
compare the performance of a variety of POVMs using their minimum
and maximum probabilities of error over all possible orientations, as
well as the difference between the two. Intuitively it is expected that
higher values of M and distributions of points on an Etro sphere that
are maximally spread in some sense would lead to POVMs that are less
sensitive to changes in the relative orientation of the Bloch and Etro
spheres. Indeed, this is what we observed for values of M between 4
and 12 and for distributions of points that were maximally spread with
respect to numerous established criteria.



2
Operating Characteristics for Classical Binary

Hypothesis Testing

After first defining a simple framework that encompasses general binary
hypothesis testing problems in Section 2.1, we review known results re-
garding optimal binary decision strategies with respect to the minimum
probability of error, minimum risk or Bayes’ cost, and Neyman-Pearson
criteria in Sections 2.2 to 2.4. All of these criteria lead to the family of
likelihood ratio test (LRT) decision rules, which can sometimes but not
always be recast as what we refer to as score variable threshold test
(SVT) decision rules [23]. In Section 2.5 we compare ROCs generated
using LRTs and SVTs and state a condition under which the Pf -Pd

projection of an SVT ROC is guaranteed to be Neyman-Pearson optimal
and therefore identical to the Pf -Pd projection of the LRT ROC of the
same underlying score variable. We also describe a procedure that can
be used to recover the optimal ROC from a non-optimal SVT ROC.
ROCs can also be classified as classical decision operating characteris-
tics (CDOCs) in our terminology. Finally in Section 2.6 we describe a
different type of classical operating characteristic that we refer to as a
classical measurement operating characteristic (CMOC). The quantum
analogue of a CMOC is defined in Section 3.6.

7



8 Operating Characteristics for Classical Binary Hypothesis Testing

2.1 Framework for Binary Hypothesis Testing

The framework that we consider in this monograph for binary hypothesis
testing is shown in Figure 2.1. We start by defining a random symbol H
that is equal to H0 if the null hypothesis is true and H1 if the positive
hypothesis is true. The input to the system in Figure 2.1 can have a
variety of forms as detailed in Examples 2.1 to 2.3, but in all cases the
state or value of the input is dependent on the true hypothesis. The
objective is to make a binary decision about whether the null or positive
hypothesis is true in an optimal way with respect to some optimality
criterion. The final decision is represented by a second random symbol
Ĥ that is set to H1 if we decide that the positive hypothesis is true
and H0 otherwise. An error is made when Ĥ and H are different. The
most general binary hypothesis testing problem might belong to one
of a number of more specific problem types. For example, in classical
signal processing the objective of a typical binary detection problem is
to determine whether an incoming waveform consists only of noise or of
noise added to a pre-determined signal. The objective of a typical binary
discrimination or classification problem is to determine which out of a
pre-determined alphabet of signals an incoming waveform represents.
We emphasize that the discussion and results presented in Section 2
pertain to general binary hypothesis testing problems and not to one
specific subcategory.

Figure 2.1: Framework for binary hypothesis testing.

The a priori probabilities – or priors, for short – that each hypothesis
is true will be denoted as

P (H = Hi) = qi , i ∈ {0, 1}. (2.1)
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The values of the {qi} may not be readily available and may instead need
to be estimated using available data and application-specific modeling.
As described in more detail in Section 2.5, the absence of the use of
priors in the formulation of ROCs is an important advantage to that
approach. The first step in making a binary decision about the true
hypothesis is to process the input using what we refer to as a pre-
decision operator. This results in a sample of a random variable which
itself is sometimes referred to as the score variable. We will denote the
score variable by upper-case S, the sample value of the score variable
by lower-case s, and will assume for simplicity that S is real-valued.
The conditional distributions, also referred to as likelihood functions,
of the score variable given that H = H0 or given that H = H1 will be
denoted as fi(s) for i ∈ {0, 1}. The {fi(·)} may be probability density
functions (PDFs) or probability mass functions (PMFs) depending on
whether S is continuous or discrete, respectively. When the sample
value s satisfies f0(s) > 0 and f1(s) > 0, we are unable to identify the
true hypothesis with certainty. The decision about the true hypothesis
can therefore be thought of as a decision about whether s was drawn
from f0(·) or f1(·). This problem has been studied extensively in the
field of classical decision theory. In that context each decision-making
strategy is typically described using a decision region D that is a subset
of the sample space of S. If the sample value s lies in D then we declare
Ĥ = H1. Otherwise we declare Ĥ = H0.1 Of course, there are many
different possible decision strategies or equivalently many different ways
of choosing D. Two of the most common strategies are LRTs and SVTs.
Both will be described in more detail in subsequent sections, but first
we describe two examples of classical binary hypothesis testing systems
using the terminology of Figure 2.1.

Example 2.1. In a typical radar signal detection problem the input to
the pre-decision operator is a waveform, possibly reflected by a target,
received by the radar system following the emission of an electromagnetic
pulse by the radar transmitter. The pre-decision operator might be a

1There also exist randomized decision strategies in which each value of the score
variable is associated with a certain probability of deciding that Ĥ = H1 or Ĥ = H0,
but we will not be considering those in this monograph.
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linear filter followed by a sampler. The score variable is the sampled
value at a specified time at the output of the filter. The value of this
score variable is used to make a binary decision about whether or not a
target is present.

Example 2.2. In a medical decision-making scenario, the input is a
series of clinical measurements made on a patient and the pre-decision
operator might be a machine learning algorithm that combines the
measurements into a single number. The score variable is this composite
number and its value is used to make a decision about whether the
patient is healthy or ill.

Example 2.3. Consider a scenario in which the input is a realization
x of a real-valued Gaussian random variable X with zero mean and
variance σ2

0 or σ2
1, i.e., H = Hi, where i ∈ {0, 1}. To distinguish between

the two hypotheses with minimum probability of error, we set the score
variable to s = x2 and the decision region D to D = {s : s ≥ γ}, where
γ ≥ 0 is a fixed threshold value that depends on the priors. This choice
of decision region corresponds to what we refer to as an SVT.

In practice and when possible, it can be useful to relate the decision
region D connected to the score variable to a corresponding decision
region connected to the input. For a given γ ≥ 0, we have s ≥ γ exactly
when x ≥ √

γ or x ≤ −√
γ. A one-sided threshold decision region on s

is equivalent to a symmetric two-sided threshold decision region on x.
This specific example is elaborated on further in Section 2.5.3.

It will be useful in future sections to write the probabilities of false
alarm and detection as functions of the conditional distributions {fi(·)}
and the decision region D. Recall that the probability of false alarm is
defined as the conditional probability that we declare Ĥ = H1 given
that H = H0. The probability of detection is the conditional probability
that we declare Ĥ = H1 given that H = H1. Pf and Pd can equivalently
be thought of as the conditional probabilities that s lies in D given that
H = H0 or H = H1, respectively. We have

Pf = P (Ĥ = H1|H = H0) =
∫

s∈D
ds f0(s) (2.2a)

Pd = P (Ĥ = H1|H = H1) =
∫

s∈D
ds f1(s). (2.2b)
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Note that in Equations (2.2) and throughout Section 2, we have arbitrar-
ily assumed that S is continuous and have thus used an integral instead
of a sum to calculate probability values. Nevertheless, the results of this
section can be appropriately modified for the discrete case. In Section 3
we will find it more natural to assume that S is discrete, but again the
results can be appropriately modified to apply to the continuous case.

2.2 Minimum Probability of Error Decision Rules

One of the most common optimality criteria used in binary decision
making is the minimum probability of error (MPE) criterion. Develop-
ing the optimal decision making strategy with respect to this or any
other optimality criterion amounts to finding the corresponding optimal
decision region D. We start by writing the total probability of error,
denoted as Pe, as an expectation over all possible values of the score
variable S,

Pe =
∫
ds fS(s)Pe|s. (2.3)

Here fS(s) is the overall probability distribution function of S and
Pe|s is the conditional probability of error given that S = s. fS(s) is
non-negative for all values of s, implying that in order to minimize Pe

it is sufficient to minimize Pe|s for each value of s individually. To see
how this can be achieved, recall that if s lies in the decision region D
then we decide Ĥ = H1, implying that an error is made when H = H0
and s lies in D. The reverse is true for when s does not lie in D. Pe|s
can be written as

Pe|s =

P (H = H0|S = s) if s ∈ D

P (H = H1|S = s) if s /∈ D.
(2.4)

The conditional probabilities P (H = Hi|S = s) are typically referred
to as the a posteriori probabilities that H = Hi given that S = s. To
minimize Pe|s we should choose the hypothesis that has the maximum
a posteriori (MAP) probability conditioned on the observation S = s.
Thus the optimal decision rule with respect to the MPE criterion is

Ĥ =

H1 if P (H = H1|S = s) ≥ P (H = H0|S = s)
H0 if P (H = H1|S = s) < P (H = H0|S = s).

(2.5)
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Note that the values of s for which the a posteriori probabilities are
equal can be associated with either final decision without affecting the
total probability of error. Applying Bayes’ rule to the P (H = Hi|S = s)
yields

P (H = Hi|S = s) = P (S = s|H = Hi)P (H = Hi)
fS(s) = fi(s) qi

fS(s) . (2.6)

Cancelling the factors of fS(s) on both sides of the inequalities in
Equation (2.5) and rearranging leads to the following equivalent decision
strategy,

Ĥ =


H1 if f1(s)

f0(s) ≥ q0
q1

H0 if f1(s)
f0(s) <

q0
q1
.

(2.7)

The quantity f1(s)/f0(s) is referred to as the likelihood ratio associated
with the value s, and a decision rule that applies a threshold to the like-
lihood ratio is termed a likelihood ratio test (LRT). In the terminology
of decision regions introduced above, the optimal MPE decision region
DMPE is an LRT with threshold value η = q0/q1,

DMPE = {s : f1(s)/f0(s) ≥ q0/q1}. (2.8)

As we summarize below, the optimal decision regions for the minimum
risk and Neyman-Pearson criteria have a very similar form.

2.3 Minimum Risk Decision Rules

It may also be desirable in some cases to assign different relative cost
values to the different possible decision scenarios – a detection, a false
alarm, etc. The expected cost incurred over all values of S is some-
times referred to as the risk or Bayes’ cost and denoted as R, and the
corresponding optimal decision rule is the one that minimizes R. We
denote by cij the cost of declaring Ĥ = Hi when in truth H = Hj . The
probability of error corresponds to the special case where c01 = c10 = 1
and c00 = c11 = 0. Similar to the integral in Equation (2.3), the risk
can be expressed as

R =
∫
ds fS(s)Rs, (2.9)
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where Rs is the expected conditional cost incurred given that S = s.
Again since fS(s) is non-negative for all values of s, to minimize R it is
sufficient to minimize Rs for every s. As in Equation (2.4) we consider
separately the cases where s lies in D and where it does not, leading to

Rs =

c10 P (H = H0|S = s) + c11 P (H = H1|S = s) if s ∈ D

c00 P (H = H0|S = s) + c01 P (H = H1|S = s) if s /∈ D.
(2.10)

The top line above corresponds to the expected cost incurred when
we declare Ĥ = H1, while the bottom line is the same quantity when
we declare Ĥ = H0. To minimize Rs we choose the decision with the
smaller expected cost. A parallel analysis to the one in Section 2.2 using
Bayes’ rule applied to the a posteriori probabilities leads to the optimal
decision rule with respect to the minimum risk criterion,

Ĥ =


H1 if f1(s)

f0(s) ≥ q0(c10 − c00)
q1(c01 − c11)

H0 if f1(s)
f0(s) <

q0(c10 − c00)
q1(c01 − c11) .

(2.11)

Thus, the minimum risk decision rule is an LRT with threshold η =
[q0(c10 − c00)]/[q1(c01 − c11)]. Its decision region DMR is

DMR =
{
s : f1(s)

f0(s) ≥ q0(c10 − c00)
q1(c01 − c11)

}
. (2.12)

2.4 Neyman-Pearson Optimal Decision Rules

While the MPE and minimum risk criteria are intuitively desirable in
that they minimize the notion of average cost over many decisions, im-
plementation of the resulting optimal decision rules may be impractical
if the priors are unknown and difficult to estimate. The minimum risk
criterion also requires us to assign relative costs to the different possible
decisions, which may be a highly subjective task with no obvious or
clear answer. Another common optimality criterion used in classical
binary hypothesis testing scenarios involves placing bounds on either
Pf or (1 − Pd) (the probability of a missed detection). As an example,
in the radar community Pf is often constrained to be below 10−6 since
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false detection of a target can trigger costly actions and a waste of
expensive resources. In this and other similar situations, a reasonable
objective is to maximize Pd subject to a given tolerable upper bound
on Pf . This is referred to as the Neyman-Pearson criterion. It can be
shown analytically that the optimal Neyman-Pearson decision rule is
an LRT with a threshold value η that is chosen to ensure that Pf is
exactly equal to its upper bound [24], [25]. In other words, the optimal
Neyman-Pearson decision region DNP is

DNP = {s : f1(s)/f0(s) ≥ η0} where η0 is chosen s.t. Pf = α. (2.13)

Recall that the threshold value η0 affects the value of Pf through
the integral given in Equation (2.2a). An informal argument [25] that
provides intuition as to why the above decision region is optimal with
respect to the Neyman-Pearson criterion is included in Appendix A.1.

It is significant that the optimality criteria of MPE, minimum risk,
and maximum Pd for a specified upper bound on Pf all lead to the family
of likelihood ratio tests parameterized by an appropriate threshold value
η. By definition, each member of the family has the form

DLRT(η) = {s : f1(s)/f0(s) ≥ η} (2.14)

for some real number η ≥ 0. Explicitly, we have

DMPE = DLRT

(
q0
q1

)
(2.15a)

DMR = DLRT

(
q0(c10 − c00)
q1(c01 − c11)

)
(2.15b)

DNP = DLRT(η0), (2.15c)

where in Equation (2.15c) the threshold η0 is chosen so that Pf is equal
to its upper bound.

Example 2.4. It was stated in Example 2.1 that in a typical radar signal
detection problem the pre-decision operator is a linear filter followed
by a sampler. We summarize here a well-known example [24], [25] in
which the filter is designed to compute (along with the sampler) the
likelihood ratio of the incoming samples.
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Consider a scenario in which the samples x[n] of an incoming wave-
form consist only of noise or of noise added to to a pre-determined
signal y[n] of length T ,

x[n] =

w[n] if H = H0

w[n] + y[n] if H = H1
, 1 ≤ n ≤ T. (2.16)

In Equation (2.16), w[n] is assumed to be an independent and identically-
distributed zero-mean Gaussian random process with variance σ2. The
conditional PDFs of the T samples, fi(x[1], . . . , x[T ]) for i ∈ {0, 1}, are
also Gaussian and their ratio can be expressed as

f1(x[1], . . . , x[T ])
f0(x[1], . . . , x[T ]) = exp

[
− 1

2σ2

T∑
n=1

y[n]2 + 1
σ2

T∑
n=1

x[n] y[n]
]
. (2.17)

Straightforward algebra leads to the conclusion that for an LRT thresh-
old value η0, the likelihood ratio is greater than or equal to η0 whenever

T∑
n=1

x[n] y[n] ≥ σ2 ln(η0) + 1
2

T∑
n=1

y[n]2. (2.18)

The sum on the left-hand side of the inequality can be obtained as
the output of a linear filter whose impulse response is h[n] = y[−n]
and sampling the output of the filter at the appropriate time. h[n] is
commonly referred to as a matched filter since it is “matched” to y[n].
The value of η0 could be chosen according to Equation (2.15) to be
optimal with respect to minimum probability of error, minimum risk, or
the Neyman-Pearson criterion. It is also straightforward to generalize
this scenario to the case where T tends to infinity.

2.5 Receiver Operating Characteristics

When considering a given error criterion under a specific set of conditions
– specific priors, for example – the primary goal is to find the single
optimal decision rule with respect to that error criterion and those
conditions. But it is often very useful to consider entire families of
decision rules that are optimal under potentially different error criteria
and for possibly different sets of conditions. ROCs are a useful tool
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that allows us to accomplish exactly this. Referring back to Figure 2.1,
ROCs are generated by fixing the pre-decision operator and recording
the values of Pf and Pd that result from different decision regions of the
binary decision rule. For the sake of consistency with the literature we
will continue to refer to them as ROCs. But to be more consistent with
the analogous operating characteristic introduced in Section 3 for the
quantum case, we emphasize that they could equally well be referred to
as classical decision operating characteristics or CDOCs.

Among the ways of utilizing ROCs, it has become common in many
communities to compare two decision-making strategies based on global
properties of their corresponding ROCs. Such a comparison is inherently
difficult because of the fundamental difference between metrics used to
compare individual decision rules and metrics used to compare entire
ROCs, which represent collections of decision rules. It is less clear how
to interpret the latter in terms of realizable differences in performance
since ultimately only a single rule can be used. Nevertheless, the area
under an ROC (AUC) is one such property that is widely used in the
literature and in practice. There is significant debate over whether the
AUC is a reasonable metric despite its popularity and many alternatives
have been proposed although not widely accepted. For more details we
refer the reader to [26], [27].

2.5.1 Preliminaries

Two simplifying assumptions used throughout the remainder of Section 2
are as follows. We will always assume that f0(·) and f1(·) are continuous,
strictly positive functions. This implies that the likelihood ratio function
f1(·)/f0(·) is continuous. We assume in addition that the likelihood ratio
function is not constant over any finite interval. The results presented
in Sections 2.5.3 through 2.5.5 can be extended to more general score
variables. However, the analysis is more complicated and does not lead
to additional insight, so we do not address this more general case.

2.5.2 LRT ROCs and SVT ROCs

The LRT ROC associated with a given score variable may be obtained
by recording the values of Pf and Pd corresponding to all possible LRT
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thresholds. Each possible operating point on an LRT ROC is optimal
with respect to the MPE criterion for some combination of priors, the
minimum risk criterion for some combination of priors and relative
costs, and the Neyman-Pearson criterion for some upper bound on the
value of Pf . By looking at the entire operating characteristic, we can
see the optimal operating points with respect to each of these criteria
for all possible sets of priors, all possible relative costs, and all possible
upper bounds on Pf .

Another commonly used family of decision regions stems from the
somewhat simpler strategy of thresholding the score variable itself,
rather than thresholding the likelihood ratio.2 We will refer to such a
strategy as a score variable threshold test or SVT [23]. Each member of
the SVT family of decision regions has the form

DSVT(γ) = {s : s ≥ γ} (2.19)

for some real number γ. Again, the SVT ROC associated with a given
score variable may be obtained by recording all possible combinations
of γ, Pf , and Pd.

SVTs are especially common in scenarios where ROCs are generated
using empirical datasets. In these contexts the score variable is typically
a finely-tuned combination of many measurements, possibly computed
by applying a machine learning algorithm to a vector of feature values.
Thus, it is often less amenable to mathematical analysis and in particular
to accurate modeling of the distributions f0(·) and f1(·). In principle
this does not preclude the use of LRTs, since f0(·) and f1(·) can be
estimated from histograms derived from training data. However, reliable
estimation of probability densities from empirical data is well-known to
be a difficult problem [28], [29]. Estimation of the likelihood ratio from
empirical data is even more difficult because small errors in the estimate
of the denominator of the ratio can lead to large errors in the estimate of
the ratio itself. It is in part for this reason that other decision strategies

2Of course, we may always redefine the score variable to be the likelihood ratio
random variable, i.e., the random variable S′ = f1(S)/f0(S) where S is the original
score variable. An LRT performed with respect to the original score variable may
then be reinterpreted as an SVT performed with respect to the new score variable.
But this may not be a feasible strategy if the conditional distributions f0(·) and f1(·)
are inaccessible.
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besides LRTs, including SVTs as a particularly common choice, are used
in many practical binary hypothesis testing situations.

It will be useful to introduce notation for the parametric formulas of
the Pf -Pd projections of the LRT or SVT ROC of a given score variable.
For an LRT ROC we define the functions gf (·) and gd(·) as

PLRT
f = gf (η) =

∫
DLRT(η)

ds f0(s) (2.20a)

PLRT
d = gd(η) =

∫
DLRT(η)

ds f1(s). (2.20b)

When η = +∞, DLRT(η) is empty and gf (η) = gd(η) = 0. When
η = 0, DLRT(η) contains the entire real line and gf (η) = gd(η) = 1. The
functions gf (·) and gd(·) are always non-increasing in η. This follows
from the fact that for two threshold values η0 ≤ η1, the decision region
DLRT(η1) always lies within DLRT(η0). Under the current assumptions
gf (·) and gd(·) are continuous and strictly decreasing, so they are
invertible.

Similarly for the Pf -Pd projection of an SVT ROC we define the
functions hf (·) and hd(·) as

P SVT
f = hf (γ) =

∫
DSVT(γ)

ds f0(s) (2.21a)

P SVT
d = hd(γ) =

∫
DSVT(γ)

ds f1(s). (2.21b)

Equation (2.21) can be simplified by defining Fi(·) to be the cumulative
distribution function (CDF) of fi(·),

Fi(u) =
∫ u

−∞
ds fi(s), i ∈ {0, 1}, (2.22)

for any real number u. Equation (2.21) can then be rewritten as

P SVT
f = hf (γ) = 1 − F0(γ) (2.23a)

P SVT
d = hd(γ) = 1 − F1(γ). (2.23b)

When γ = +∞, DSVT(γ) is empty and hf (γ) = hd(γ) = 0. When
γ = −∞, DSVT(γ) is the whole real line and hf (γ) = hd(γ) = 1.
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Since F0(·) and F1(·) are non-decreasing in γ, hf (·) and hd(·) are non-
increasing in γ. Alternatively, hf (·) and hd(·) are non-increasing in γ

since for any two thresholds γ0 ≤ γ1, DSVT(γ1) is always contained
within DSVT(γ0). Under the current assumptions hf (·) and hd(·) are
strictly decreasing and therefore invertible.

2.5.3 Properties of LRT and SVT ROCs

We briefly review well-known properties of the Pf -Pd projections of
ROCs generated using LRTs and SVTs applied to a given score variable.
Ultimately these properties will be helpful in connecting the SVT ROC
and LRT ROC of a given score variable, including when their Pf -Pd

projections are identical and when, if they are not identical, one can
be obtained from the other. The Pf -Pd projections of SVT ROCs and
LRT ROCs are always monotonic. The Pf -Pd projections of LRT ROCs
have the following additional properties.

• The slope of the Pf -Pd projection of an LRT ROC at the point
(PLRT

f , PLRT
d ) = (gf (η0), gd(η0)) associated with a fixed threshold

value η0 is equal to η0. That is,

dPLRT
d

dPLRT
f

∣∣∣∣∣
P LRT

f
=gf (η0)

= g′
d(η0)
g′

f (η0) = η0, (2.24)

where g′
f (·) and g′

d(·) denote the derivatives of gf (·) and gd(·),
respectively.

• Pf -Pd projections of LRT ROCs are concave.

A derivation of Equation (2.24) can be found in many classical
decision theory textbooks (see, for example, [24]) and relies mainly
on a change of variables in the integrals in Equations (2.20) from an
integration over all possible score variable values to an integration over
all possible likelihood ratio values. The mathematical details are not
relevant to the focus of this monograph, so we omit them. The second
property follows directly from Equation (2.24) in combination with the
monotonicity of gf (·) and gd(·). As the LRT threshold value η decreases
from +∞ to 0, we move from left to right along the curve and the slope
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decreases. This is evident in the LRT ROCs shown in Examples 2.5 and
2.6 below. Another way of stating this is that concavity is a necessary
condition for the Neyman-Pearson optimality of an ROC. Under the
current assumptions, LRT ROCs are necessarily strictly concave.

For a given score variable, we might be interested in whether or
not the Pf -Pd projection of its SVT ROC is identical to the Pf -Pd

projection of its LRT ROC. When this is the case, we can perform
optimal MPE, minimum risk, and Neyman-Pearson decision rules by
performing SVTs instead of LRTs. This means in particular that we do
not need to estimate the conditional distributions of the score variable,
nor do we need to estimate the likelihood ratio function. The question
is equivalent to asking when any LRT decision region DLRT(η) can be
written as an equivalent SVT decision region DSVT(γ) and vice versa.
It is straightforward to see that this is the case only when the likelihood
ratio f1(s)/f0(s) is an invertible function of the score variable, because
then if we define ℓ(s) = f1(s)/f0(s) we have DLRT(η) = DSVT(ℓ−1(η))
and DSVT(γ) = DLRT(ℓ(γ)). Of course, in general the likelihood ratio is
not an invertible function of the score variable.

Since the Pf -Pd projections of the SVT and LRT ROCs of a given
score variable are not necessarily the same, unlike an LRT ROC, there
is no reason a priori to assume that the Pf -Pd projection of an SVT
ROC need be concave. An interesting question is whether or not, if the
Pf -Pd projection of the SVT ROC of a given score variable is concave,
it must be identical to the Pf -Pd projection of the LRT ROC of that
score variable. The answer turns out to be surprisingly simple, relying
only on a calculation of the slope of the Pf -Pd projection of an SVT
ROC as a function of the SVT threshold, and is addressed in Section
2.5.4.

Example 2.5. Consider two conditional distributions f0(·) and f1(·) that
are Gaussian with a common variance σ2 but different means denoted by
µ0 and µ1, respectively. An example with σ2 = 1, µ0 = −1, and µ1 = 1
is shown in Figure 2.2a. The likelihood ratio function ℓ(·) = f1(·)/f0(·)
is strictly monotonic and therefore invertible. Therefore, the LRT and
SVT ROCs are identical and we have DLRT(η) = DSVT(ℓ−1(η)) and
DSVT(γ) = DLRT(ℓ(γ)) for all η and all γ. The LRT ROC is shown
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(a) (b)

Figure 2.2: (a) Gaussian conditional distributions with variance σ2 = 1 and mean
µ0 = −1 or µ1 = 1. (b) LRT and SVT ROCs, which are identical for these conditional
distributions.

in Figure 2.2b. Each point corresponds to a specific LRT threshold.
The parametric formulas for the LRT ROC as a function of the LRT
threshold are

PLRT
f = gf (η) = 1 − Φ

(
ℓ−1(η) − µ0

σ

)
(2.25a)

PLRT
d = gd(η) = 1 − Φ

(
ℓ−1(η) − µ1

σ

)
, (2.25b)

where Φ(·) is the CDF of the standard normal distribution. It can be
verified through straightforward algebra that for any η0 ≥ 0, we have
g′

d(η0)/g′
f (η0) = η0. The parametric formulas for the SVT ROC as a

function of the SVT threshold are

P SVT
f = hf (γ) = 1 − Φ

(
ℓ(γ) − µ0

σ

)
(2.26a)

P SVT
d = hd(γ) = 1 − Φ

(
ℓ(γ) − µ1

σ

)
. (2.26b)
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Example 2.6. Consider two conditional distributions f0(·) and f1(·)
that are Gaussian with zero mean but different variances denoted by
σ2

0 and σ2
1, respectively. An example with σ2

0 = 0.25 and σ2
1 = 2.25 is

shown in Figure 2.3a. The likelihood ratio function ℓ(·) = f1(·)/f0(·) is
an even function of s that is strictly decreasing for s < 0 and strictly
increasing for s ≥ 0. Since ℓ(·) is not invertible, the LRT and SVT
ROCs are different as shown in Figure 2.3b. The parametric formulas
for the LRT ROC as a function of the LRT threshold are

PLRT
f = gf (η) = 2 − 2 Φ

(
u

σ0

)
(2.27a)

PLRT
d = gd(η) = 2 − 2 Φ

(
u

σ1

)
(2.27b)

where u ≥ 0 is the unique non-negative value that satisfies ℓ(u) = η and
Φ(·) is again the CDF of the standard normal distribution. Again it
can be verified through straightforward algebra that for any η0 ≥ 0, we
have g′

d(η0)/g′
f (η0) = η0. The parametric formulas for the SVT ROC

curve as a function of the SVT threshold are

P SVT
f = hf (γ) = 1 − Φ

(
ℓ(γ)
σ0

)
(2.28a)

P SVT
d = hd(γ) = 1 − Φ

(
ℓ(γ)
σ1

)
. (2.28b)

2.5.4 Optimality of a Concave SVT ROC

A principal result presented in [23] is that if the Pf -Pd projection of
an ROC that was generated using SVTs on a given score variable is
concave, then it is guaranteed to be the Pf -Pd projection of the LRT
ROC for that score variable. In other words, concavity is a sufficient
condition for the Neyman-Pearson optimality of the Pf -Pd projection
of the SVT ROC of a given score variable. To show that this is true,
recall from Equation (2.23) that the SVT ROC of a given score variable
can be written parametrically as

P SVT
f = hf (γ) = 1 − F0(γ) (2.29a)

P SVT
d = hd(γ) = 1 − F1(γ). (2.29b)
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(a) (b)

Figure 2.3: (a) Gaussian conditional distributions with mean µ = 0 and variance
σ2

0 = 0.45 or σ2
1 = 1.25. (b) LRT and SVT ROCs.

Let h′
f (·) and h′

d(·) denote the derivatives of hf (·) and hd(·), respectively.
A key observation is that

h′
f (γ) = f0(γ) (2.30a)

h′
d(γ) = f1(γ). (2.30b)

And thus at the point on the curve corresponding to the SVT threshold
γ0, the derivative of the curve is

dP SVT
d

dP SVT
f

∣∣∣∣∣
P SVT

f
=hf (γ0)

= h′
d(γ0)
h′

f (γ0) = f1(γ0)
f0(γ0) . (2.31)

If the Pf -Pd projection of the SVT ROC is concave, then the current
assumptions guarantee that it will be strictly concave. Its slope will
therefore be an invertible (strictly decreasing) function of P SVT

f . Since
P SVT

f is itself an invertible (strictly decreasing) function of γ, the slope
of the curve will also be an invertible (strictly increasing) function of γ.
According to Equation (2.31), the slope of the curve as a function of γ
is simply equal the likelihood ratio function. In summary, if the Pf -Pd

projection of the SVT ROC is concave then the likelihood ratio function
must an invertible function of the SVT threshold, or equivalently an
invertible function of the score variable. This implies that the Pf -Pd
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projections of the SVT and LRT ROCs of the score variable must be
identical, proving the result. Note that this result implicitly yields a
method for checking whether or not the likelihood ratio function is a
monotonic function of the score variable without explicitly computing
it for all values of s. Specifically, we may simply generate the Pf -Pd

projection of the SVT ROC and if it is concave, then the likelihood
ratio function is necessarily monotonic in the score variable.

The above result is different from the statement in [30], which says
that given any concave curve with endpoints at (0, 0) and (1, 1), one
can always construct a pair of conditional distributions for which that
curve is the Pf -Pd projection of the LRT ROC. In that context, the
curve and the distributions are strictly abstract and the curve need not
have been generated in any particular way relating to the distributions
(in fact, it need not have been generated in any particular way at all, it
is essentially just an arbitrary continuous map from the interval [0, 1]
to itself). On the other hand, the result stemming from Equation (2.31)
says that if the Pf -Pd projection of the given operating characteristic (i)
was generated using SVTs on a specific pair of distributions associated
with a given score variable and (ii) is strictly concave, then the ROC is
optimal for those distributions.

The fact that the Pf -Pd projection of the SVT ROC of a given
score variable is Neyman-Pearson optimal if it is concave leaves open
the question of what can be said about a given score variable if the
Pf -Pd projection of its SVT ROC is not concave. In this case the Pf -Pd

projection of the SVT ROC is not Neyman-Pearson optimal. However,
as we show next, it is still possible to recover the LRT ROC of the score
variable from its SVT ROC. Moreover, the recovery does not depend
on any knowledge of the conditional distributions of the score variable.

2.5.5 Generation of the Optimal ROC from a Non-Concave SVT
ROC

In this section we define a procedure for constructing the LRT ROC
of a score variable directly from its SVT ROC. It is assumed of course
that the SVT ROC is not concave, since otherwise it would already
be optimal according to Section 2.5.4. Consider first the scenario in



2.5. Receiver Operating Characteristics 25

which the functions P SVT
f = hf (γ) and P SVT

d = hd(γ) are known for all
SVT thresholds γ. Equivalently the entire operating characteristic is
known as opposed to just its Pf -Pd projection. A straightforward way
of constructing the LRT ROC would be to differentiate hf (·) and hd(·)
with respect to γ to recover f0(·) and f1(·), respectively, as stated in
Equation (2.30). Then LRTs could be directly performed for all LRT
thresholds to compute the functions PLRT

f = gf (η) and PLRT
d = gd(η).

If, on the other hand, P SVT
d is known as a function of P SVT

f but neither
one is known as a function of the SVT threshold, i.e., the functions
hf (·) and hd(·) are unknown, then it is less clear how to recover the
LRT ROC. This scenario is the focus of the current discussion.

An example is shown in Figure 2.4 for concreteness and ease of
visualization. The conditional PDFs f0(·) and f1(·) shown in Figure
2.4a were designed specifically to generate distinctly different Pf -Pd

projections of the SVT and LRT ROCs. For any η0 ≥ 0, the following
procedure allows us to recover PLRT

f = gf (η0) and PLRT
d = gd(η0). A

detailed explanation of the underlying logic can be found in Appendix
B.1.

1. Identify the segments of the SVT ROC for which the slope
dP SVT

d /dP SVT
f is greater than or equal to η0.

2. Add the segments together end-to-end to compute the location
of the desired point on the LRT ROC. Mathematically, this can
be done by recording the changes in P SVT

f and P SVT
d over each

segment. Let these changes be denoted by ∆P (j)
f and ∆P (j)

d where
j is an index over segments. PLRT

f = gf (η0) and PLRT
d = gd(η0)

can be computed as

PLRT
f = gf (η0) =

∑
j

∆P (j)
f (2.32a)

PLRT
d = gd(η0) =

∑
j

∆P (j)
d . (2.32b)

This procedure is fundamentally different than the use of random-
ization to replace a convex region on the Pf -Pd projection of an ROC
by the straight line connecting its endpoints [31], [32]. In that case,
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(a) (b)

Figure 2.4: (a) Sample conditional PDFs f0(·) and f1(·) along with (b) the corre-
sponding SVT and LRT ROCs. Assuming that the SVT ROC is known, the objective
is to construct the LRT ROC.

a biased coin is flipped and the result dictates whether the decision
region of the first endpoint or that of the second endpoint is used. It is
straightforward to show that the effective probabilities of false alarm and
detection then lie on the straight line between the endpoints. However,
the resulting operating characteristic is not Neyman-Pearson optimal.
One way of seeing this is to observe that the Pf -Pd projection of the
LRT ROC of a continuous score variable, even in the absence of the
assumptions made in this monograph, can never have any linear regions
– it must either be continuous and strictly concave or discontinuous and
strictly concave over each of its disjoint regions.

Suppose that for a certain value of η0 ≥ 0, we wish to not only
compute gf (η0) and gd(η0) but also to identify the decision region
DLRT(η0). If the functions hf (·) and hd(·) are known then as previously
stated, we can simply differentiate them to recover f0(·) and f1(·),
respectively, and then compute the decision region analytically. But the
constructive procedure outlined above also implicitly provides a method
for identifying DLRT(η0) without requiring explicit computation of the
conditional PDFs or their ratio. Specifically, we may plot the derivative
of the SVT ROC as a function of the SVT threshold and then read the
decision region DLRT(η0) directly off the graph by checking where the
derivative is greater than or equal to η0.
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2.6 Classical Measurement Operating Characteristics

It is not uncommon in many practical scenarios for the optimal pre-
decision operator to be only partially known. A lack of information about
the two possible hypotheses for instance, may make it impossible to fully
parameterize the optimal pre-decision operator for a given optimality
criterion. In such a case it may be desirable to fix the binary decision
rule while varying some parameter or parameters of the pre-decision
operator as a way of determining or at least estimating its optimal form.
An operating characteristic can be generated by recording the values of
Pf and Pd obtained for each individual pre-decision operator. We refer to
operating characteristics generated in this way as classical measurement
operating characteristics or CMOCs. If the input to the system is a
series of sample values x[n], for instance, and the optimal pre-decision
operator is known to be a filter of a given bandwidth, then the center
frequency of the filter might be varied while the binary decision rule is
kept fixed. A comparison of empirical values of the probability of error
achieved with each center frequency could be used to obtain a rough
estimate of its optimal (with respect to minimum probability of error)
value. Operating characteristics analogous to CMOCs generated in the
quantum setting are discussed in Section 3.6.



3
Operating Characteristics for Quantum Binary

State Discrimination

The objective of Section 3 is to describe a particular binary hypothesis
testing problem in the quantum setting using the terminology and
notation developed in Section 2. Of particular importance are the
concepts of quantum decision and measurement operating characteristics
which are analogous to ROCs and CMOCs, respectively. The topics of
Section 3 were also described in [33]. Throughout the section, the input
to the discrimination system in Figure 2.1, reproduced in Figure 3.1
for convenience, is assumed to be a quantum mechanical system. To
avoid ambiguity between the discrimination system and the quantum
mechanical system, from this point forward we will abbreviate the latter
as the QMS. The null and positive hypotheses correspond to the QMS
having been prepared by one of two possible laboratory procedures or
physical environments, each of which corresponds to a distinct quantum
state. Importantly, the way in which we can obtain information about
the QMS through measurement is constrained through the postulates of
quantum mechanics. The terminology that we use surrounding quantum
measurement is discussed briefly in Section 3.1. The postulates of
quantum mechanics that are relevant to this monograph are stated in
Section 3.2. In Section 3.3 we use the postulates to describe in detail

28
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one popular formulation of the quantum binary hypothesis testing
problem. While in this monograph we only consider this formulation
of the problem, we emphasize again that there are many alternate
formulations, generalizations, and extensions. In Section 3.4 we review
Helstrom’s well-known result regarding minimum probability of error
decision strategies for quantum binary hypothesis testing. Helstrom’s
result is the counterpart to the classical MPE decision rules reviewed in
Section 2.2. In Sections 3.5 and 3.6 we describe two types of operating
characteristics in analogy with classical ROCs (also referred to in this
monograph as CDOCs) and CMOCs. We refer to them as either quantum
decision operating characteristics (QDOCs) or quantum measurement
operating characteristics (QMOCs) depending on the parameter that is
varied to generate different values of Pf and Pd.

Figure 3.1: Framework for binary hypothesis testing.

3.1 Preliminaries

There are many ways in which classical and quantum systems differ
and correspondingly so do many of the issues related to hypothesis
testing. Much of the terminology related to quantum mechanics is
phrased somewhat differently depending on whether it is presented or
described more from a physical and experimental perspective or from
a mathematical perspective. Quantum phenomena inherently occur in
the physical world. However, the fundamental underpinnings of the
mathematical analysis of quantum phenomena rely on a representation
of quantum states as vectors or operators in a Hilbert space. While the
mathematics provides the tools to make predictions about the outcome
of experiments, the experiments themselves occur in the physical world.
As succinctly phrased by Asher Peres in his book [34],
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Quantum phenomena do not occur in a Hilbert space. They
occur in a laboratory.

Our focus in the remainder of the monograph is on the mathematics
and the representation of quantum states and operations on those
states abstractly in Hilbert space. And the terminology that we use
will correspond to that representation. Consequently in this preliminary
section we define several significant terms as we will be using them in
the subsequent discussion.

For our purposes, the state of a quantum system will refer to the
density operator associated with the physical procedure used to prepare
the system in a laboratory. The density operator is a mathematical
representation capturing all that is known about the system prior
to measurements on it. And the ways in which information can be
obtained about the state through measurement are constrained by the
postulates of quantum mechanics, which are summarized in Section 3.2.
A key aspect of the postulates is the meaning of and constraints on
the concept of measurement. In all scenarios it is necessary to make a
distinction between the word measurement as it refers to a specified
experimental setup in a real or hypothetical laboratory and as it refers
to the laws of classical or quantum physics that model our knowledge of
the interaction of the laboratory equipment with the object or system we
wish to measure. In this monograph we borrow from the terminology in
[35] in which every quantum measurement is “described by a collection
of measurement operators {Ak}....operating on the state space of the
system being measured”. We use the term measurement to refer to the
collection of operators {Ak}. We will assume in addition that the index
k satisfies 1 ≤ k ≤ M . When the measurement is made the state of
system being measured changes in a probabilistic manner to a new
state whose value depends on both the original state and on one of the
{Ak}. Thus there are M possible measurement outcomes that can occur,
each associated with a value of the index k in the set of operators. We
will only be concerned with the value of the index k representing the
operator used to compute the post-measurement state, and not with
the value of the post-measurement state itself, and consequently we will
use the term measurement outcome to refer to that index.
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3.2 The Postulates of Quantum Mechanics

While there are in total four postulates of quantum mechanics, in
Section 3.2 we focus on the two postulates that relate specifically to this
monograph. Both are loosely paraphrased from Chapter 2 of [35]. To be
consistent with the relevant quantum mechanics literature we will use
Dirac’s bra-ket notation, in which a vector in V is represented by a ket
(for example, |v⟩) and its conjugate transpose is represented by a bra
(for example, ⟨v|). For a specified basis {|un⟩ , 1 ≤ n ≤ N} for V, we
will occasionally use the notation |v⟩ = [c1, . . . , cN ]T as shorthand to
indicate that |v⟩ = ∑

n cn |un⟩. The inner product between two vectors
|v1⟩ , |v2⟩ ∈ V will be denoted by ⟨v1|v2⟩ and the squared norm of a
vector |v⟩ ∈ V will be defined as the inner product of |v⟩ with itself,
denoted by ||v||2 = ⟨v|v⟩. The angle θ between two vectors |v1⟩ , |v2⟩ ∈ V
is defined via the relation ||v1|| ||v2|| cos θ = ⟨v1|v2⟩.

Quantum State Postulate. The state of an isolated physical system
can be represented by a density operator ρ that is a linear operator on
a complex Hilbert space H. H is often referred to as the state space
of the system. We assume for convenience that H is finite-dimensional
with dimension d. A given density operator can always be written in
the form

ρ =
D∑

j=1
aj |ψj⟩ ⟨ψj | , (3.1)

where D > 0 is an integer, the {aj} are probabilities, and the {|ψj⟩}
are unit vectors in H that are often referred to as state vectors. For
a given density operator ρ, it is well-known that the value of D, the
{aj}, and the {|ψj⟩} are in general not unique. We remark on this fact
further below.

Quantum Measurement Postulate. Quantum measurements are de-
scribed by a collection {Ak} of measurement operators that are linear
operators on the state space H of the system being measured. Each
value of the index k corresponds to a different possible measurement
outcome. In this monograph we will assume for convenience that there
are a finite number, M , of elements, and that 1 ≤ k ≤ M . Measurement
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elements satisfy a completeness relation on H,
M∑

k=1
A†

kAk = I, (3.2)

where I is the identity operator on H. If the state of the system is
described by the density operator ρ = ∑

j aj |ψj⟩ ⟨ψj | immediately before
a measurement described by the operators {Ak}, then with probability

p(k) =
D∑

j=1
aj ⟨ψj |A†

kAk |ψj⟩ (3.3)

the kth measurement outcome occurs. It is often convenient to write
p(k) using the trace operator Tr(·),

p(k) = Tr
(
A†

k Ak ρ
)
. (3.4)

A derivation of Equation (3.4) is given below. Once observed, the
kth measurement outcome indicates that the state of the system has
collapsed to the kth post-measurement state, denoted by ρk. The value
of ρk is dependent on the pre-measurement state ρ and the measurement
operator Ak and is not relevant to this monograph.

A density operator in the form of Equation (3.1) represents a quan-
tum system that has been prepared in the state ρj = |ψj⟩ ⟨ψj | with
probability aj [35]. If only one of the {aj} is non-zero, i.e., am = 1 for
some 1 ≤ m ≤ D and aj = 0 for j ̸= m, then ρ = |ψm⟩ ⟨ψm| is said to
represent a pure state. The state vector |ψm⟩ is itself also often referred
to as a pure state. If more than one of the {aj} is non-zero, then ρ is
referred to as a mixed state – that is, a probabilistic mixture of the
pure states {|ψj⟩}.

Regardless of the state vectors and probabilities that are used,
Equation (3.1) implies that ρ is always a positive semidefinite Hermitian
operator that has trace 1, since

Tr(ρ) =
D∑

j=1
aj Tr (|ψj⟩ ⟨ψj |) =

D∑
j=1

aj = 1, (3.5)

where we have used the linearity of the trace and the fact that for any
vector |x⟩ ∈ H we have Tr (|x⟩ ⟨x|) = ||x||2. Since ρ is Hermitian it can
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always be written in terms of its eigenvalues and eigenvectors as

ρ =
d∑

j=1
λj |xj⟩ ⟨xj | , (3.6)

where the {λj} are real and the {|xj⟩} are orthogonal. It is straightfor-
ward to show that Equation (3.6) can in fact be considered as a special
case of Equation (3.1) with D = d. Specifically when the {|xj⟩} are
normalized to have unit length, the {λj} must be valid probabilities
due to the fact that ρ is positive semidefinite and has trace 1. Therefore,
a given density operator ρ can always be interpreted as the state of a
system that has been prepared in the state ρj = |xj⟩ ⟨xj | with probabil-
ity λj . As the discussion presented in this monograph does not depend
on the state vectors and probabilities used to represent a given density
operator, it will be convenient to specify density operators using the
state vectors and probabilities corresponding to their eigenvectors and
eigenvalues, respectively.

Regarding the quantum measurement postulate, Equation (3.4) can
be derived from Equation (3.3) via

p(k) =
D∑

j=1
aj Tr

(
⟨ψj |A†

kAk |ψj⟩
)

(3.7a)

= Tr

 D∑
j=1

aj ⟨ψj |A†
kAk |ψj⟩

 (3.7b)

= Tr
(
A†

k Ak ρ
)
. (3.7c)

In Equation (3.7) we have used both the fact that the trace of a scalar is
itself and the cyclic property of the trace, Tr(AB) = Tr(BA) for any two
suitable linear operators A and B. Aside from notational convenience,
we will see in Section 4 that the trace operator is also useful because it
can be interpreted as an inner product function.

Throughout this monograph we will only be concerned with the
probability distribution of measurement outcomes, {p(k), 1 ≤ k ≤ M},
and not with the corresponding post-measurement states. To that end,
note that the {p(k)} depend on the measurement operators {Ak} only
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through the operators {Ek = A†
kAk}. By construction the {Ek} have

the properties

Ek = E†
k (Hermiticity) (3.8a)

⟨x|Ek |x⟩ ≥ 0, for all |x⟩ ∈ H (positive semidefiniteness) (3.8b)

M∑
k=1

Ek = I (completeness). (3.8c)

In functional analysis, a collection of operators satisfying these three
properties is referred to as a positive operator-valued measure or POVM
[36]. Distinct quantum measurements can have the same correspond-
ing POVM because replacing each Ak by UAk, where U is a unitary
operator on H, preserves the relation Ek = A†

kAk. It is worth explicitly
writing Equations (3.3) and (3.4) in terms of the operator Ek and the
eigenvectors and eigenvalues of a given density operator ρ,

p(k) =
d∑

j=1
λj ⟨xj |Ek |xj⟩ = Tr(Ek ρ). (3.9)

Equation (3.9) is a crucial relation that is the basis for much of the
discussion in Section 5. The main focus of Section 5 is a particular class
of POVMs referred to as informationally complete or IC POVMs. An IC
POVM is one that maps each possible density operator to a unique se-
quence of probabilities [10]–[22]. Explicitly, given two density operators
ρ1 and ρ2 as well as an IC POVM {Ek}, let the corresponding prob-
abilities be denoted by {p1(k) = Tr(Ek ρ1)} and {p2(k) = Tr(Ek ρ2)}.
We have {p1(k) = p2(k)} if and only if ρ1 = ρ2. An important result
regarding IC POVMs that is reviewed in Section 5 connects each IC
POVM to an overcomplete representation of a vector space containing
all valid density operators.

A different class of POVMs correspond to the class of quantum
measurements referred to as standard measurements, also sometimes
referred to as projective or von Neumman measurements. A standard
quantum measurement is one for which the measurement operators {Ak}
form a complete set of orthogonal projectors on H. The POVM elements
{Ek = A†

k Ak} of a standard measurement also form a complete set of
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orthogonal projectors on H. This follows from the fact that orthogonal
projection operators are Hermitian and idempotent, so the POVM
elements of a standard measurement are simply {Ek = Ak}. The reverse
is also true – if the elements a given POVM {Ek} form a complete set of
orthogonal projectors on H, then all associated quantum measurements
must be standard measurements.

Example 3.1. Consider a density operator ρ = |ψ⟩ ⟨ψ| that represents
a pure state along with a standard measurement whose elements have
the form {Ak = |vk⟩ ⟨vk|} for some orthonormal basis {|vk⟩} of H. The
corresponding standard POVM is {Ek = |vk⟩ ⟨vk|}. It is straightforward
to verify that the {Ek} satisfy the three conditions specified in Equation
(3.8). When the measurement is made, the kth measurement outcome
occurs with probability

p(k) = Tr (Ek ρ) = | ⟨vk|ψ⟩ |2. (3.10)

Equation (3.10) states that the kth measurement outcome occurs with
a probability equal to the squared magnitude of the component of
|ψ⟩ in the direction of |vk⟩. If |ψ⟩ is orthogonal to |vk⟩ then the kth
measurement outcome has zero probability of occurring.

3.3 Quantum Binary State Discrimination

Consider the scenario where the input to the discrimination system in
Figure 3.1 is a QMS whose state can be represented by one of two known
density operators depending on the true hypothesis, ρ = ρi if H = Hi,
for i ∈ {0, 1}. The two hypotheses may correspond, for example, to
the QMS being subjected to two distinct laboratory procedures or to
the QMS interacting with its environment in two distinct ways. As
in Section 2, the prior probabilities will continue to be denoted by
P (H = H0) = q0 and P (H = H1) = q1. The eigendecompositions of ρ0
and ρ1 will be denoted as

ρ0 =
d∑

j=1
aj |xj⟩ ⟨xj | , (3.11a)

ρ1 =
d∑

j=1
bj |yj⟩ ⟨yj | , (3.11b)
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where the {|xj⟩} and {|yj⟩} each form orthonormal bases of H and the
{aj} and {bj} are probabilities. The pre-decision operator is assumed
to consist of a quantum measurement {Ak, 1 ≤ k ≤ M}. The POVM
elements will continue to be denoted by {Ek, 1 ≤ k ≤ M}. The score
variable is equal to one of the index values 1 ≤ k ≤ M and the decision
region D of the binary decision rule is some subset of {1, 2, . . . ,M}.
For a given decision region D, the conditional distributions of the score
variable are

f0(k) =
d∑

j=1
aj ⟨xj |Ek |xj⟩ = Tr (Ek ρ0) , 1 ≤ k ≤ d, (3.12a)

f1(k) =
d∑

j=1
bj ⟨yj |Ek |yj⟩ = Tr (Ek ρ1) , 1 ≤ k ≤ d. (3.12b)

Then in analogy with Equation (2.2), the probabilities of false alarm
and detection are

Pf =
∑
k∈D

f0(k) =
∑
k∈D

Tr (Ek ρ0) , (3.13a)

Pd =
∑
k∈D

f1(k) =
∑
k∈D

Tr (Ek ρ1) . (3.13b)

It is not uncommon to assume that the quantum measurement that
constitutes the pre-decision operator only has 2 possible outcomes, i.e.,
M = 2. This implies that the score variable can only take on two
possible values, which is significant because it implies in turn that the
decision region of the binary decision rule can only take on four possible
values: D = {} (the empty set), D = {1}, D = {2}, or D = {1, 2}. Recall
that classical ROCs are generated by varying D in order to achieve
different operating points in the Pf -Pd plane, with distinct operating
points corresponding to distinct decision regions. When M = 2 in a
quantum binary hypothesis testing system, there are only four possible
operating points on an operating characteristic analogous to a classical
ROC. Moreover, two of those operating points are (Pf , Pd) = (0, 0)
and (Pf , Pd) = (1, 1), which correspond to ignoring the outcome of the
measurement and consistently declaring either Ĥ = H0 or Ĥ = H1,
respectively. This lack of flexibility is different from classical ROCs,
which are typically used in scenarios where there is a large range –
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possibly even a continuous range – of potential operating points that
are “weighed” against each other using various optimality criteria. It is
of course important to remember that there are alternative formulations
of quantum binary state discrimination in which this is not the case.
In Section 3.5 and 5 we provide examples of operating characteristics
generated using pre-decision operators with M > 2 outcomes.

3.4 Minimum Probability of Error Decision Rules

In analogy with the classical MPE decision rules described in Section
2.2, we summarize Helstrom’s well-known result [9] regarding discrimi-
nation between two fixed density operators with minimum probability
of error. We refer the reader to [9] for the complete derivation and a
generalization of the result to the minimum risk error criterion. For the
remainder of Section 3.4, the word “optimal” will be used specifically
to describe systems that achieve minimum probability of error unless
otherwise specified. Assume that the pre-decision operator is a quantum
measurement with POVM {E1, E2} and that D = {2}. That is, if the
measurement outcome is s = 1 then the final decision is H0 and if
the measurement outcome is s = 2 then the final decision is H1. The
probability of error can be expressed as

Pe = q0 Pf + q1 (1 − Pd) = q1 − q1 Tr
[
E1

(
ρ1 − q0

q1
ρ0

)]
. (3.14)

Helstrom’s result utilizes the orthonormal eigenvectors {|zj⟩ , 1 ≤ j ≤ d}
and real eigenvalues {λj , 1 ≤ j ≤ d} of the operator (ρ1 − (q0/q1) ρ0).
Helstrom showed that the probability of error is minimized when E1 is
the orthogonal projector onto the subspace U1 = span{|λj⟩ : ηj ≥ 0}.
Since E1 +E2 = I this implies that E2 must be the orthgonal projector
onto the subspace U⊥

1 = span{|λj⟩ : ηj < 0}, where the superscript ⊥
indicates an orthogonal complement. Note that any |zj⟩ for which λj = 0
may be included in either subspace without changing the probability of
error. The optimal POVM elements can be written as

E1 =
∑

j:λj≥0
|zj⟩ ⟨zj | (3.15a)

E2 =
∑

j:λj<0
|zj⟩ ⟨zj | . (3.15b)
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Helstrom noted that an equivalent way of achieving minimum prob-
ability of error is to use the d-outcome POVM with elements Ek =
|zk⟩ ⟨zk| , 1 ≤ k ≤ d. If the measurement outcome is s = k where
ηk ≥ 0, then the final decision is H1, otherwise the final decision is
H0. Equivalently, D = {k : λk ≥ 0}. Both of these POVMs have the
property that the elements form complete sets of orthogonal projectors
on H, so they both correspond to standard quantum measurements.

3.5 Decision Operating Characteristics for Quantum Systems

An analogous performance curve to classical ROCs can be made for
the quantum case by fixing the quantum measurement that constitutes
the pre-decision operator and varying the decision region of the binary
decision rule. We refer to such an operating characteristic as a quantum
decision operating characteristic or QDOC. In Example 3.2 we describe
how the result presented in Section 2.5.4 can be applied to QDOCs.

Example 3.2. For this example we set the dimension of H to d = 8 and
we set |xj⟩ = |yj⟩ = |ej⟩, 1 ≤ j ≤ 8, where {|ej⟩} is any orthonormal
basis for H. Note that H is isomorphic to C8. The probabilities {aj}
and {bj} are arbitrarily chosen to be the uniform distribution and an
asymmetric triangular distribution, respectively, as shown in Figure
3.2a. We have aj = 1/8 for 1 ≤ j ≤ 8 and b1 = 2/32, b2 = 4/32, b3 =
6/32, b4 = 8/32, b5 = 7/32, b6 = 5/32, b7 = 3/32, b8 = 1/32. We assume
that the pre-decision operator is an 8-outcome standard quantum mea-
surement with associated POVM elements Ek = |ek⟩ ⟨ek|, 1 ≤ k ≤ 8.
According to Equation (3.12) the conditional distributions of the score
variable are

f0(k) =
8∑

j=1
aj ⟨ej |ek⟩ ⟨ek|ej⟩ = ak, 1 ≤ k ≤ 8, (3.16a)

f1(k) =
8∑

j=1
bj ⟨ej |ek⟩ ⟨ek|ej⟩ = bk, 1 ≤ k ≤ 8, (3.16b)

where we have used the fact that the {|ej⟩} are orthonormal. The LRT
QDOC for this POVM is indicated by the solid black circles shown in
Figure 3.2b. Unlike an LRT decision region, an SVT decision region and
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therefore an SVT QDOC inherently depends on the choice of ordering
of the POVM elements. Since the index values k ∈ {1, . . . , 8} represent
convenient labels corresponding to the possible measurement outcomes
as opposed to actual numerical values, the ordering is arbitrary. Distinct
orderings correspond to distinct shapes of the conditional PMFs f0(·)
and f1(·). In Figure 3.2a we have assumed the natural ordering from
k = 1 to k = 8, and this results in the SVT QDOC represented by
the hollow black circles in Figure 3.2b. Linear interpolation was used
between the points to aid in visualization of the shapes of the curves.
Of course, any operating point on any of the line segments could be
achieved using randomization between two LRT or SVT decision regions
[24]. The constructive procedure described in Section 2.5.5 could be
used to reconstruct the LRT QDOC from the SVT QDOC without any
explicit knowledge of ρ0, ρ1, or any of the {Ek}. The same would be
true for any two density operators ρ0 and ρ1 along with any POVM
{Ek}.

(a) (b)

Figure 3.2: (a) Conditional distributions of the score variable as given in Equation
(3.11). (b) QDOCs generated using LRT or SVT decision regions.

3.6 Measurement Operating Characteristics for Quantum Systems

An analogous operating characteristic to the CMOCs discussed in
Section 2.6 for the quantum case can be generated by keeping the
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decision regions of the binary decision rule fixed while varying the
parameters of the quantum measurement that constitutes the pre-
decision operator. We refer to this type of operating characteristic
as a quantum measurement operating characteristic or QMOC. The
operating characteristics defined by Bodor and Koniorczyk in [37] are
QMOCs in our terminology. Examples 3.3 and 3.4 below below were
motivated by the analysis and examples given in [37].

In Example 3.3 we set the dimension of H to d = 2 and demonstrate
the effects of various parameters of ρ0 and ρ1 on the shape of the
QMOC generated using all possible standard measurements (which
have M = d = 2). As noted in [37], the optimal operating points for all
possible prior probabilities q0 and q1 lie on an ellipse. It is also pointed
out in [37] that this is not true in general for d > 2. For arbitrary mixed
states with d > 2, the collection of optimal operating points for all
possible priors do not lie on an ellipse, but rather on a series of disjoint
segments in the Pf -Pd plane. We demonstrate this in Example 3.4.
We additionally demonstrate in Example 3.4, as is also shown in [37],
that the operating points corresponding to a large number of randomly
chosen standard POVMs (some of which are not optimal for any set
of prior probabilities) form clusters in the Pf -Pd plane. Each cluster
corresponds to a different pair of values for the ranks of the POVM
elements.

Example 3.3. For this example we set d = 2, so H is isomorphic to C2.
As in Equations (3.11) we denote the eigenvectors and eigenvalues of
ρ0 by {|xj⟩} and {aj}, respectively. We arbitrarily set a1 = 1/15 and
a2 = 14/15 and

|x1⟩ =
[
1
0

]
, |x2⟩ =

[
0
1

]
(3.17)

where the implied basis is assumed orthonormal but otherwise arbitrary.
The eigenvectors {|yj⟩} and eigenvalues {bj} of ρ1 are left as parameters
to be varied. Without loss of generality the {|yj⟩} can be assumed to
have the form

|y1⟩ =
[
cos(α/2)
sin(α/2)

]
, |y2⟩ =

[
− sin(α/2)
cos(α/2)

]
(3.18)
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for some angle α. The value of α represents (to within a constant factor)
the angle of separation between the eigenvectors of ρ0 and ρ1. The
pre-decision operator is assumed to be a standard measurement with
associated POVM {E1, E2}. The decision region of the binary decision
rule is D = {2}. By definition E1 and E2 are orthogonal projectors
onto a pair of one-dimensional subspaces spanned by orthogonal vectors.
These vectors will be denoted as

|v1⟩ =
[
− sin(θ/2)
cos(θ/2)

]
, |v2⟩ =

[
cos(θ/2)
sin(θ/2)

]
(3.19)

for some angle θ. We have E1 = |v1⟩ ⟨v1| and E2 = |v2⟩ ⟨v2|. A QMOC
can be generated by fixing the values of α, b1, and b2 and varying the
angle θ. It is straightforward to show that

Pf = Tr(E2 ρ0) = a1 cos2
(
θ

2

)
+ a2 sin2

(
θ

2

)
(3.20a)

Pd = Tr(E2 ρ1) = b1 cos2
(
θ − α

2

)
+ b2 sin2

(
θ − α

2

)
. (3.20b)

In Appendix B.2 we show that Equations (3.20) correspond to the
parametric formula for an ellipse. This was stated but not explicitly
proven in [37]. Explicit formulas for the parameters of the ellipse in
terms of the {aj}, the {bj}, and α are also given in Appendix B.2.

Figure 3.3 shows a collection of QMOCs each generated by fixing
the values of α, b1, and b2 and varying the angle θ. In Figure 3.3a,
b1 and b2 are arbitrarily fixed to b1 = 3/4 and b2 = 1/4 and each
QMOC corresponds to a different value of α. As α approaches 0 and
the eigenvectors of ρ0 and ρ1 become more and more similar, the
eccentricity of the ellipse increases. In Figure 3.3b, α is arbitrarily fixed
to α = π/5 while b1 and b2 are varied. As b1 and b2 approach 1/2,
the ellipse becomes more concentrated around the line Pd = 1/2. It is
straightforward to show that the QMOC is inscribed in the rectangle
with sides Pf = min{a1, a2}, Pf = max{a1, a2}, Pd = min{b1, b2},
Pd = max{b1, b2}.

Example 3.4. We now set d = 8, so H is isomorphic to C8, and
describe the collection of operating points that results from performing
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(a) (b)

Figure 3.3: QMOCs generated with d = 2 for a fixed ρ0 by varying the parameters
of ρ1 and the standard measurement that constitutes the pre-decison operator.

Helstrom’s MPE decision strategy for a range of prior probabilities q0
and q1. When the operating points of a large number of randomly chosen
standard measurements are plotted, the result is a series of clusters in
the Pf -Pd plane.

The eigenvectors {|xj⟩} and {|yj⟩} of ρ0 and ρ1 are each set to an
arbitrary orthonormal basis for H. The {aj} and {bj} are arbitrarily set
to a1 = 1/141, a2 = 5/141, a3 = 10/141, a4 = 15/141, a5 = 20/141, a6 =
25/141, a7 = 30/141, a8 = 35/141 and b1 = 35/141, b2 = 30/141, b3 =
25/141, b4 = 20/141, b5 = 15/141, b6 = 10/141, b7 = 5/141, b8 = 1/141.
The prior probabilities q0 and q1 are varied over their entire ranges from
0 to 1. For each pair of priors, the operator (ρ1 − (q0/q1)ρ0) is formed
and its eigendecomposition is computed in order to identify Helstrom’s
POVM elements E1 and E2 as defined in Equations (3.15). The MPE
operating point then has coordinates

Pf = Tr (E2 ρ0) =
8∑

j=1
aj ⟨xj |E2 |xj⟩ , (3.21a)

Pd = Tr (E2 ρ1) =
8∑

j=1
bj ⟨yj |E2 |yj⟩ . (3.21b)

The result is the collection of upper operating points shown in Figure
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3.4. They form (d− 1) = 7 disjoint segments, in addition to the points
(0, 0) (optimal for q1 = 0) and (1, 1) (optimal for q1 = 1). This is
characteristic of the type of plot that results from other arbitrary
density operators ρ0 and ρ1 and for other values of d > 2. As noted in
[37], each pair of prior probabilities q0 and q1 corresponds to a different
decomposition of H in terms of Helstrom’s orthogonal subspaces U1 and
U2. The discontinuities between the segments in Figure 3.4 correspond to
changes in the dimension of U2 (equivalently, the number of non-negative
eigenvalues of (ρ1 − (q1/q0)ρ0) or the rank of E2). The exception to
this pattern is the case where ρ0 and ρ1 represent two pure states with
d > 2, since in that case the problem essentially reduces to the case
where d = 2, with the effective state space being the two-dimensional
subspace spanned by the two pure states. In that case as stated in
Example 3.3, the optimal operating points for all sets of priors lie on
an ellipse.

There are of course many different ways to decompose H into a
combination of two orthogonal subspaces. Each decomposition corre-
sponds to a different (potentially suboptimal) two-outcome standard
measurement that can be used to distinguish between ρ0 and ρ1. When
randomly chosen two-outcome standard measurements are used in this
way, the corresponding operating points form a series of (d− 1) clusters
in the Pf -Pd plane. This is shown by the lower operating points in
Figure 3.4. Each cluster corresponds to a different pair of dimensions
for the orthogonal subspaces [37]. The fact that the clusters contain
points that are not on any of the disjoint segments of optimal operating
points is a reflection of the fact that not every decomposition of H into
two orthogonal subspaces is optimal for some set of priors.
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Figure 3.4: Operating points obtained by 2-outcome standard measurements per-
formed on arbitrarily chosen density operators ρ0 and ρ1 with d = 8. Upper segments
of operating points: Minimum probability of error operating points for a range of
prior probabilities, 0 ≤ q1 ≤ 1. Lower clusters of operating points: Operating points
obtained by randomly chosen two-outcome standard measurements. Many of these
measurements are not optimal for any pair of prior probabilities.



4
A Perspective on Frame Representations

The focus of Section 3 was the problem of discriminating between
two quantum states using one measurement on a single system. The
mathematical framework introduced in Section 4 sets the stage for a
less restrictive version of the same problem in which we may perform
measurements on many identical systems. This problem is addressed in
Sections 5 and 6. One advantage offered by this increased generality is the
opportunity to exploit IOC POVMs, which were defined in Section 3.2.
IOC POVMs lead to overcomplete representations for density operators.
The purpose of Section 4 is to review the key mathematical tools and
perspectives that we will want to make use of as well as to establish
our notation.

As is well known, a given vector in a finite- or infinite-dimensional
Hilbert space can always be represented in terms of its coefficients with
respect to a fixed basis for the space and a basis expansion corresponds
to a complete representation of each vector. Frames are a generaliza-
tion of bases allowing for an overcomplete representation of a vector
as a linear combination of linearly dependent vectors. In effect, the
coefficients in an overcomplete frame expansion can be viewed as corre-
sponding to multiple linear combinations of the coefficients in a basis

45
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expansion. Among the advantages of an overcomplete representation
is the redundancy of the information in the coefficients. Consequently
frames and frame representations often provide an important mechanism
for describing, analyzing and implementing robust vector representa-
tions that are less sensitive to errors in the coefficients representing
the vectors. Constructing an overcomplete representation can be as
simple as replicating each basis vector multiple times, but there are of
course a variety of more strategic ways of introducing and exploiting
redundancy. Extensive research has been devoted to this topic and its
many extensions in the field of frame theory [38]–[42].

For the remainder of this monograph, we exploit the mathematics
and elegance of frame representations in the Hilbert space character-
ization of quantum states, and in the Hilbert space representation of
operators in the design of IOC POVMs. Specifically in Sections 4.1
to 4.4 we briefly review some core concepts of frame theory that are
relevant to this monograph. For the most part, our main motivation is
to introduce the mathematical framework necessary for the discussion
of IOC POVMs and what we refer to as Etro POVMs in Sections 5 and
6. The many topics that are part of basic frame theory but that are not
essential for our discussion of IOC POVMs are not included.

4.1 Preliminaries

Throughout Sections 4 to 6 we consider vectors that lie in a complex
Hilbert space V that is a subspace of a larger space W . For convenience
we assume that V and W are finite-dimensional with V having dimension
N and W having dimension M . Clearly M ≥ N since V is a subspace
of W. For a given linear operator T on W, we will denote the range
of T by R(T ) and the nullspace of T by N(T ). When a vector |v⟩ is
used as the input to a linear operator T on W , the output will denoted
interchangeably by T |v⟩ or |Tv⟩. As in Section 3, the superscript ⊥ will
denote an orthogonal complement and the superscript † will denote the
Hermitian adjoint of a given linear operator. The orthogonal projection
operator onto a subspace R of W or V will be denoted as PR. An
orthogonal projection operator is always Hermitian (P†

R = PR) and
idempotent (P2

R = PR).
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Consider any set of vectors {|fk⟩ , 1 ≤ k ≤ M}1 that lie in and
span V and that are not necessarily linearly independent. Since V is
finite-dimensional, any set of vectors with these properties form what is
referred to as a frame for V . More generally, an M -element frame for V
is defined as any set of vectors {|fk⟩} in V that satisfy

C ||v||2 ≤
M∑

k=1
| ⟨fk|v⟩ |2 ≤ D ||v||2 (4.1)

for some 0 < C ≤ D < ∞ and for all |v⟩ ∈ V [39]. When C and D are
set to form the tightest possible bounds, they are typically referred to
as upper and lower frame bounds, respectively. The requirement that
C > 0 ensures that the frame vectors span V . Unlike in finite dimensions,
in infinite dimensions Equation (4.1) is not necessarily satisfied by any
set of vectors that lie in and span V. Equation (4.1) can additionally
be extended to include continuous frames and frames with a countably
infinite number of elements. We will use the notation {|wk⟩ , 1 ≤ k ≤ M}
to denote to an orthonormal basis for W. The {|wk⟩} are introduced
specifically for the purpose of defining the analysis and synthesis maps
of a frame in Section 4.2. The notation {|fk⟩ , 1 ≤ k ≤ M} will always
be used to denote a frame for V. As long as the {|wk⟩} are a basis for
W , no generality is lost by assuming that they are orthonormal. If they
were not, an inner product could always be constructed under which
they were, along with an invertible function relating the original inner
product to the new one (see Appendix A.2). While the {|wk⟩} are a
basis for W they are in general neither a basis nor a frame for V, since
not every linear combination of them necessarily lies in V. However, it
is of course possible to choose the {|wk⟩} in such a way that a subset
of them is an orthonormal basis for V.

1The usage of the letter k to index different frame vectors {|fk⟩} coincides with
our choice of indexing for POVM elements {Ek}. This is intentional since in Section
5 we will eventually associate each POVM element Ek with a frame vector of an
appropriately-defined vector space V.
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4.2 Analysis and Synthesis Operators and Maps

Associated with any frame for V are two linear transformations referred
to as the analysis and synthesis operators of the frame [38]. The analysis
operator A takes as its input any |v⟩ ∈ V and generates a set of
frame coefficients defined by {ak = ⟨fk|v⟩ , 1 ≤ k ≤ M}. The synthesis
operator F takes as its input any set {ck, 1 ≤ k ≤ M} of coefficients
and produces as its output the vector ∑k ck |fk⟩ ∈ V . The {ck} used as
input to the synthesis operator do not necessarily need to have been
obtained by applying the analysis operator to some |v⟩ ∈ V. Indeed,
there may not be any |v⟩ ∈ V such that ck = ⟨fk|v⟩ for 1 ≤ k ≤ M .

It will be convenient for the purposes of this monograph to also
define the following two linear operators on W, derived from A and F

and denoted by A0 and F0. Since A0 and F0 are closely related to A
and F but are not strictly identical, we will refer to them as the analysis
and synthesis maps of the frame to avoid ambiguity. The analysis map
A0 maps any vector |v⟩ ∈ V to a specific vector |w⟩ ∈ W according to
the relation

|v⟩ ∈ V −→ |w⟩ = A0 |v⟩ =
M∑

k=1
⟨fk|v⟩ |wk⟩ =

M∑
k=1

ak |wk⟩ ∈ W. (4.2)

It is further defined to satisfy A0 |w⟩ = 0 for all |w⟩ ∈ V⊥. For a given
frame {|fk⟩}, the analysis map A0 can always be expressed as

A0 =
M∑

k=1
|wk⟩ ⟨fk| . (4.3)

Because the {|fk⟩} span V, A0 has full rank and its range R(A0) is
an N -dimensional subspace of W. Its nullspace is N(A0) = V⊥ has
dimension (M − N). The action of A0 is summarized schematically
in Figure 4.1. Both sides of the diagram represent decompositions of
W into a direct sum of two orthogonal subspaces, W = V ⊕ V⊥ and
W = R(A0) ⊕R(A0)⊥. Note that since the {|wk⟩} are orthonormal we
have ||A0 |v⟩ ||2 = ∑

k |ak|2, so Equation 4.1 can be rewritten as

C ||v||2 ≤ ||A0 |v⟩ ||2 ≤ D ||v||2 (4.4)

for some 0 < C ≤ D < ∞ and for all |v⟩ ∈ V.
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Figure 4.1: The analysis map A0 takes vectors in V to a (possibly) different subspace
of W with the same dimension as V. It takes vectors in V⊥ to the zero vector. The
synthesis map F0 takes vectors in R(A0) to the subspace V. It takes vectors in
R(A0)⊥ to the zero vector.

The synthesis map F0 maps any vector |w⟩ ∈ W to a specific vector
|v⟩ ∈ V in a way that relies on the basis coefficients of |w⟩ with respect
to the {|wk⟩} basis. Specifically, F0 is defined by the relation

|w⟩ =
M∑

k=1
ck |wk⟩ ∈ W −→ |v⟩ = F0 |w⟩ =

M∑
k=1

ck |fk⟩ ∈ V. (4.5)

Since the {|wk⟩} are orthonormal, the basis coefficients {ck} can be
expressed as ck = ⟨wk|w⟩ for 1 ≤ k ≤ M and F0 can always be expressed
as

F0 =
M∑

k=1
|fk⟩ ⟨wk| . (4.6)

The action of F0 is also shown in Figure 4.1. Since the {|fk⟩} span V ,
the range of F0 is R(F0) = V . If the {|fk⟩} are linearly dependent, then
F0 has a non-trivial nullspace N(F0) that is an (M −N)-dimensional
subspace of W. We have N(A0) = V⊥ = R(F0)⊥ and it can also be
shown that N(F0) = R(A0)⊥. An analogous pair of relations holds for
any two linear transformations related by the concept of an adjoint [43],
[44] (see Appendix A.4). We have F †

0 = A0 and A†
0 = F0.2 For some

2The analysis and synthesis operators are also adjoints of each other, F † = A
and A† = F .
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frames, the synthesis map can also be written as F0 = ∑
k |fk⟩ ⟨gk| for

a set of basis vectors {|gk⟩} for W that is different from {|wk⟩}. This
implies that we could have started with {|gk⟩} as a basis for W instead
of with {|wk⟩}, and we would have arrived at the same synthesis map
(see Appendix A.3).

We emphasize that the operators A0 and F0 have been introduced
primarily for the purpose of providing us with a convenient interpretation
of the analysis and synthesis operations of the frame {|fk⟩} as operations
acting on the larger space W . By definition A0 and F0 implicitly depend
on our choice of basis vectors {|wk⟩}.

4.3 Dual Frames

The concept of a dual frame arises naturally when considering how an
arbitrary vector |v⟩ ∈ V can be written as a linear combination of a
given set of frame vectors {|fk⟩}, and also when considering how |v⟩
can be reconstructed from the collection {ak = ⟨fk|v⟩} of its frame
coefficients. Given some |v⟩ ∈ V and a fixed frame {|fk⟩} for V , consider
first the problem of obtaining a set of coefficients {ãk} such that

|v⟩ =
M∑

k=1
ãk |fk⟩ . (4.7)

Since the {|fk⟩} may be linearly dependent the solution is in general
not unique. A very useful and established approach to finding a suitable
set of {ãk} is by using a so-called dual frame of {|fk⟩}. A frame {|f̃k⟩}
for V is referred to as a dual frame of {|fk⟩} if

|v⟩ =
M∑

k=1
⟨f̃k|v⟩ |fk⟩ for all |v⟩ ∈ V. (4.8)

A dual frame is always guaranteed to exist [39], and as we will show
below if {|f̃k⟩} is dual to {|fk⟩} then the reverse is also true. Comparing
Equations (4.7) and (4.8), it is clear that Equation (4.7) is satisfied
by setting ãk = ⟨f̃k|v⟩ for 1 ≤ k ≤ M , where {|f̃k⟩} is any dual frame
of {|fk⟩}. When a vector |v⟩ ∈ V is written in the form of Equation
(4.8), {|f̃k⟩} is typically referred to as the analysis frame while {|fk⟩}
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is referred to as the synthesis frame. Correspondingly, if the analysis
map of {|f̃k⟩} is denoted as Ã0, then Equation (4.8) has the equivalent
forms

|v⟩ =
M∑

k=1
|fk⟩ ⟨f̃k|v⟩ = F0 Ã0 |v⟩ for all |v⟩ ∈ V (4.9a)

F0 Ã0 = PV . (4.9b)

Given a frame {|fk⟩} for V, the dual frame of {|fk⟩} is only unique
when the frame vectors are linearly independent in which case they form
a basis for V. When the frame vectors are linearly dependent, one way
of characterizing the set of all dual frames is to consider the coefficient
vector |ã⟩ corresponding to a particular dual frame and a particular
|v⟩ ∈ V,

|ã⟩ = Ã0 |v⟩ =
M∑

k=1
ãk |wk⟩ ∈ W, (4.10)

with squared norm ||ã||2 = ∑
k ã

2
k. In general, distinct dual frames

lead to distinct coefficient vectors. The dual frame that results in the
minimum squared norm ||ã||2 is

|f̃k⟩ = (F0A0)−1 |fk⟩ , 1 ≤ k ≤ M. (4.11)

A derivation of this fact is included in Appendix A.5. The dual frame
defined by Equation (4.11) is referred to as the canonical dual frame of
{|fk⟩} [39]. According to Equation (4.11) its synthesis map, which we
will denote by Fcan, is equal to Fcan = (F0A0)−1F0. Its analysis map is
Acan = F †

can = A0(F0A0)−1, where we have used the fact that for an
invertible linear operator T , we have (T−1)† = (T †)−1. It can be shown
using these expressions for Fcan and Acan, in addition to the relation
we have (T R)† = R† T †, that if {|f̃k⟩} is the canonical dual of {|fk⟩},
then the reverse is also true.

It is worth mentioning another notable property of the canonical dual
frame relating to its use as a solution to the problem of reconstructing
an unknown vector from imprecise versions of its frame coefficients. For
some |v⟩ ∈ V, let {|fk⟩} be a fixed analysis frame for V and assume
that the coefficients {ak = ⟨fk|v⟩} are known. Consider the problem of
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finding a synthesis frame {|f̃k⟩} such that

|v⟩ =
M∑

k=1
⟨fk|v⟩ |f̃k⟩ for all |v⟩ ∈ V. (4.12)

Comparing Equation (4.12) with Equation (4.8), Equation (4.12) states
that {|fk⟩} is a dual frame of {|f̃k⟩}. Clearly, we have FcanA0 |v⟩ = |v⟩
for all |v⟩ ∈ V and thus the canonical dual frame (unsurprisingly)
satisfies Equation (4.12). Equation (4.12) has the equivalent forms

|v⟩ = F̃0A0 |v⟩ for all |v⟩ ∈ V (4.13a)

F̃0A0 = PV . (4.13b)
Equations (4.13b) and (4.9b) are in fact also equivalent and a dual
frame could be defined according to either one. Their equivalence is
straightforward to derive by taking the adjoint of both sides of either
equation to show that it implies the other. For example, assume that
Equation (4.13b) is true. The adjoint of the left-hand side is (F̃0A0)† =
(F0 Ã0) and the adjoint of the right-hand side is P†

V = PV (see Appendix
A.4). Thus (F0 Ã0) = PV .

If the {ak} are instead only known to within some error, the question
arises of which dual frame is the optimal synthesis frame with respect
to various cost criteria. In Section 4.6 we review how the canonical
dual frame is the optimal choice when the error values are additive and
uncorrelated. The fact that the nullspace of Fcan and the range of A0
are related via N(Fcan) = R(A0)⊥ is a significant part of the derivation.

4.4 Parseval Frames and Naimark’s Theorem

Reconstructing an unknown vector from its frame coefficients {ak}
using the canonical dual frame requires the inversion of the the operator
(F0A0), a task that can lead to issues of computational complexity or
instability. Tight frames are an important class of frames that circumvent
these issues due to the fact that they are self-dual up to a constant
factor. Parseval frames are a special case of tight frames where the
constant is equal to one. Naimark’s Theorem ensures the existence of a
special orthonormal basis {|wk⟩} for W defined in relation to a Parseval
frame {|fk⟩} for V.
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4.4.1 Parseval Frames

A tight frame is one that satisfies Parseval’s identity [39] up to a constant
factor,

M∑
k=1

| ⟨fk|v⟩ |2 = C ||v||2 (4.14)

for some C > 0 and for all |v⟩ ∈ V. In reference to Equation (4.1),
Equation (4.14) is equivalent to the statement the the frame bounds of
{|fk⟩} are equal, C = D > 0. When C = D = 1 the frame is referred to
as a Parseval frame. Orthonormal bases are a special case of Parseval
frames with M = N . In much the same way that the energy of the
sequence of discrete Fourier transform coefficients of a finite-length
sequence is equal to the energy of the original sequence, Equation (4.14)
states that when {|fk⟩} is a tight frame the sum of the squares of the
coefficients {ak = ⟨fk|v⟩} is proportional to the squared norm of the
original vector.

Parseval frames are always self-dual. To show that this is true, note
that the sum in Equation (4.14) can be alternately expressed as

M∑
k=1

| ⟨fk|v⟩ |2 =
M∑

k=1
⟨v|fk⟩ ⟨fk|v⟩ = ⟨v|

(
M∑

k=1
|fk⟩ ⟨fk|v⟩

)
. (4.15)

For Equation (4.14) to be satisfied, the above expression must be equal
to ||v||2 = ⟨v|v⟩ for all |v⟩ ∈ V, implying that

M∑
k=1

|fk⟩ ⟨fk|v⟩ = |v⟩ for all |v⟩ ∈ V. (4.16)

And Equation (4.16) states by definition that {|fk⟩} is a dual frame of
itself. In fact, it is the canonical dual frame of itself [39]. Consequently
when {|fk⟩} is a Parseval frame, the task of reconstructing a vector |v⟩
from the collection of coefficients {ak = ⟨fk|v⟩} using the canonical dual
frame is especially straightforward. In particular there is no concern for
issues of computational complexity or instability that might result from
the inversion of the operator (F0A0) as in Equation (4.11) [39]. This is
significant in the context of quantum state estimation where V represents
a vector space whose elements are operators and correspondingly (F0A0)
is a so-called “superoperator” [11].
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A similar line of logic to the one given above can be used to show
that a frame that is self-dual is itself always a Parseval frame.

4.4.2 Naimark’s Theorem

Naimark’s Theorem is well-known in both the frame theory and quantum
physics communities. The version stated below will perhaps be most
familiar to readers with a background in frame theory (see [45], or
Theorem 1.9 in [39]). The version more typically used in the quantum
physics community is stated in terms of POVMs and often arises in
the context of the physical realizability of non-standard measurements
[46], [47]. In the statement of Naimark’s Theorem below we continue to
assume that V and W are finite-dimensional with dimensions N and M ,
respectively. However, we emphasize that this is not its most general
form.

Naimark’s Theorem. As typically stated in the terminology of frame
theory: A frame {|fk⟩ , 1 ≤ k ≤ M} for V is a Parseval frame if and only
if there exists an orthonormal basis {|wk⟩ , 1 ≤ k ≤ M} for W such that

PV |wk⟩ = |fk⟩ , 1 ≤ k ≤ M. (4.17)

A derivation of one direction of the theorem is given in Appendix A.6.
A derivation of the other direction can be found in, for example, [45]. We
will refer to Equation (4.17) as Naimark’s identity for convenience. Note
that for a given frame {|fk⟩} for V , it is trivial to construct a set of basis
vectors {|wk⟩} for W satisfying Naimark’s identity as long as they are
not required to be orthonormal. For example, if {|uk⟩ , N + 1 ≤ k ≤ M}
is an orthonormal basis for V⊥ then setting |wk⟩ = |fk⟩ for 1 ≤ k ≤ N

and |wk⟩ = |fk⟩ + |uk⟩ for N + 1 ≤ k ≤ M is sufficient. Naimark’s
Theorem guarantees that when {|fk⟩} is a Parseval frame, we can
always construct the {|wk⟩} in such a way that they satisfy Naimark’s
identity and are orthonormal.

4.4.3 Synthesis and Analysis Maps of a Parseval Frame

We will show that if {|fk⟩} is a Parseval frame and the {|wk⟩} are
chosen to satisfy Naimark’s identity, then the analysis and synthesis
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maps of {|fk⟩} are A0 = F0 = PV . To show that this is true, first note
that since Parseval frames are self-dual we have F0A0 = PV according
to Equation (4.9b). A0 can be expressed as

A0 =
M∑

k=1
|wk⟩ ⟨fk| = PV

(
M∑

k=1
|fk⟩ ⟨fk|

)
= PV F0A0 = PV , (4.18)

where we have used the idempotency of PV , i.e., P2
V = PV . This es-

tablishes that A0 = PV . Since orthogonal projection operators are
Hermitian (see Appendix A.4), taking the adjoint of both sides leads to
the conclusion that A†

0 = F0 = PV .
An alternative derivation of the fact that A0 = F0 = PV relies on

the observation that any vector |v⟩ ∈ V can be represented in terms of
its basis coefficients {bk = ⟨wk|v⟩} or in terms of its frame coefficients
{ak = ⟨fk|v⟩}. When the {|wk⟩} satisfy Naimark’s identity, the two sets
of coefficients are identical,

bk = ⟨wk|v⟩ = ⟨fk|v⟩ = ak, 1 ≤ k ≤ M. (4.19)

The reason Equation (4.19) is true is because a given basis vector |wk⟩
can always be written as the sum of its orthogonal projection onto
V, which is equal to |fk⟩, and its orthogonal projection onto V⊥. The
component in V⊥ has no impact on the value of the inner product of
|wk⟩ with |v⟩.

We next note that since the {|wk⟩} are orthonormal, we have

|v⟩ =
M∑

k=1
⟨wk|v⟩ |wk⟩ =

M∑
k=1

ak |wk⟩ for all |v⟩ ∈ V. (4.20)

A0 maps every |v⟩ ∈ V to A0 |v⟩ = ∑
k bk |wk⟩, and since {bk = ak} this

implies that A0 |v⟩ = |v⟩ for all |v⟩ ∈ V. By definition A0 also maps all
elements of V⊥ to the zero vector. Taken together these two properties
imply that A0 = PV . Similarly, F0 maps every |w⟩ ∈ W to F0 |w⟩ =∑

k ak |fk⟩. Applying Naimark’s identity and noting that Equation (4.20)
holds for all |w⟩ ∈ W leads to F0 |w⟩ = PV(∑k ak |wk⟩) = PV |w⟩, and
thus F0 = PV .
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4.5 Frame Representations of Operator Spaces

The goal of Section 4.5 is to extend the discussion of frame representa-
tions to vector spaces V whose elements are Hermitian operators acting
on a given Hilbert space H. Such a vector space is sometimes referred
to as an operator space. Unlike in Section 3, in Section 4.5 we do not as-
sume that H necessarily represents the state space of a quantum system.
Rather, the concepts addressed apply to any finite-dimensional Hilbert
space. A key perspective that we take is the geometric characterization
of positive semidefinite operators using a ball and sphere in operator
space when H has dimension 2. The concepts are applied to operator
spaces in quantum mechanics in Sections 5 and 6.

For the remainder of the monograph, V and W will be used to
denote operator spaces defined in relation to a given Hilbert space H.
And in certain contexts we may wish to consider an element V of V
alternately as an operator acting on an element of H or as a “vector” in
V (that is, an element of the operator-valued vector space V). Following
a combination of the conventions in [11] and [22], when we wish to
emphasize that a Hermitian operator V on H is being used as an element
of V we will denote it using modified bra-ket notation as |V ⟩⟩. The
inner product between any two operators V1, V2 ∈ V will be denoted
as ⟨⟨V1|V2⟩⟩. A specific expression for ⟨⟨V1|V2⟩⟩ is given in Equation
(4.25) below. The same notation carries over to elements of W. Linear
operators on W (“superoperators” [11]) will be denoted using bold font.
For example, A0 and F0 will denote the analysis and synthesis maps,
respectively, of a given frame for V.

4.5.1 Defining V and W

Assume that H is a vector-valued Hilbert space of dimension d. The set
of all Hermitian operators on H forms an operator space V over the real
numbers with dimension N = d2. V can always be decomposed into the
two orthogonal subspaces U and U⊥, defined as

U⊥ = span{I}, (4.21a)

U = span{V ∈ V : ⟨⟨I|V ⟩⟩ = Tr(V ) = 0}, (4.21b)
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where I denotes the identity operator on H. U is the span of all trace 0
operators in V. It has dimension (N − 1) = (d2 − 1) and is always iso-
morphic to Rd2−1 [11]. U⊥ is the span of the identity and has dimension
1. Given an an arbitrary operator V ∈ V, the orthogonal projection of
V onto U⊥ is always equal to PU⊥(V ) = ⟨⟨I|V ⟩⟩ |I⟩⟩/d = Tr(V ) |I⟩⟩/d,
where the factor of 1/d accounts for the fact that |I⟩⟩/

√
d has unit

norm with respect to the inner product defined below. Therefore, V
can always be written as

|V ⟩⟩ = PU⊥ |V ⟩⟩ + PU |V ⟩⟩ = Tr(V )√
d

|I⟩⟩√
d

+ PU |V ⟩⟩. (4.22)

For an arbitrary real number τ , V has trace τ if and only if PU⊥(V ) =
τ |I⟩⟩/d. The set of all elements in V with trace τ thus forms a hyperplane
in V that is orthogonal to the identity.

There are many ways of constructing a larger operator space W
that contains V . As an example, consider extending H to a larger space
H′ of dimension d′ > d. H′ can be expressed as the direct sum of H
and its orthogonal complement H⊥, where H⊥ has dimension (d′ − d).
Informally, we may define W to be the real span of all Hermitian
operators on H′ that are “block-diagonal” with respect to the direct
sum decomposition H′ = H⊕H⊥. Mathematically this can be phrased as
follows. Given a Hermitian operator V on H, V can always be expressed
as

V =
d∑

i=1
ai |xi⟩ ⟨xi| , (4.23)

where the eigenvalues {ai} are real and the eigenvectors {|xi⟩} form an
orthonormal basis for H. Since the {|xi⟩} are also elements of H′, V
can also be viewed as a Hermitian operator acting on H′. It maps all
vectors in H⊥ to the zero vector. Similarly, given a Hermitian operator
U on H⊥, U can always be written as

U =
d′−d∑
i=1

bi |yi⟩ ⟨yi| , (4.24)

where the eigenvalues {bi} are real and the eigenvectors {|yi⟩} form
an orthonormal basis for H⊥. Since the {|yi⟩} are also elements of H′,
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U can also be viewed as a Hermitian operator on H′ that maps all
vectors in H to the zero vector. We define W as the real span of all
operators on H′ that can be written in the form of either Equation
(4.23) or (4.24) – that is, the set of all linear combinations of such
operators with real coefficients. When constructed in this way, W has
dimension d2 + (d′ − d)2 = N + (d′ − d)2. If we desire W to have a
specific dimension M > d2, we can always choose d′ to be large enough
so that N + (d′ − d)2 > M and then redefine W to be a subspace of
itself with dimension M . We will assume going forward that a suitable
operator space W, constructed for example according to the procedure
just described, has been specified. The inner product between any two
elements |W1⟩⟩, |W2⟩⟩ ∈ W will be denoted by ⟨⟨W1|W2⟩⟩ and defined
by the relation

⟨⟨W1|W2⟩⟩ =
d′∑

i=1
γi ⟨ei|W2 |ei⟩ where W1 =

d′∑
i=1

γi |ei⟩ ⟨ei| . (4.25)

In Equation (4.25), the {γi} are the eigenvalues of W1 and the {|ei⟩},
which lie in H′, are its eigenvectors. Because all elements of W can be
written as a linear combination of operators of the form of Equations
(4.23) and (4.24), each of the {|ei⟩} lie either in H or in H⊥. It is
straightforward to verify that the function defined in Equation (4.25)
satisfies all the properties of a valid inner product function on W. It is
in fact a special case of the well-known Hilbert-Schmidt or trace inner
product [10], [35].

4.5.2 Operator-Valued Frames

For clarity we repeat the definition of a frame using operator space
notation. Any set of operators {Fk, 1 ≤ k ≤ M} that lie in and span
an operator space V form a frame for V. More generally an M -element
frame for V is defined as any set of operators {Fk} that lie in V and
satisfy

C ||V ||2 ≤
M∑

k=1
|⟨⟨Fk|V ⟩⟩|2 ≤ D ||V ||2 (4.26)

for some 0 < C ≤ D < ∞ and for all |V ⟩⟩ ∈ V [11]. We will always
assume that the values of C and D are set to form the tightest possible
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bounds, in which case they are referred to as the frame bounds of
{Fk}. A tight frame for V is one whose frame bounds are equal. In
keeping with the current notation, from this point forward we will
use {Wk, 1 ≤ k ≤ M} to denote an orthonormal basis for W and
{Fk, 1 ≤ k ≤ M} to denote a frame for V.

Regardless of whether the number of frame vectors is finite or infinite,
the definition of an operator frame given in Equation (4.26) may also
be extended to include to the notion of a generalized operator frame
with respect to a given measure (see Appendix A.9). In the terminology
of [11], a set of operators satisfying Equation (4.26) is referred to as a
generalized operator frame with respect to the counting measure.

4.5.3 Operator Space for H = C2

We explicitly describe the operator space V when H = C2, i.e., d = 2.
Our intent aside from providing a concrete example in low dimensions is
to also present some geometric intuition regarding where operators with
constant trace and positive semidefinite operators lie in V. While none
of the concepts presented in Section 4.5.3 are specific to the context of
quantum mechanics, they are relevant to the simulations presented in
Sections 5 and 6 involving qubit density operators. For generalizations
to values of d > 2, we refer the reader to, for example, [11], [15].

When H = C2, V has dimension d2 = 4. The set of operators
{I/

√
2, σ1/

√
2, σ2/

√
2, σ3/

√
2}, where {σ1, σ2, σ3} are the Pauli opera-

tors [35], is a commonly used basis for V. It is an orthonormal basis
with respect to the inner product defined by Equation (4.25). We have
U⊥ = span{I} and U = span{σ1, σ2, σ3}. The Pauli operators will prove
to be a convenient choice of orthonormal basis for U in the context of
quantum mechanics as they are directly related to the representation of
an arbitrary qubit density operator in terms of its Bloch vector.

Given an arbitrary operator V ∈ V, V can always be written as a
linear combination of the operators {I/

√
2, σ1/

√
2, σ2/

√
2, σ3/

√
2},

V = c0
|I⟩⟩√

2
+ c1

|σ1⟩⟩√
2

+ c2
|σ2⟩⟩√

2
+ c3

|σ3⟩⟩√
2
. (4.27)

In Equation (4.27) the basis expansion coefficients are c0 = ⟨⟨I|V ⟩⟩/
√

2 =
Tr(V )/

√
2 and ci = ⟨⟨σi|V ⟩⟩/

√
2 = Tr(σiV )/

√
2 for 1 ≤ i ≤ 3. A crucial



60 A Perspective on Frame Representations

relation that forms the foundation of much of the discussion in Sections
5 and 6 is that if V is positive semidefinite then we always have√

c2
1 + c2

2 + c2
3 ≤ Tr(V )/

√
2, (4.28)

with equality if and only if V has rank one. Equation (4.28) can be
derived by solving for the eigenvalues of V in terms of the {ci} and
requiring them to be non-negative. One way of interpreting Equation
(4.28) is as follows. Given a positive semidefinite operator V with basis
expansion coefficients {ci}, there is always an associated closed ball in
R3 of radius Tr(V )/

√
2. The column vector c = [c1, c2, c3]T corresponds

to coefficients of the orthogonal projection of V onto U and always lies
within the ball. c lies on the surface of the ball, that is, on the sphere
of radius Tr(V )/

√
2, when V has rank one.

Example 4.1. To help in providing an intuitive geometric picture, we
temporarily define V = R3 with dimension N = 3 and orthonormal
basis {|b0⟩ , |b1⟩ , |b2⟩}. An arbitrary vector |x⟩ ∈ R3 can always be
expressed as

|x⟩ = c0 |b0⟩ + c1 |b1⟩ + c2 |b1⟩ , (4.29)

where ci = ⟨bi|x⟩ for 0 ≤ i ≤ 2. As shown in Figure 4.2, the set of
vectors in R3 that satisfy c0 = 2−1/2 lie on a hyperplane while the set
of vectors that satisfy c2

0 ≥ c2
1 + c2

2 lie on or within a cone. The set of
vectors that satisfy both of the constraints lies at the intersection of
the hyperplane and the cone, which takes the form of an (N − 1) = 2
dimensional ball, i.e., a circle.

4.6 Robustness of Frame Representations

Given an unknown vector |v⟩ ∈ V and an analysis frame {|fk⟩} for V,
|v⟩ can always be written as

|v⟩ =
M∑

k=1
ak |f̃k⟩ , (4.30)

where ak = ⟨fk|v⟩ for 1 ≤ k ≤ M and the synthesis frame {|f̃k⟩} is
any dual frame of {|fk⟩}. An important problem in classical signal
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Figure 4.2: Illustration of the constraints described in Example 4.1.

processing is that of reconstructing |v⟩ given only imprecise versions of
the {ak} after they have been affected by some source of error. In the
remainder of Section 4.6 we describe one version of this problem that
incorporates a specific model for the error source in more detail. As the
discussion is not directly relevant to binary hypothesis testing, some
readers may wish to proceed directly to Section 5.

Throughout Section 4.6 we use notation corresponding to vector-
valued vector spaces, but we emphasize that all of the analysis applies
equally well to operator spaces. The key conclusion is that when {|fk⟩}
is what is referred to as an equal norm tight frame and the error values
are additive and uncorrelated, the quality of reconstruction is reduced
when the variance of the error values is reduced and (separately) when
the number M of frame vectors is increased. In Section 5 we briefly
address how an analogous problem can be formulated in the context of
quantum state estimation.

4.6.1 Optimality of the Canonical Dual

We assume that the observed coefficients are {ak + ek}, where the
individual error values {ek} have zero mean, variance σ2, and collectively



62 A Perspective on Frame Representations

are pairwise uncorrelated. That is,

E[ek] = 0, 1 ≤ k ≤ M, (4.31a)

E[ejek] =

∆2 if j = k

0 if j ̸= k
, 1 ≤ j, k ≤ M. (4.31b)

Equations (4.31) have been shown to be a useful model mathematically
in certain scenarios, despite not always being literally true in practice
(see, for example, Section 4 of [25]). The observed coefficients can be
assembled into a vector that is the sum of the true coefficient vector
A0 |v⟩ = ∑

k ak |wk⟩ ∈ W with the error vector, defined by |we⟩ =∑
k ek |wk⟩ ∈ W. For a given synthesis frame {|f̃k⟩} with synthesis

map F̃0, the reconstructed vector |v̂⟩ is obtained by applying F̃0 to the
observed coefficient vector,

|v̂⟩ = F̃0 (A0 |v⟩ + |we⟩ ) = |v⟩ + |ve⟩ . (4.32)

In Equation (4.32) we have defined the final error vector |ve⟩ = F̃0 |we⟩ =∑
k ek |f̃k⟩. The objective is to find the synthesis frame that minimizes

the expected value of the squared norm of |ve⟩, i.e., we want to minimize
E where

E = E

[
||ve||2

]
= E

[
||F̃0 |we⟩ ||2

]
. (4.33)

It is well-known that as long as the error values are uncorrelated, the
optimal synthesis frame that minimizes E is the canonical dual of the
analysis frame (see [48] and Appendix A.5). This is true even if each
of the {ek} have possibly different variances denoted by {∆2

k}. The
underlying concept is that the nullspace of the synthesis operator of the
canonical dual frame contains the largest portion of the error vector
|we⟩ as compared to other dual frames.

4.6.2 Application to Equal-Norm Tight Frames

In this monograph we will be particularly interested in the case where
{|fk⟩} is a tight frame for V with frame bound C, with the additional
property that all of the frame vectors have the same norm, denoted by
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B. Such a frame is typically referred to as an equal norm tight frame
(ENTF) [39], [49]. Mathematically, we have

M∑
k=1

| ⟨fk|v⟩ |2 = C ||v||2 for all |v⟩ ∈ V, (4.34a)

||fk|| = B, 1 ≤ k ≤ M. (4.34b)

ENTFs are of interest in the quantum physics community in the form of
tight IC POVMs as used for quantum state estimation. This is discussed
further in Section 5. They are also utilized, for example, in the context
of oversampling in classical signal processing (see [39], [41], [42] and
Appendix A.7).

The canonical dual of an ENTF {|fk⟩} is {|f̃k⟩ = |fk⟩ /C}. Its
synthesis map, which we will denote as Fcan, is equal to Fcan = F0/C.
It can be shown [49] that for an ENTF the following relationship holds,

C N = M B2. (4.35)

To find the minimum value of E when {|fk⟩} is an ENTF, we first
evaluate the squared norm of Fcan |we⟩ for a specific error vector |we⟩.
Consider writing the error vector as |we⟩ = |w1⟩ + |w2⟩ where |w1⟩ ∈
R(A0) and |w2⟩ ∈ R(A0)⊥. Since N(Fcan) = R(A0)⊥ we have

Fcan |we⟩ = Fcan |w1⟩ + Fcan |w2⟩ = Fcan |w1⟩ . (4.36)

For any vector |w⟩ ∈ W that lies in R(A0), it can be shown that
||Fcan |w⟩ ||2 = ||w||2/C (see Appendix A.5). Moreover, using the fact
that the individual error values {ek} satisfy Equations (4.31) it can
be verified that the expected value of ||e1||2 is E[||e1||2] = N∆2 (see
Appendix A.8). The minimum value E∗ of E is thus

E∗ = E

[
||Fcan |e⟩ ||2

]
= ||e1||2

C
= N ∆2

C
= N2 ∆2

M B2 . (4.37)

Equation (4.37) states that fixed N and B, E∗ can be reduced by
reducing ∆ or by increasing M . When the variances of the {ek} are
not assumed to be identical for all values of k, we have E[|| |e1⟩ ||2] =
(N/M)∑k ∆2

k, so Equation (4.37) becomes

E∗ = N

MC

M∑
k=1

∆2
k = N2

M2B2

M∑
k=1

∆2
k. (4.38)
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As expected, Equation (4.38) reduces to Equation (4.37) when ∆2
k = ∆2

for all 1 ≤ k ≤ M .



5
An Operator Frame View of Quantum

Measurement

The main objective of Section 5 is to utilize the mathematical methodol-
ogy developed in Section 4 to interpret the process of quantum measure-
ment as it is defined by the postulates of quantum mechanics. Given an
arbitrary finite-dimensional QMS with state space H, density operators
and POVM elements are linear operators on H can always be interpreted
as elements of a common operator space V. As we describe in Section
5.1, when a quantum measurement with POVM {Ek} is performed on a
QMS with denisty operator ρ, the probabilities {p(k) = Tr(Ekρ)} of the
possible measurement outcomes can then be expressed using an inner
product defined on V . Crucially, when the POVM is IC the {p(k)} can be
interpreted as the frame coefficients of ρ with respect to the {Ek}, since
every IC POVM satisfies the definition of a frame for V . The connection
between IC POVMs and frames for V is a fundamental and established
result and is reviewed in Section 5.1.1. POVMs corresponding to qubit
measurements, which we refer to as qubit POVMs for brevity, are of
particular interest throughout Sections 5 and 6. Specifically, the focus is
on a class of qubit POVMs defined in Section 5.1.2 that we refer to as
equal trace rank one (Etro) POVMs. Every M -element Etro POVM can
be fully specified by M points on a sphere of radius

√
2/M that we refer

65
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to as an Etro sphere. The representation of a qubit POVM through M
points on the Etro sphere is exactly analogous to the representation
of a pure state qubit density operator through a point on the Bloch
sphere. In Section 5.2 we use qubit Etro POVMs corresponding to one
of the five Platonic solids to discriminate between two qubit density
operators. In Section 6 we generalize this to POVMs specified by other
sets of points on an Etro sphere.

5.1 Operator Spaces in Quantum Mechanics

Throughout Section 5, H will always represent the d-dimensional state
space of a QMS and V will denote the d2-dimensional operator space
of all Hermitian operators on H. ρ will denote an arbitrary density
operator on H and {Ek, 1 ≤ k ≤ M} will denote an arbitrary POVM
on H. ρ and the {Ek} are all elements of V by definition and they are
also all positive semidefinite. We have Tr(ρ) = 1 and Tr(Ek) ≥ 0 for all
1 ≤ k ≤ M . In terms of the operator-valued inner product defined in
Equation (4.25), the measurement outcome probabilities {p(k)} can be
expressed as

p(k) = Tr(Ek ρ) = ⟨⟨Ek|ρ⟩⟩, 1 ≤ k ≤ M. (5.1)

When the {Ek} form a frame for V, the {p(k)} are equal to the frame
coefficients of ρ with respect to the {Ek}.

When H represents the state space of a qubit, decomposing ρ into
the sum of its orthogonal projections onto U and U⊥ naturally leads
to the definition of the commonly used Bloch ball. Decomposing each
of the {Ek} in the same way will lead to the definition of what we
refer to as an Etro sphere whose radius depends on M . Since these
decompositions do not inherently rely on H having dimension d = 2,
we state them as generally as possible before specifying that d = 2 in
Section 5.1.2. According to Equation (4.22), we have

|ρ⟩⟩ = 1√
d

|I⟩⟩√
d

+ PU |ρ⟩⟩ (5.2a)

|Ek⟩⟩ = Tr(Ek)√
d

|I⟩⟩√
d

+ PU |Ek⟩⟩, 1 ≤ k ≤ M. (5.2b)
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The requirement that∑k Ek = I can be interpreted in terms of Equation
(5.2b). Specifically, summing both sides of Equation (5.2b) over all values
of k yields

|I⟩⟩ = 1
d

(
M∑

k=1
Tr(Ek)

)
|I⟩⟩ +

(
M∑

k=1
PU |Ek⟩⟩

)
. (5.3)

Equation (5.3) implies that ∑k Tr(Ek) = d and, since |I⟩⟩ is orthogonal
to all elements of U , that the sum of the {PU |Ek⟩⟩} must be equal
to zero. In Section 5.1.2 we apply these concepts as well as those
described in Section 4.5.3 specifically to POVMs of a qubit, leading to
the definition of an Etro sphere.

5.1.1 Informationally Complete and Overcomplete POVMs

The definition of an IC POVM as a POVM that maps each possible
density operator to a unique sequence of probabilities does not employ
any notation or terminology associated with frame representations.
This is why we chose to introduce IC POVMs in Section 3.2 following
the statement of the quantum measurement postulate. However, a
particularly useful way of thinking about and analyzing IC POVMs
relies on the following fundamental result: Given an arbitrary set of
operators {Uk, 1 ≤ k ≤ M} in V, {Uk} is an IC POVM if and only if
{Uk} is both a POVM and a frame for V [10], [11], [13]. This statement
can be generalized to include the case where V is infinite-dimensional and
to include generalized operator-valued frames [11], but for simplicity we
do not consider those scenarios in this monograph. It will be convenient
moving forward to consider the following statements separately,

(i) {Uk} is a POVM,

(ii) {Uk} span V,

(iii) {Uk} maps every density operator |ρ⟩⟩ ∈ V to a unique sequence
of coefficients {⟨⟨Uk|ρ⟩⟩}.

The fundamental result states that if conditions (i) and (ii) are satisfied,
then (iii) must be satisfied. And separately that if (i) and (iii) are
satisfied, then (ii) must be satisfied. It does not state that (ii) implies
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(iii) or vice versa. Note that since V is finite-dimensional, the {Uk} span
V if and only if they form a frame for V . The terms “minimal IC POVM”
and “informationally overcomplete (IOC) POVM” are sometimes used
to differentiate between those IC POVMs whose elements are linearly
indpendent and thus form a basis for V and those whose elements are
linearly dependent, respectively [11], [15], [17], [19], [20], [50].

We first show that (i) and (ii) imply (iii). Assume that a set of
operators {Uk} in V satisfies (i) and (ii). Then as stated above {Uk}
must be a frame for V. Its analysis map A0 can always be written as
A0 = ∑M

k=1 |Wk⟩⟩⟨⟨Uk|. To show that {Uk} is IC, it is sufficient to show
that if two density operators have the same probability sequences with
respect to this POVM, then they must be identical. This follows from
the fact that since the {Uk} span V, no V ∈ V is orthogonal to all of
them. Therefore, if A0 |V ⟩⟩ = 0 for some V ∈ V then we must have
V = 0. Consider the action of A0 on two arbitrary density operators
ρ1, ρ2 ∈ V. We have

A0 |ρ1⟩⟩ =
M∑

k=1
|Wk⟩⟩⟨⟨Uk|ρ1⟩⟩ =

M∑
k=1

p1(k) |Wk⟩⟩, (5.4a)

A0 |ρ2⟩⟩ =
M∑

k=1
|Wk⟩⟩⟨⟨Uk|ρ2⟩⟩ =

∑
k∈K

p2(k) |Wk⟩⟩, (5.4b)

where pi(k) = ⟨⟨Uk|ρi⟩⟩ for i = 1, 2 is defined as in Equation (5.1). If
p1(k) = p2(k) for 1 ≤ k ≤ M , then A0 |ρ1 − ρ2⟩⟩ = 0 implying that
|ρ1 − ρ2⟩⟩ = 0, i.e., ρ1 = ρ2.

The statement that (i) and (iii) imply (ii) is more subtle as demon-
strated through its comparison with the following related statement.
Given an arbitrary set of operators {Uk} in V, it is straightforward to
show by contradiction that if the {Uk} map every V ∈ V to a unique
sequence of coefficients {⟨⟨Uk|V ⟩⟩}, then the {Uk} must span V. If in-
stead the {Uk} are only required to map every density operator in V
to a unique sequence of coefficients, i.e., only condition (iii) is satisfied,
then they must span U but they do not necessarily span all of V. This
follows from the fact that an all density operators have constant trace
and thus a constant orthogonal projection onto U⊥, so they are only
distinguished by their orthogonal projections onto U . Assume now that
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the {Uk} satisfy both conditions (i) and (iii). Then the {Uk} must span
U and they must also satisfy ∑k Uk = I. Since I spans U⊥ by definition,
this implies that the {Uk} also span U⊥ and therefore they span all of
V. This line of reasoning also leads to the conclusion that if the {Uk}
form a POVM, then for the {Uk} to span V it is sufficient for their
orthogonal projections onto U to span U .

IC POVMs are commonly studied in the context of quantum state
estimation [11], [12], [19], [20], [50]–[52], in which the objective is to
reconstruct an unknown density operator from its probability values
stemming from a given POVM. Obviously, the ability to recover an
arbitrary density operator using only the probability values requires the
POVM to be IC. But even if an IC POVM is employed, exact recovery
of the probability values can only be achieved if we are able to measure
an infinitely large ensemble of systems, all prepared in the unknown
state we wish to estimate. This is in general not possible in practice, and
one motivation for using IOC POVMs is to mitigate the error caused
by finite sample size estimations of the probabilities. This topic is also
a main motivation for the simulations presented in Section 5.2.

Another important issue in the use of IC POVMs to estimate un-
known quantum states is that the reconstruction procedure implicitly
requires computation of the dual frame of the POVM elements. This is
in general a difficult task because it requires the inversion of a linear
operator on V , which is itself a “superoperator”. Thus, IC POVMs whose
duals are more easily computed are of great interest to the quantum
physics community. Tight IC POVMs were introduced by Scott in [11]
and are some of the most extensively studied.

5.1.2 The Bloch Sphere and The Etro Spheres

We now apply the discussion given in Section 4.5.3 to the case where
H represents the state of a qubit. We have d = 2 implying that
V has dimension d2 = 4. As stated in Section 4.5.3, the operators
{σ1/

√
2, σ2/

√
2, σ3/

√
2} form an orthonormal basis for U . Therefore,
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Equations (5.2) can be rewritten as

ρ = 1√
2

|I⟩⟩√
2

+ r1
|σ1⟩⟩√

2
+ r2

|σ2⟩⟩√
2

+ r3
|σ3⟩⟩√

2
, (5.5a)

Ek = Tr(Ek)√
2

|I⟩⟩√
2

+ ck1
|σ1⟩⟩√

2
+ ck2

|σ2⟩⟩√
2

+ ck3
|σ3⟩⟩√

2
, 1 ≤ k ≤ M,

(5.5b)

where ri = ⟨⟨σi|ρ⟩⟩/
√

2 for 1 ≤ i ≤ 3 and cki = ⟨⟨σi|Ek⟩⟩/
√

2 for
1 ≤ k ≤ M and 1 ≤ i ≤ 3. Since ρ is positive semidefinite, it has
an associated closed ball in R3 with radius 1/

√
2. The column vector

r = [r1, r2, r3]T always lies within the ball or on the sphere corresponding
to the surface of the ball. It lies on the sphere when ρ has rank one and
thus represents a pure state. The ball and sphere correspond within a
constant factor to the very commonly used Bloch ball, which is typically
assumed to have unit radius, and the corresponding Bloch sphere. The
column vector r is proportional to the Bloch vector of ρ [35]. All of the
{Ek} are also positive semidefinite and therefore they also each have
an associated closed ball in R3 whose surface is of course a sphere in
R3. The ball associated with Ek has radius Tr(Ek)/

√
2 and the column

vector ck = [ck1, ck2, ck3]T always lies within that ball or on the sphere
corresponding to its surface. It lies on the sphere when Ek has rank
one. Equation (5.3) implies that the {ck} must always sum to zero. The
probabilities in Equation (5.1) can also be written in terms of r and
the {ck}. Substituting Equations (5.5) into Equation (5.1) and utilizing
the orthonormality of the {σi} yields

p(k) = Tr(Ek)
2 + ck · r = 1

M
+ ck · r, (5.6)

where · denotes the standard dot product in R3.
Of particular interest in this monograph are qubit POVMs that we

will refer to as equal trace rank one (Etro) POVMs. Unsurprisingly, an
Etro POVM is one for which Tr(Ek) = 2/M for 1 ≤ k ≤ M and for
which each of the {Ek} has rank one, implying from Equation (4.28)
that

√
c2

k1 + c2
k2 + c2

k3 = Tr(Ek)/
√

2 =
√

2/M for 1 ≤ k ≤ M . When
this is the case all of the {Ek} have the same associated ball in R3

with radius
√

2/M . The {ck} all lie on the sphere corresponding to the
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surface of the ball, which we refer to as an Etro sphere. Explicitly, an
Etro sphere is one of a class of spheres in R3, each with radius

√
2/M

for some M . An M -element Etro POVM can be fully specified by M
vectors {ck} extending from the origin to the Etro sphere of radius√

2/M . It can equivalently be specified by M points on the Etro sphere
of radius

√
2/M with each point corresponding to the endpoint of one

of the {ck}. It follows from Section 5.1.1 that a qubit Etro POVM
is IC if and only if the {ck} span R3 [15]. The definition of an Etro
POVM could easily be generalized to higher dimensions. However, in
this monograph we use the term Etro POVM to refer specifically to
those corresponding to qubit measurements.

Example 5.1. POVMs constructed using Platonic solids are used often
in the literature [19], [20], [53], [54]. In our terminology, a POVM con-
structed using the Platonic solid with M vertices for M ∈ {4, 6, 8, 12, 20}
is an M -element Etro POVM whose Etro vectors {ck} correspond to
the vertices of that Platonic solid inscribed in the corresponding Etro
sphere. When the Platonic solid is an octahedron (M = 6), the POVM
is typically described as having been constructed from three mutually
unbiased bases for the state space of the qubit [55]. An Etro POVM
satisfies the definition of a a tight IC POVM when its Etro vectors {ck}
form a tight frame for R3 [11]. All POVMs constructed from Platonic
solids are tight IC POVMs.

Example 5.2. Consider a qubit POVM {E1, E2} whose elements form
a complete set of orthogonal projectors onto H. As stated in Section
3.2, this type of POVM always corresponds to a standard quantum
measurement. It is straightforward to verify that {E1, E2} is an Etro
POVM whose corresponding Etro sphere has radius 1/

√
2 and is thus

identical to the Bloch sphere. The Etro vectors {c1, c2} must satisfy
c1 + c2 = 0, implying that they point in opposite directions on the Etro
sphere. Helstrom’s optimal POVM for distinguishing between two fixed
qubit density operators is one such example.
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5.2 Qubit State Discrimination using Platonic Solids

The topic of Section 5.2 is the following variation on the binary hypoth-
esis testing problem considered in Section 3. Consider L identical QMSs
whose states are all described by the density operator ρ = ρi if H = Hi,
for i ∈ {0, 1}. In Section 3 we assumed that L = 1, i.e., we assumed that
there was a single QMS prepared in a state corresponding to the density
operator ρ0 or ρ1. To discriminate between the two hypotheses, each of
the L QMSs is measured individually using a quantum measurement
whose associated POVM is {Ek, 1 ≤ k ≤ M}. The score variable is
equal to the vector of relative frequencies corresponding to the frequency
of occurrence of each of the M possible outcomes. Throughout Section
5.2, we will denote the score variable by S as opposed to S to emphasize
that it is a vector-valued random variable as opposed to a scalar random
variable. A particular realization s will be denoted by the column vector
s = [n1/L, . . . , nM/L]T where nk is the number of occurrences of the
kth measurement outcome. Clearly, ∑k nk = L. The conditional distri-
butions fi(S) for i ∈ {0, 1} are multinomial distributions (see Appendix
A.10). A final decision of Ĥ = H0 or Ĥ = H1 is made based on the
outcome of an LRT with threshold η = q0/q1 performed on the score
variable.

In Example 5.3 below, we utilize POVMs constructed using Platonic
solids, which were defined in Example 5.1. These POVMs are of signifi-
cant interest in the context of qubit state estimation [11], [12], [19]–[21],
[50]–[52] but have been utilized less often for binary hypothesis testing.
We present evidence through simulation that discrimination perfor-
mance improves with increasing L, the number of identically-prepared
QMSs and (separately) with increasing M , the number of POVM el-
ements. Note that as stated in Example 5.1, all POVMs constructed
using Platonic solids are Etro POVMs. It is straightforward to show
that they are all also IOC POVMs, with the exception of the POVM
with M = 4 vertices constructed from a tetrahedron, which is IC but
not IOC.

Example 5.3. In this example we arbitrarily set the Bloch vectors of ρ0
and ρ1 to r0 = (1/

√
2)[0, 0, 1]T and r1 = (1/

√
2)[cosϕ sin θ, sinϕ sin θ,
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cos θ]T , where θ = 2π/3 and ϕ = π/3. Note that as mentioned in
Section 5.1.2, there is an extra factor of (1/

√
2) in comparison to Bloch

vectors as they are typically defined in the literature. The LRT QDOCs
corresponding to POVMs constructed using a tetrahedron (M = 4)
and an octahedron (M = 6) inscribed in the Etro sphere and to of
L = 5, 10, 20 are shown in Figure 5.1. The plots reflect an improvement
in discrimination performance when either M or L is increased. For a
fixed value of L, increasing the value of M leads to better detection as
reflected by the superior QDOC. On the other hand, for a fixed value
of M increasing the value of L also leads to better detection.

Figure 5.1: LRT QDOCs for ensemble sizes L = 5, 10, 15 and tight IC POVMs
constructed from Platonic solids with M = 4 (tetrahedron) and M = 6 (octahedron)
vertices.

5.3 Robustness of IOC POVMs for Quantum State Estimation

In Section 5.3 we focus on the following problem that was designed
specifically to demonstrate that the robustness properties of ENTFs
described in Section 4.6 can be applied in the context of quantum
mechanics. Once again, readers interested only in binary hypothesis
testing and not estimation may wish to proceed to Section 6. Let ρ be an
unknown density operator and let {Ek} be an arbitrary tight IC POVM.
In the following variation of the problem stated in Section 4.6, the
vector |v⟩ lying in V is replaced by the shifted operator (ρ− I/d) lying
in the subspace U of V. The analysis frame {|fk⟩} is replaced by the
operators {Qk = Ek/

√
Tr(Ek) −

√
Tr(Ek)I/d}, which by assumption

form a tight frame for U . We will denote the frame bound of the {Qk}



74 An Operator Frame View of Quantum Measurement

by C and will additionally assume that they all have norm B. Thus,
the {Qk} are an ENTF for U satisfying

M∑
k=1

|⟨⟨Qk|V ⟩⟩|2 = C ||V ||2 for all V ∈ U , (5.7a)

||Qk|| = B, 1 ≤ k ≤ M. (5.7b)

The set of operators {Qk/C} is the canonical dual frame of {Qk}. The
operator (ρ− I/d) is an element of U , so it can always be expressed as

ρ− I

d
=

M∑
k=1

⟨⟨Qk|ρ− I/d⟩⟩ Q̃k =
M∑

k=1
ak Q̃k (5.8)

where {ak = ⟨⟨Qk|ρ− I/d⟩⟩} and {Q̃k} is any dual frame of {Qk}. In
terms of the probabilities {p(k) = ⟨⟨Ek|ρ⟩⟩}, it can be shown through
direct substitution that the {ak} can be expressed as

ak = ⟨⟨Qk|ρ− I/d⟩⟩ = p(k)√
Tr(Ek)

−
√

Tr(Ek)
d

. (5.9)

We assume that the observed, imprecise values {âk = ak + ek} of the
frame coefficients are obtained as follows. Given L identically prepared
quantum systems all in the state ρ, the true probabilities {p(k)} are es-
timated by performing a quantum measurement with associated POVM
{Ek} on each system. The set of all measurement outcomes are used to
compute estimates of the true probabilities in the form of the relative
frequencies. If nk is the number of times the measurement outcome
associated with Ek occurred, the relative frequencies are {p̂(k) = nk/L}.
The {âk} are obtained by replacing p(k) with p̂(k) in Equation (5.9),
yielding

âk = p̂(k)√
Tr(Ek)

−
√

Tr(Ek)
d

= ak + ek. (5.10)

where ek = (p̂k − p(k))/
√

Tr(Ek) for 1 ≤ k ≤ M . An estimate (ρ̂− I/d)
of (ρ − I/d) is constructed by replacing the {ak} with the {âk} in
Equation (5.8),

ρ̂− I

d
=

M∑
k=1

âk Q̃k = ρ− I

d
+ ρe, (5.11)
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where we have defined ρe = ρ̂− ρ = ∑
k ekQ̃k. The objective is to find

the synthesis frame {Q̃k} that minimizes the expected squared norm of
||ρe||, i.e., to minimize E where

E = E

[
||ρ̂− I/d||2

]
. (5.12)

Unlike in Section 4.6.1, setting {Q̃k} equal to the canonical dual of
{Qk} is not necessarily optimal in terms of minimizing E because the
error values {ek} are not pairwise uncorrelated. In fact, it can be shown
(see Appendix A.10) that

E[ek] = 0, 1 ≤ k ≤ M (5.13a)

E[ejek] =


p(k) (1−p(k))

L Tr(Ek) = ∆2
k if j = k

−p(j) p(k)
L

√
Tr(Ej) Tr(Ek)

if j ̸= k
, 1 ≤ j, k ≤ M. (5.13b)

The optimal synthesis frame {Q̃k} could be found by first whitening the
{ek} and then computing the canonical dual of the effective analysis
frame. However, as demonstrated next in Example 5.4, the conclusion
reached in Section 4.6 under the assumption that the {ek} are uncor-
related is still supported by our simulations. This suggests that the
correlations present in the simulations are small enough that they can
be disregarded for the purpose of high-level predictions and modeling.
According to Equation (4.38), the value Ecan of E obtained by setting
{Q̃k = Qk/C} to be the canonical dual frame of {Qk} is

Ecan = N2

M2B2

M∑
k=1

∆2
k = N2

LM2B2

M∑
k=1

p(k) (1 − p(k))
Tr(Ek) . (5.14)

Example 5.4. In this example we demonstrate the utility of Equation
(5.14) for estimating the state of a qubit using tight IC POVMs {Ek}
corresponding to Platonic solids with M = 4, 6, 8, 12 vertices. The value
of B was chosen so that all of the {Ek} are positive semidefinite. As
a consequence it can be verified that B2 must be proportional to M .
Equation (5.14) suggests that with all else fixed, we would expect Ecan
to scale as 1/(LM2). Indeed, this is what we observe.

For the purposes of illustration, we chose the density operator ρ
to be ρ = |ψ⟩ ⟨ψ| with |ψ⟩ = cos(θ/2) |0⟩ + sin(θ/2) |1⟩ and θ = 2π/3.



76 An Operator Frame View of Quantum Measurement

The collection sizes used were L = 5, 10, 50. For a given value of L and
a given POVM {Ek} with M elements, 500 independent trials of the
following procedure was performed. First L independent samples were
drawn from the true probability distribution {p(k)}, in order to simulate
an experiment in which L quantum measurements, each with POVM
{Ek}, were performed on L identically prepared QMSs in the state ρ.
This resulted in a collection of relative frequencies {p̂(k)} from which an
estimated value of (ρ̂− I/d) and thus an error operator ρe = ρ̂− ρ were
constructed. Finally, the value of ||ρe||2 was computed at the end of
each trial. The compilation of these values after all trials were complete
were used to compute estimates of the expected value Ecan = E[||ρe||2]
and the variance var(||ρe||2).

The mean values Ecan = E[||ρe||2] and standard deviations var
(||ρe||2)−1/2 over all trials and for all combinations of M and L are
presented in Table 5.1 and shown in Figure 5.2. The results clearly
indicate that for fixed values of M , increasing the value of L reduces
both the mean value and standard deviation of ||ρe||2. And, for fixed
values of L, increasing the value of M also reduces the mean value
and standard deviation of ||ρe||2. However, the tradeoff is not entirely
symmetric. For fixed values of M , doubling the value of L roughly halves
both the mean value and standard deviation of ||ρe||2. In other words,
both quantities are roughly inversely proportional to L. For the mean
value, this is as expected from Equation (5.14). But for fixed values of L,
doubling the value of M causes the mean value and standard deviation
of ||ρe||2 to become reduced nearly by a factor of 4, suggesting that the
two quantities are roughly inversely proportional to M2. Again, this
is as expected for the mean value according to Equation (5.14) when
Tr(Ek) = 2/M and B2 is proportional to M .

Table 5.1: Mean values and standard deviations of ||ρse||2, rounded to the nearest
tenth, over all trials and for different combinations of M and L.

Number of POVM
Elements (M)

Collection Size (L)

5 10 50

4 23.8 ± 17.0 11.2 ± 8.2 2.3 ± 1.9
6 9.5 ± 6.7 5.4 ± 4.2 1.0 ± 0.8
8 5.3 ± 3.9 2.6 ± 2.0 0.5 ± 0.4
12 2.4 ± 1.8 1.2 ± 0.9 0.2 ± 0.2
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Figure 5.2: Mean (circular marker) and standard deviation (upper and lower error
bars) of ||ρ̂ − ρ||2 over 500 independent trials for ensemble sizes L = 5, 10, 50 and
tight IC POVMs constructed from Platonic solids with M = 4 (tetrahedron), M = 6
(octahedron), M = 8 (cube), and M = 12 (icosahedron) vertices.



6
Qubit State Discrimination on the Etro Spheres

As mentioned briefly in Section 5, POVMs constructed from Platonic
solids are of interest in the quantum state estimation literature because
they are tight IC POVMs, implying that they are self-dual up to a
constant. This makes reconstruction of an unknown state from estimates
of its frame coefficients in the form of the relative frequencies particu-
larly straightforward. In the context of quantum state discrimination,
however, it is not necessary to reconstruct the state from the relative
frequency vector, which suggests that it might be interesting to explore
constructing POVMs from other arrangements of points on an Etro
sphere.

Just as a pure state qubit density operator can be specified by a
single point on the Bloch sphere, as shown in Section 5 each element of
an Etro POVM associated with a qubit measurement can be specified
by a single point on the Etro sphere. Considerable previous work has
focused on POVMs constructed from one of the five Platonic solids
[19], [20], [53], [54], [56]. In our terminology these are Etro POVMs
constructed from sets of points on the Etro sphere of radius

√
2/M

corresponding to the vertices of one of the Platonic solids. A main
motivation of Section 6 is to present an exploratory and preliminary
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investigation into the utility for quantum binary state discrimination of
Etro POVMs constructed from other distributions of M points on an
Etro sphere. The findings can also be found in [57]. As in Section 5.2
we assume that an M -element Etro POVM {Ek} with corresponding
Etro vectors {ck} is used to discriminate between the possibilities that
L identically-prepared qubits all have density operator ρ0 or all have
density operator ρ1. We continue to denote the prior probabilities by
P (Hi) = qi for i ∈ {0, 1}. The {ck} lie on the Etro sphere with radius√

2/M and always satisfy ∑k ck = 0. The Bloch vectors r0 and r1 of the
two pure states are separated by a relative angle α and are known only up
to an overall rotation on the Bloch sphere. We may equivalently assume
that r0 and r1 are known exactly but that the overall alignment of the
{ck} relative to the Etro sphere is unknown, i.e., the relative rotational
orientation of the Bloch sphere and the Etro sphere is unknown. The
performance of each POVM is measured according to its minimum and
maximum probabilities of error, denoted as minPe and maxPe, over
all possible relative orientations as well as their difference. A smaller
value of (maxPe − minPe) suggests that the corresponding POVM is
less sensitive to changes in the relative orientations of the Bloch and
Etro spheres. The exploratory simulations presented in Section 6 leave
open the question of what the optimal POVM is with respect to its
sensitivity to changes in the relative orientation of the Bloch and Etro
spheres.

6.1 Optimal Distributions of M Points on a Sphere

An Etro POVM {Ek} can always be fully specified by its M Etro vectors
{ck}, or equivalently by the M endpoints of those vectors which all lie
on the Etro sphere of radius

√
2/M . Intuition suggests that maximally

spreading the endpoints on the sphere will tend to reduce the variation
in performance over all possible orientations.

Various approaches to and criteria for evenly distributing M points
on a sphere have been reported in the literature [58]–[60]. We first
consider distributions of points that correspond to the vertices of a
Platonic solid, in addition to distributions of points that minimize Riesz
s-energy for a given value of M , subject to the constraint that the {ck}
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must sum to zero. In three dimensions the Riesz s-energy of a set of M
vectors {ck} of equal length is defined as

E(s) =



∑
1≤j<k≤M

log ∥cj − ck∥−1 if s = 0

∑
1≤j<k≤M

∥cj − ck∥−s if s ≥ 0.

(6.1a)

(6.1b)

In Equation (6.1), ∥cj − ck∥ denotes the Euclidean distance between
cj and ck. Minimizing E(0) is equivalent to maximizing the product of
distances between points. Minimizing E(1) is equivalent to minimizing
the electric potential energy of a system of point charges located at
the endpoints of the vectors. As s → ∞, only the two closest points
contribute to the sum and minimizing E(s) corresponds to maximizing
nearest neighbor distance.

In the simulations presented in Section 6.2, we also consider distribu-
tions of points that were computed numerically by Sloane et al. [61] to
be optimal with respect to the maximum convex hull volume, maximum
nearest neighbor distance, and minimum covering radius criteria. The
latter criteria are defined as

max
c1,...,cM

min
1≤j, k≤M

||cj − ck|| (max. nearest neighbor distance)

(6.2a)

min
c1,...,cM

max
x:||x||=1

min
1≤k≤M

||cj − ck|| (min. covering radius)

(6.2b)

It is important to note, however, that these solutions were computed
without the constraint that the{ck} sum to zero. Many of the optimal
solutions sum to a vector whose norm is very close to zero. Consequently
for our exploratory purposes we chose to compensate by appending
an extra vector ϵ = −

∑
k ck to the {ck} with corresponding POVM

element E0. Intuitively this would not be expected to affect any broad
trends observed in the results, since for all simulations presented we
required ||ϵ|| ≤ 10−8.
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6.2 Results and Simulations

We simulated a range of the parameter values M , 0 ≤ α ≤ π, and
0 ≤ q1 ≤ 1 all with L = 5. For fixed α and q1, we observed that
larger values of M typically correspond to lower maxPe but higher
minPe over all possible orientations. Furthermore for a fixed value of
M ∈ {4, 6, 8, 12}, the Platonic solid with M vertices is not necessarily
the best arrangement of points in terms of its sensitivity to rotation.1
For fixed q1, the decrease in sensitivity with M is more pronounced for
smaller values of α, which makes intuitive sense since smaller values of
α correspond to Bloch vectors states that are more collinear and thus
more sensitive to small changes in the relative orientation of the Bloch
and Etro spheres. For fixed M , larger values of α and values of q1 that
are further from 1/2 generally lead to lower minPe and maxPe.

Our exploratory investigation suggests that various arrangements of
points that are well-spread with respect to the chosen metrics perform
well with respect to their sensitivity to changes in the relative rotational
orientation of the Bloch and Etro spheres. We focused on metrics that
promote evenly spread distributions of points since we assumed that
all relative orientations of the Bloch and Etro spheres were equally
likely. If this were not the case, it would be intuitively expected that
distributions of points with higher concentrations in certain regions
of an Etro sphere would be more desirable. This might be the case if,
for example, the two hypotheses corresponded to the L qubits being
prepared in a density operator ρ drawn from one of two distributions
over all possible density operators, each localized around a particular
region of the Bloch sphere.

1The Platonic solid with M = 20 vertices, the dodecahedron, was not simulated
due to computational constraints.



7
Summary, Reflections, and Further Thoughts

Our key objectives in writing this monograph have been to develop
and present a framework for binary hypothesis testing as it applies
to both the classical and quantum mechanical environments. As we
formulate it in Section 2, this framework consists of two stages, the
first of which we refer to as the pre-decision operator which generates a
scalar- or vector-valued score variable or more generally and the second
the binary decision rule applied to the score vector. And throughout this
monograph we have specifically focused on issues related to the design
of the pre-decision operator, the choice of decision rule and performance
of the overall process as one or more parameters are varied. In this
monograph, performance is specifically characterized by the tradeoff
between the probability of making the correct decision given that the
positive hypothesis is true, commonly referred to as the probability of
detection Pd, and the probability of making the incorrect decision when
the null hypothesis is true, commonly referred to as the probability of
false alarm Pf . The characterization of an “optimal” binary decision-
making system is a well-studied area of statistics with a long history
and is often formulated in terms of a variety of criteria, e.g., minimizing
probability of error, minimizing risk or Bayes’ cost, or maximizing
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Pd for a specified upper bound on Pf . Conveniently, mathematically
all of these criteria lead to an optimal binary decision rule in the
form of an LRT. This corresponds to evaluating the likelihood ratio
against an appropriate threshold. The likelihood ratio will of course
be a function of one or more of the parameters characterizing the
underlying problem which then leads to the operating characteristics.
More generally, we used the term operating characteristic to refer
to any characterization of the tradeoff between Pf and Pd as one or
more parameters of the discrimination system is varied. Essentially an
operating characteristic viewed in this light can be thought of as a
trajectory in a high-dimensional space with coordinates corresponding
to Pf , Pd, and the parameters being varied. For a given trajectory, a
two-dimensional graph of Pf vs. Pd is the projection of the trajectory
onto the Pf -Pd plane. While such Pf -Pd projections are often used as
visual representations of operating characteristics, it is important to note
that they do not explicitly provide information about the parameter or
parameters being varied. When there is only one parameter to vary, the
Pf -Pd projection is traditionally referred to as an ROC. This terminology
stems from its widespread use in signal detection scenarios and has
since been adopted and adapted to broader settings.

In many application contexts, it is difficult or impossible to deter-
mine the likelihood ratio because doing so requires an assessment of
underlying conditional probabilities, prior probabilities, etc. Partially
for this reason, the decision-making system often applies a threshold
test directly to a scalar score variable generated by combining together
a variety of measurements. We refer to this as an SVT. In Section 2 of
this monograph, much of this background along with our perspective on
it for classical binary hypothesis testing is summarized. Of particular
importance is the development in Section 2.5 that addresses the relation-
ship between operating characteristics generated using LRTs and SVTs.
In many situations, it is not unreasonable to expect or assume that the
Pf -Pd projection of an SVT operating characteristic is equivalent to that
of an LRT operating characteristic or that one can be obtained from the
other through a simple and reversible change of variables. In Section
2.5.4 we show that in the case of a Pf -Pd projection of an SVT ROC,
if that curve is concave then it is guaranteed to be equivalent to the
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Pf -Pd projection of the LRT ROC for the same underlying conditional
distributions. Also of significance is the discussion in Section 2.5.5 in
which we outline a procedure for generating the Pf -Pd projection of
the LRT ROC from that of the SVT ROC when the SVT does not
correspond to the LRT through a simple change of variables.

In classical binary hypothesis testing, the operating characteris-
tics are associated with the decision rule with the viewpoint that the
pre-decision operator has previously been specified. However there is
also the possibility of specifying the decision rule and exploring the
operating characteristics that result from varying the pre-decision op-
erator. To distinguish these two classes of operating characteristics
in the classical case, we introduce in Section 2.6 the terminology of
CDOCs and CMOCs, the first referring to operating characteristics
when the pre-decision operator has been specified and some parameter
or parameters of the binary decision rule is varied, and the second
for which the binary decision rule is fixed and some aspect of the pre-
decision operator is varied. In Section 3, when we address quantum
binary state discrimination, the corresponding terminology is QDOCs
and QMOCs. In many classical settings the pre-decision operator is
based on measurements that can be made or processing that can be
applied prior to making the decision. For example, in signal detection
environments such as with the use of radar and sonar, the pre-decision
operator is a filter which is designed based on knowledge of the signal
to be detected. In medical applications, the pre-decision operator might
consistent of combining multiple measurements in some appropriate
way. In these various contexts the traditional focus is on the operating
characteristics of the decision rule. CMOCs for which parameters of the
pre-decision operator are varied are less typical and perhaps worthy of
serious exploration in the classical case.

In Section 3 the same basic structure of a pre-decision operator
followed by a binary decision rule is applied to exploring operating
characteristics for quantum binary state discrimination. But the nature
of the pre-decision operator and corresponding score vector are funda-
mentally different than in the classical case. This is a direct consequence
of the fact that the physics of quantum mechanics is fundamentally
different than the physics of classical mechanics and that measurement
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outcomes on quantum systems are inherently probabilistic. While there
are a number of ways in which quantum systems and quantum states
can be described mathematically, we have chosen the representation in
terms of the density operator and the representation of the pre-decision
operator in terms of a POVM which consists of an indexed set of M
Hermitian, positive semidefinite operators that sum to the identity. In
Section 3.2 we summarize the key postulates of quantum mechanics
that govern the formulation and development of the quantum binary
state discrimination problem that is a main focus of this monograph.
One specific way of viewing the underlying problem as we formulate
it is to imagine two possible physical environments that we would like
to distinguish between. Any QMS prepared by or associated with each
would have associated with it one of two known density operators. The
decision system to be designed and evaluated through its operating
characteristics is based on knowledge of each of the two density opera-
tors. The pre-decision operator is then a specified or previously designed
quantum measurement with an associated POVM. We assume that
L independent QMSs prepared by only one of the environments are
available for measurement and that we are able to determine the in-
dex of the resulting post-measurement state. The pre-decision operator
generates an M -element vector of relative frequencies corresponding
to the number of occurrences of each of the M possible measurement
outcomes. This vector is used as our score variable. As in the earlier
discussion of classical hypothesis testing, we separate the discussion of
operating characteristics into QDOCs and QMOCs. The first assumes
the pre-decision operator, i.e. the POVM corresponding to the chosen
quantum measurement, has been specified and the operating character-
istics correspond to parameters of the binary decision rule being varied.
The classic paper by Helstrom specifies the two-element POVM and
the decision boundary for minimum probability of error or equivalently
the decision boundary on the two-element relative frequency vector
based on the POVM. Helstrom also noted that a d-element POVM with
each element corresponding to the outer product of the eigenvectors of
the operator (ρ1 − (q0/q1)ρ0) can equivalently be used. (Recall that d
is the dimension of the state space H of the QMS.) As introduced in
Section 3.6, QMOCs correspond to keeping fixed the decision region for
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the binary decision rule and varying the pre-decision operator through
the POVM. Our presentation of QMOCs in Section 3.6 is primarily
intended to introduce the concept and to illustrate it with a simple
example.

Sections 5 and 6 are directed at design of the pre-decision operator,
i.e., the POVM used to generate the score variable vector of relative
frequencies where M can in general be larger than the dimensional-
ity of the Hilbert space H. This in effect corresponds to utilizing an
overcomplete or redundant characterization and measurement process.
It is well-understood that overcomplete representations of elements
in a vector space through the use of a set of linearly dependent vec-
tors often has the advantage of providing robustness to errors in the
coefficients. A powerful and often used vector space methodology for
overcomplete representation of vector spaces is that of frames and that
is the methodology that we exploit in Section 5 and 6 in designing IOC
POVMs. In preparation for those discussions, in Section 4 we develop
the representation of density operators and POVM elements as vectors
in a vector space whose elements are Hermitian operators on the state
space of a QMS. Consequently before utilizing frame representation
of vector spaces, we summarize in Section 4 our perspective and the
notation and key properties that we exploit in Sections 5 and 6. This
includes the basics of frame theory. In effect, frames correspond to sets
of linearly dependent vectors that span the space and thus every vector
in the space can be constructed as a linear combination of the frame
vectors. A basis is of course a valid frame but more generally, with
linearly dependent frame vectors, the set of coefficients representing any
vector is not unique, and the representation is overcomplete which offers
redundancy and an opportunity for robustness. The specific viewpoint
that we take is that the space V being represented is a subspace of some
larger space W. And that the overcomplete frame representation of a
vector in V can also be associated with a unique vector in the larger
space W. In Section 4.2 we review the notion of analysis and synthesis
operators and introduce the notion of analysis and synthesis maps. The
analysis operator applied to a vector in V generates a set of coefficients
representing the vector and the synthesis operator constructs a vector
in V through a linear combination of the frame vectors. In other words,
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the analysis operator generates a vector in RM representing a vector in
the N -dimensional space V. The synthesis operator generates a vector
in V from an appropriate subspace in RM . The analysis map generates a
vector in W using the frame coefficients in a basis expansion of W . And
the synthesis map generates a vector in V by applying the coefficients
of a basis expansion in W to the frame vectors in V . This is a particular
viewpoint that we’ve taken in this monograph in the context of Sections
5 and 6. Sections 4.3 and 4.4 then summarize the well-known notions
in frame theory related to the use of dual frames, Parseval frames, and
Naimark’s Theorem. Section 4.5 then extends this discussion of frame
representations to vector spaces in which the vectors are operators. The
notation and perspective associated with operator spaces as developed
in Section 4.5 forms the basis for the discussion in Sections 5 and 6.

Section 5 applies the methodology in Section 4 to density operators,
POVM elements and in particular utilizing frame theory to characterize
informationally overcomplete (IOC) POVMs. Section 5.1.2 specifically
addresses the characterization of the density operators and POVM
elements in operator space associated with qubits. In this case, density
operators in this operator space are characterized by the well established
Bloch ball and Bloch sphere. As we develop in Section 5.1.2, when we
restrict the POVM elements to all be equal trace rank one operators in
addition to being Hermitian and positive semi-definite, they each can
also be characterized by a point on the surface of a ball (i.e. on a sphere)
in operator space. We refer to these as the Etro ball and Etro sphere
which, for an M -element POVM, has radius

√
2/M . In other words,

with the restrictions above, an M -element POVM can be specified by
M points on an Etro sphere. Our discussion of POVM design in Section
6 is specifically based on selecting the M points on the Etro sphere from
which the POVM is constructed. The concepts of IC and IOC POVMs
are conveniently characterized in operator space with the methodology
of frame theory as discussed in Section 5.1.1. While a frame in operator
space by definition spans the space and provides a valid complete or
overcomplete representation of any operator in the space, it will not
necessarily correspond to a valid POVM since for completeness POVMs
have the additional constraint that all the elements must be positive
semidefinite and they must collectively sum to the identity operator.
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Consequently in designing an IOC POVM it is necessary to ensure that
it is both a frame for the operator space and a valid POVM. A commonly
referenced class of IOC POVMs are those constructed using Platonic
solids with M vertices. In this case, the points on the Etro sphere are
the M vertices of the corresponding Platonic solid. Example 5.3 in
Section 5.2 utilized Platonic solids with M = 4 and M = 6 vertices and
with L = 5, 10 and 20 to illustrate, in a very preliminary way, the effect
of increasing either L or M for the QDOC for two somewhat arbitrarily
chosen density operators. As is clear in the example increasing either
L or M improves the discrimination, a totally anticipated result. A
strong candidate for future work is a much more detailed exploration of
how L and M individually affect the discrimination with a broader set
of examples. Increasing L of course involves increasing the number of
identically prepared QMSs, whereas increasing M involves increasing
the number of POVM elements at the measurement stage.

The inspiration for Section 6 comes from the role of Platonic solids in
quantum measurement and their potential use as illustrated in Example
5.3 for quantum state discrimination. As stated in Section 5.1.2 the
vertices of each Platonic solid can be inscribed in an Etro sphere
and define valid POVMs. In Section 6 we consider, in a somewhat
preliminary and exploratory way, other possible distributions of points
on the Etro sphere as the basis for POVMs to be used for qubit state
discrimination. The problem considered is again discriminating between
two qubits with a known orientation on the Bloch sphere with respect
to each other but unknown orientation with respect to the Bloch sphere
itself. Phrased differently, this corresponds to the rotational orientation
of the Etro sphere with respect to the Bloch sphere being unknown.
The simulations in Section 6 consider the minimum and maximum
probabilities of error in discrimination over all possible rotations of
the two spheres relative to each other and for a variety of choices for
the POVMs resulting from distributing M points on the Etro sphere.
While there are no strong conclusions to be drawn from these very
preliminary simulations, Section 6 offers an initial approach to the design
of IOC POVMs. As we indicate throughout this monograph, and in
this summary, there continue to be many opportunities for a continuing
exploration of operating characteristics for binary discrimination and
hypothesis testing in both the classical and quantum mechanics domains.
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A
Optional Appendices

Since this monograph was intended for an audience with a diverse set of
backgrounds, the purpose of the derivations contained in the following
Appendices A.1 to A.10 is to provide some level of detail surrounding
concepts and results that are likely familiar to some readers but perhaps
not to others. Many of the derivations can also be found in some form in
many classical signal processing, linear algebra, or quantum mechanics
textbooks and review monographs. The title of each section contains a
reference to the section in the main body of the monograph where the
concept was first mentioned.

A.1 Optimal Neyman-Pearson Decision Regions

The following reasoning was adapted from [25]. Assume that the decision
region D has been chosen to be Neyman-Pearson optimal. Then by
definition it is impossible to modify it in such a way that Pd is increased
while Pf stays the same. Mathematically we can think of modification
of the decision region as taking two small portions of the real axis,
one that lies in D and is denoted as the interval [s, s + ds] and one
that lies outside of D and is denoted as the interval [s′, s′ + ds′], and
interchanging their decision region assignments. In other words, we

91



92 Optional Appendices

remove the interval [s, s+ ds] from D and add the interval [s′, s′ + ds′].
The resulting changes in Pf and Pd are

∆Pf = f0(s′) ds′ − f0(s) ds (A.1a)

∆Pd = f1(s′) ds′ − f1(s) ds. (A.1b)

If we assume that the value of Pf stays the same (∆Pf = 0), then since
the original decision region was Neyman-Pearson optimal we know by
definition that the value of Pd must have stayed the same or decreased
(∆Pd ≤ 0). Applying these conditions to Equations (A.1) and combining
them together leads to the requirement that

f1(s′) ds′

f0(s′) ds′ ≥ f1(s) ds
f0(s) ds. (A.2)

After cancelling the factors of ds and ds′, the right-hand side of the
inequality is equal to the likelihood ratio at the point S = s, which lay
in the original, Neyman-Pearson optimal decision region D. Similarly,
the left-hand side is the likelihood ratio as the point S = s′, which lay
outside of this region. Since the intervals [s, s + ds] and [s′, s′ + ds′]
were arbitrary so long as they lay inside or outside of D, respectively,
Equation (A.2) says that for the Neyman-Pearson optimal decision
region D, the likelihood ratio for values of the score variable lying inside
D is always greater than or equal to the likelihood ratio for values
lying outside D. In other words, the Neyman-Pearson optimal decision
regions represent a threshold test on the likelihood ratio.

A.2 Orthonormality of the {|wk⟩} (Section 4.1)

We wish to show that no generality is lost by assuming that the basis
vectors {|wk⟩ , 1 ≤ k ≤ M} for W are orthonormal with respect to the
⟨·|·⟩ inner product. Assume that they are not and let {|ek⟩} be a basis
for W that is orthonormal with respect to the ⟨·|·⟩ inner product. Thus

⟨ej |ek⟩ = δjk, 1 ≤ j, k ≤ M, (A.3)

where δjk takes the value 1 if j = k and 0 otherwise. Now we define
a function f(·, ·) that takes two vectors in W as input and outputs a
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complex number. It is defined to satisfy the following properties,

f(a uj + b uk, uℓ) = a∗ f(uj , uℓ) + b∗ f(uk, uℓ) (A.4a)

f(uj , a uk + b uℓ) = a f(uj , uk) + b f(uj , uℓ) (A.4b)

f(uj , uk) = f(uk, uj)∗ (A.4c)

f(wj , wk) = δjk, 1 ≤ j, k ≤ M. (A.4d)

In Equations (A.4), |uj⟩, |uk⟩, and |uℓ⟩ are arbitrary vectors in W, a
and b are arbitrary complex numbers, and the superscript ∗ indicates
complex conjugation. Equations (A.4) imply that the function f(·, ·) is
also positive definite. That is, if |u⟩ = ∑

k ck |wk⟩ is an arbitrary nonzero
vector in W, then f(u, u) > 0 since

|u⟩ =
M∑

k=1
ck |wk⟩ ≠ 0 ∈ W (arbitrary nonzero vector in W)

(A.5a)

f(u, u) =

 M∑
j=1

cj |wj⟩ ,
M∑

k=1
ck |wk⟩

 (A.5b)

=
M∑

j,k=1
c∗

jckf(wj , wk) by conjugate bilinearity (A.5c)

=
M∑

j=1
|cj |2 since f(wj , wk) = δjk (A.5d)

> 0 since |u⟩ ≠ 0. (A.5e)

Thus f(·, ·) is a valid inner product function on W and {|wk⟩} is
orthonormal with respect to this inner product. We will now show
that there is an invertible linear operator L on W such that

f(L |u1⟩ , L |u2⟩) = ⟨u1|u2⟩ (A.6)

for all |u1⟩ , |u2⟩ ∈ W. This implies that all calculations can be made
with the f(·, ·) inner product, and then the inverse of L can be used
to “translate” the answers back to the ⟨·|·⟩ inner product. Note that
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because the {|wk⟩} form a basis for W, to satisfy Equation (A.6) it is
sufficient to have a linear operator L such that

f(L |wj⟩ , L |wℓ⟩) = ⟨wj |wℓ⟩ , 1 ≤ j, ℓ ≤ M. (A.7)

Equation (A.6) follows from Equation (A.7) by the properties of the
inner product functions f(·, ·) and ⟨·|·⟩. To find an appropriate linear
operator L, let |wj⟩ and |wℓ⟩ be any two of the {|wk⟩} (possibly with
j = ℓ) and write them in terms of the {|ek⟩},

|wj⟩ =
M∑

k=1
ak |ek⟩ , |wℓ⟩ =

M∑
k=1

ck |ek⟩ . (A.8)

Substituting into the left- and right-hand sides of Equation (A.6) and
simplifying, we find

f(L |wj⟩ , L |wℓ⟩) = f

(
M∑

k=1
akL |ek⟩ ,

M∑
m=1

dmL |em⟩
)

=
M∑

k,m=1
a∗

k dm f(L |ek⟩ , L |em⟩) (A.9a)

⟨wj |wℓ⟩ =
〈

M∑
k=1

ak |ek⟩
∣∣∣∣∣

M∑
m=1

dm |em⟩
〉

=
M∑

k=1
a∗

kdk (A.9b)

For the two to be equal, it is sufficient to have (L |ek⟩ , L |em⟩) = δkm

for all 1 ≤ k,m ≤ M . One operator that satisfies this condition is the
linear operator L that is also defined to satisfy

L |ek⟩ = |wk⟩ , 1 ≤ k ≤ M. (A.10)

This operator is clearly invertible, and using it to further simplify the
left-hand side of Equation (A.7) leads to

(L |ek⟩ , L |em⟩) =
M∑

k,m=1
a∗

k dm f(wk, wm) =
M∑

k=1
a∗

kdk, (A.11)

so Equation (A.7) is satisfied.
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A.3 Expressions for a Synthesis Map (Section 4.2)

To see why F0 can sometimes be written in the form F0 = ∑
k |fk⟩ ⟨gk|

where the {|gk⟩} are different from the {|wk⟩}, note that instead of
defining F0 using Equation (4.5) we could equivalently define it according
to the relation

F |wk⟩ = |fk⟩ , 1 ≤ k ≤ M. (A.12)
Equation (4.5) then follows by linearity. For Equation (A.12) to be true
the {|gj⟩} must satisfy the relation

M∑
j=1

|fj⟩ ⟨gj |wk⟩ = |fk⟩ , 1 ≤ k ≤ M. (A.13)

We can then expand the {|fj⟩} and {|gj⟩} as linear combinations of the
{|wj⟩} to arrive at a system of linear equations in which the unknowns
are the basis coefficients of the {|gj⟩}. Depending on the frame, the
equations may or may not have multiple solutions.

Another way to look at it is to note that if the {|fk⟩} are linearly
dependent, then there is a linear combination of them that is equal to
zero. Let {bk} be a set of coefficients such that

M∑
k=1

bk |fk⟩ = 0. (A.14)

Then to satisfy Equation (A.13) it is sufficient to have

⟨gj |wk⟩ = δjk bk, 1 ≤ j, k ≤ M, (A.15)

where δjk = 1 if j = k and 0 otherwise. This is again a system of linear
equations that may or may not have more than one solution depending
on the frame.

A.4 The Adjoint of a Linear Transformation (Sections 4.2 and 4.3)

Assume that {|fk⟩} is a given frame for V and that A0 and F0 are its
analysis and synthesis maps, respectively. The adjoint of F0, denoted
by F †

0 , is defined as the linear operator on W that satisfies

⟨u1|F0u2⟩ = ⟨F †
0u1|u2⟩ for all |u1⟩ , |u2⟩ ∈ W. (A.16)
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We wish to show that F †
0 = A0. Substituting Equation (4.6) into the

left-hand side of Equation (A.16) and using the linearity of the inner
product, we find

⟨u1|F0u2⟩ =
M∑

k=1
⟨u1|fk⟩ ⟨wk|u2⟩ . (A.17)

On the other hand, since ⟨x|y⟩ = ⟨y|x⟩∗ for any two vectors |x⟩ , |y⟩ ∈ W ,
we have ⟨F †

0u1|u2⟩ = ⟨u2|F †
0u1⟩

∗. Substituting back into Equation (A.16)
leads to

⟨u2|F †
0u1⟩ =

(
M∑

k=1
⟨u1|fk⟩ ⟨wk|u2⟩

)∗

(A.18a)

=
M∑

k=1
⟨u2|wk⟩ ⟨fk|u1⟩ (A.18b)

= ⟨u2|
(

M∑
k=1

|wk⟩ ⟨fk|
)

|u1⟩ , (A.18c)

and since this must be true for all |u1⟩ , |u2⟩ ∈ W, we must have

F †
0 =

M∑
k=1

|wk⟩ ⟨fk| = A0. (A.19)

Next let R be an arbitrary subspace of W and consider the orthog-
onal projection operator PR from W onto R. We wish to show that
P†

R = PR, i.e.,

⟨u1|PRu2⟩ = ⟨P†
Ru1|u2⟩ for all |u1⟩ , |u2⟩ ∈ W. (A.20)

Equation (A.20) follows directly from decomposing |u1⟩ and |u2⟩ into
their components in R and R⊥.

The notion of the adjoint of a linear transformation applies much
more broadly beyond linear transformations acting on finite-dimensional
Hilbert spaces (see, for example, [36]). We consider one extension be-
low to linear transformations whose input and output vector spaces
may be different, although we still assume that both spaces are finite-
dimensional for simplicity. We will continue to use the superscript †
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to denote the adjoint. Consider two finite-dimensional Hilbert spaces
W1, W2 and two linear transformations T : W1 7→ W2, R : W2 7→ W1
satisfying R = T †. We assume for simplicity that W1 and W2 have
the same inner product denoted by ⟨·|·⟩, although this is solely for
notational clarity. By definition we have

⟨u2|Tu1⟩ = ⟨Ru2|u1⟩ for all |u1⟩ ∈ W1, |u2⟩ ∈ W2. (A.21)

As stated in Section 4.2, taking the complex conjugate of both sides of
Equation (A.21) implies that T = R†. It is well-known that T can always
be written as a sum of rank-one operators of the form |u2⟩ ⟨u1| where
|u1⟩ ∈ W1 and |u2⟩ ∈ W2. As an example, one possibility for expressing
A in this form would be to use its singular value decomposition. It is
straightforward to show using a derivation exactly analogous to the one
given above that T † is the same sum of rank-one operators but with
each term of the form |u2⟩ ⟨u1| replaced by |u1⟩ ⟨u2|.

We will now show that N(R) = R(T )⊥. It will follow by symmetry
that N(T ) = R(R)⊥. Given an arbitrary vector |u2⟩ ∈ N(R), |u2⟩ must
also be an element of R(T )⊥. To see why this is true, let |y⟩ be an
arbitrary vector in R(T ). By definition there is some |u1⟩ ∈ W1 such
that |y⟩ = T |u1⟩. Then |u2⟩ is orthogonal to |y⟩,

⟨y|u2⟩ = ⟨Tu1|u2⟩ = ⟨u1|Ru2⟩ = 0. (A.22)

Since |y⟩ was arbitrary, this implies that N(R) is contained in R(T )⊥.
On the other hand, let |u2⟩ ∈ W2 be an arbitrary element of R(T )⊥. By
definition it must satisfy ⟨y|u2⟩ = 0 for all |y⟩ ∈ R(T ), i.e., ⟨Tu1|u2⟩ = 0
for all |u1⟩ ∈ W1. Then R |u2⟩ must equal 0,

⟨Tu1|u2⟩ = 0 for all |u1⟩ ∈ W1 (A.23a)

⟨u1|Ru2⟩ = 0 for all |u1⟩ ∈ W1 (A.23b)

R |u2⟩ = 0. (A.23c)

This implies that R(T )⊥ is contained in N(R), and because the reverse
is also true it must be that the two are identical.
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A.5 The Canonical Dual Frame (Sections 4.3 and 4.6)

Let |v⟩ be an arbitrary vector in V and let {|fk⟩} be a frame for V . We
wish to find the dual frame {|f̃k⟩} of {|fk⟩} that minimizes the squared
norm of the coefficient vector Ã0 |v⟩ = ∑

k ⟨f̃k|v⟩ |wk⟩. It is sufficient to
solve for the analysis map Ã0 of the optimal dual frame. Denoting the
synthesis map of {|fk⟩} by F0, the problem can be formulated as

minimize
Ã0 : V → W

||Ã0 |v⟩ ||2 (A.24a)

subject to F0Ã0 |v⟩ = |v⟩ (A.24b)

The optimal coefficient vector must satisfy Ã0 |v⟩ ∈ R(A0). To see why
this is true, note that Ã0 |v⟩ can always be written as the sum of a
component in R(A0) and a component in R(A0)⊥ = N(F0),

Ã0 |v⟩ = |w1⟩ + |w2⟩ (A.25)

where |w1⟩ ∈ R(A0) and |w2⟩ ∈ N(F0). We have ||Ã0 |v⟩ ||2 = ||w1||2 +
||w2||2 and F0Ã0 |v⟩ = F0 |w1⟩. Assume that Equation (A.25) holds for
a given dual frame. If |w2⟩ were nonzero, then we could always find a
different dual frame with analysis map Â0 satisfying Â0 |v⟩ = |w1⟩. Equa-
tion (A.24b) would still be satisfied (F0Â0 |v⟩ = F0 |w1⟩ = |v⟩) and the
new coefficient vector would have smaller squared norm (||Â0 |v⟩ ||2 ≤
||Ã0 |v⟩ ||2). Next note that since |v⟩ was assumed to be arbitrary, Equa-
tion (A.24b) implies that dimR(Ã0) ≥ N . Since dimR(A0) = N accord-
ing to Section 4.2, the requirements that Ã0 |v⟩ ∈ R(A0) for arbitrary
|v⟩ ∈ V and dimR(Ã0) ≥ N together imply that the optimal analysis
map satisfies R(Ã0) = R(A0). Therefore, by definition of R(A0) we
must have Ã0 |v⟩ = A0 |x⟩ for some |x⟩ ∈ V. Substituting into Equa-
tion (A.24b), we find that F0Ã0 |v⟩ = F0A0 |x⟩. It is straightforward
to show that the operator (F0A0), often referred to as the frame op-
erator of {|fk⟩}, is always invertible. Thus, |x⟩ = (F0A0)−1 |v⟩ and so
Ã0 |v⟩ = A0 |x⟩ = A0(F0A0)−1 |v⟩. Again using the fact that |v⟩ was
assumed to be arbitrary, this implies that Ã0 = A0(F0A0)−1, which is
exactly equal to the analysis map of the canonical dual frame.

Next we wish to show that of all dual frames, the canonical dual
frame minimizes the expected reconstruction error E as defined in
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Equation (4.33). Note that the derivation given below does not assume
that the analysis frame is an ENTF. The problem can be formulated as

minimize
F̃0 : W → V

E

[
||F̃0 |we⟩ ||2

]
(A.26a)

subject to F̃0A0 |v⟩ = |v⟩ for all |v⟩ ∈ V (A.26b)

where the minimization is performed over all linear operators F̃0 from
W to V. Equation (A.26b), which in effect specifies that F̃0 must be
the synthesis operator of a frame that is dual to the analysis frame,
amounts to the requirement that F̃0 is a left-inverse of A0. A left-inverse
is guaranteed to exist because as stated in Section 4.2, A0 has rank N .

Let F̃0 be an arbitrary left-inverse of A0 and assume that {|wk⟩ , 1 ≤
k ≤ M} is an orthonormal basis for W . Further assume that the {|wk⟩}
can be partitioned into an orthonormal {|wk⟩ , 1 ≤ k ≤ N} for R(A0)
and an orthonormal {|wk⟩ , N + 1 ≤ k ≤ M} for R(A0)⊥. To fully
specify the operator F̃0, it is both necessary and sufficient to specify
its action on each of the {|wk⟩}. Its action on R(A0) must be chosen to
satisfy Equation (A.26b) while its action on R(A0)⊥ can be chosen to
minimize E

[
||F̃0 |we⟩ ||2

]
.

We first consider its action on R(A0). For each {|wk⟩ , 1 ≤ k ≤ N},
there is a unique vector |vk⟩ ∈ V satisfying A0 |vk⟩ = |wk⟩. Equation
(A.26b) implies that F̃0 |wk⟩ = |vk⟩ for all 1 ≤ k ≤ N . The action of
F̃0 on R(A0)⊥ can now be chosen to minimize ||F̃0 |we⟩ ||2. Note that
any error vector |wk⟩ ∈ W can be written uniquely as the sum of a
component |w1⟩ ∈ R(A0) and a component |w2⟩ ∈ R(A0)⊥,

|we⟩ = |w1⟩ + |w2⟩ =
N∑

k=1
ck |wk⟩ +

M∑
k=N+1

ck |wk⟩ , (A.27)

where {ck} are the coefficients of |we⟩ in the {|wk⟩} basis. Since the
{ck} are related to the {ek} by an orthogonal transformation in W,
they also have zero mean, variance σ2, and are pairwise uncorrelated.
The expected value of ||F̃0 |we⟩ ||2 is

E

[
||F̃0 |we⟩ ||2

]
= E

[
||F̃0 |w1⟩ + F̃0 |w2⟩ ||2

]
. (A.28a)
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As we will show below, the expected value is minimized when F̃0 |w2⟩ is
set to zero for all possible values of w⃗2. The vector F̃0 |we⟩ is equal to

F̃0 |we⟩ =
N∑

k=1
ck F̃0 |wk⟩ +

M∑
k=N+1

ck F̃0 |wk⟩ (A.29a)

=
N∑

k=1
ck |vk⟩ +

M∑
k=N+1

ck F̃0 |wk⟩ . (A.29b)

Its squared norm is equal to ⟨F̃0 |we⟩ |F̃0 |we⟩⟩, and since the {ck} are
pairwise uncorrelated all cross terms are equal to zero. Thus,

E

[
||F̃0 |we⟩ ||2

]
= E

 N∑
k=1

c2
k ||vk||2 +

M∑
k=N+1

c2
k ||F̃0 |wk⟩ ||2

 (A.30a)

=
N∑

k=1
E[c2

k] ||vk||2 +
M∑

k=N+1
E[c2

k] ||F̃0 |wk⟩ ||2 (A.30b)

= σ2
N∑

k=1
||vk||2 + σ2

M∑
k=N+1

||F̃0 |we⟩ ||2. (A.30c)

Since the value of the first sum is fixed and since all terms in both
sums must be non-negative, the minimal value is obtained when the
second sum is equal to zero, which happens when F̃0 |wk⟩ = 0 for all
N + 1 ≤ k ≤ M . Thus, the optimal left-inverse F̃0 inverts A0 over its
range and acts as the zero operator on R(A0)⊥. The unique left-inverse
with these properties is the Moore-Penrose pseudoinverse of A0 (see,
for example, Section 1 of [39]). Explicitly, the pseudoinverse is equal to

A∗
0 = (A†

0A0)−1A†
0 = (F0A0)−1F0, (A.31)

and this corresponds exactly to the synthesis operator of the canonical
dual frame [39].

A.6 Naimark’s Theorem (Section 4.4.2)

Let {|fk⟩} be an arbitrary frame for V and assume that there exists
and orthonormal basis {|wk⟩} for W that satisfies PV |wk⟩ = |fk⟩ for
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1 ≤ k ≤ M . As explained in Section 4.4.3, an arbitrary vector |v⟩ ∈ V
can always be written as

|v⟩ =
M∑

k=1
⟨wk|v⟩ |wk⟩ =

M∑
k=1

bk |wk⟩ , (A.32)

where we have defined bk = ⟨wk|v⟩. Since the {|wk⟩} are an orthonormal
basis for W , the squared norm of |v⟩ is equal to the sum of the squared
magnitudes of the {bk}, ||v||2 = ∑

k |bk|2. On the other hand and as
also explained in Section 4.4.3, since the {|wk⟩} satisfy the property
PV |wk⟩ = |fk⟩ for 1 ≤ k ≤ M , we also have

bk = ⟨wk|v⟩ = ⟨fk|v⟩ , 1 ≤ k ≤ M. (A.33)

Thus,
M∑

k=1
| ⟨fk|v⟩ |2 =

M∑
k=1

|bk|2 = ||v||2 for all |v⟩ ∈ V, (A.34)

which means by definition that {|fk⟩} is a Parseval frame.

A.7 An Oversampling Frame in Classical Signal Processing (Section
4.6.2)

It is common in many classical signal processing scenarios to sample a
bandlimited continuous-time (CT) signal at an integer multiple of its
Nyquist rate. This tactic is sometimes referred to as oversampling [25].
In Appendix A.7 we verify explicitly that a particular set of shifted
sinc functions forms an ENTF for a space of bandlimited CT signals.
Assume that V is the set of all finite-energy CT signals bandlimited
to (−ΩN ,ΩN ) and let T = π/(rΩN ) for an arbitrary positive integer r.
We wish to show that {fk(t)}, where

fk(t) = sin(ΩN (t− kT ))
π(t− kT ) , k an integer, (A.35)
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is an ENTF for V with frame bound C = 1/T and ||fk|| = (rT )−1/2.
By definition, this means that

∞∑
k=−∞

|⟨fk(t), v(t)⟩|2 = ||v(t)||2
T

for all v(t) ∈ V (A.36a)

||fk(t)|| = 1√
r T

for all k. (A.36b)

Note that we are assuming the following standard inner product on V ,

⟨v1(t), v2(t)⟩ =
∫ ∞

−∞
dt v1(t) v2(t) for all v1(t), v2(t) ∈ V. (A.37)

To verify that {fk(t)} satisfies Equation (A.36a), consider fk(t) for a
specific value of k and an arbitrary element v(t) ∈ V with CT Fourier
transform (CTFT) V (jΩ). Since v(t) is an element of V, V (jΩ) is only
nonzero for |Ω| ≤ ΩN . We will first show that the inner product of fk(t)
with v(t) is equal to v(t) sampled at time t = kT , i.e., ⟨fk(t), v(t)⟩ =
v(kT ). Then we will use Parseval’s theorem to show that

∞∑
k=−∞

|⟨fk(t), v(t)⟩|2 =
∞∑

k=−∞
|v(kT )|2 = ||v(t)||2

T
. (A.38)

Let y(t) be the convolution of fk(t) with v(t),

y(t) =
∫ ∞

−∞
dτ v(τ) fk(t− τ). (A.39)

It is well-known that the CTFT of y(t) is Y (jΩ) = Fk(jΩ)V (jΩ) where
Fk(jΩ) is the CTFT of fk(t), defined by

Fk(jΩ) =

e−j Ω kT if |Ω| ≤ ΩN ,

0 else.
(A.40)

Since fk(t) = fk(−t), the inner product of fk(t) with v(t) is equal to
y(t) evaluated at t = 0,

⟨fk(t), v(t)⟩ =
∫ ∞

−∞
dt fk(t) v(t) =

∫ ∞

−∞
dt fk(−t) v(t) = y(0). (A.41)
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Using the definition of the inverse CTFT, we may express y(0) as

y(0) =
[ 1

2π

∫ ∞

−∞
dΩY (jΩ) ejΩt

]
t=0

= 1
2π

∫ ∞

−∞
dΩY (jΩ) (A.42a)

= 1
2π

∫ ∞

−∞
dΩFk(jΩ)V (jΩ). (A.42b)

And now substituting Equation (A.40) into Equation (A.42) yields

⟨fk(t), v(t)⟩ = 1
2π

∫ ∞

−∞
dΩV (jΩ) e−j Ω kT = v(kT ), (A.43)

where we have again used the definition of the inverse CTFT. Next
we use Parseval’s theorem to show that ∑k |v(kT )|2 = ||v(t)||2/T . The
discrete time Fourier transform of the sequence {v(kT )}, denoted by
V̂ (ejω), is 2π-periodic and is related to V (jΩ) via

V̂ (ejω) = 1
T
V

(
j
ω

T

)
, −π < ω ≤ π. (A.44)

Parseval’s theorem for discrete time sequences states that
∞∑

k=−∞
|v(kT )|2 = 1

2π

∫ π

−π
dω

∣∣∣V̂ (ejω)
∣∣∣2 . (A.45)

Substituting Equation (A.44) into Equation (A.45) and changing the
variable of integration to Ω = ω/T , we find

∞∑
k=−∞

|v(kT )|2 = 1
2π

∫ π

−π
dω

1
T 2

∣∣∣∣V (j ωT
)∣∣∣∣2 = 1

2π

∫ π/T

−π/T
dΩ 1

T
|V (jΩ)|2

(A.46a)

= 1
2π T

∫ ∞

−∞
dΩ |V (jΩ)|2 (A.46b)

Note that in going from Equation (A.46a) to (A.46b), we have used the
fact that π/T = rΩN and the fact that by assumption, V (jΩ) is only
nonzero for |Ω| ≤ ΩN . Finally, Parseval’s theorem for CT signals states
that

1
2π

∫ ∞

−∞
dΩ |V (jΩ)|2 =

∫ ∞

−∞
dt |v(t)|2 = ||v(t)||2 for all v(t) ∈ V.

(A.47)



104 Optional Appendices

In summary, we have
∞∑

k=−∞
|⟨fk(t), v(t)⟩|2 =

∞∑
k=−∞

|v(kT )|2 = ||v(t)||2
T

. (A.48)

Since Equation (A.48) is true for any v(t) ∈ V , {fk(t)} is a tight frame
for V with frame bound C = 1/T .

To verify Equation (A.36b), we use Parseval’s theorem for CT signals
to show that ||fk(t)||2 is identical for all values of k,

||fk(t)||2 =
∫ ∞

−∞
dt |fk(t)|2 = 1

2π

∫ ∞

−∞
dΩ |Fk(jΩ)|2 (A.49a)

= 1
2π

∫ ΩN

−ΩN

dΩ |e−jΩkT |2 = ΩN

π
. (A.49b)

Since ΩN = π/(r T ), we have

||fk(t)|| = 1√
rT

for all k. (A.50)

A.8 Change of Basis in W (Section 4.6.2)

Consider |e⟩ = ∑
k ∆k |wk⟩ where the {∆k} each have zero mean and

variance σ2 and are pairwise uncorrelated, as specified in Equation
(4.31). Let {|uk⟩} be any orthonormal basis of W. We wish to show
that the components of |e⟩ with respect to {|uk⟩}, which we denote by
{∆′

k}, have these same properties. We start by expanding each of the
{|wk⟩} as a linear combination of the {|uk⟩},

|wk⟩ =
M∑

ℓ=1
ckℓ |uk⟩ , 1 ≤ k ≤ M. (A.51)

Since the {|wk⟩} are orthonormal, the {ckℓ} satisfy
M∑

ℓ=1
cjℓ ckℓ = δjk, 1 ≤ j, k ≤ M, (A.52)

where δjk takes the value 1 if j = k and 0 otherwise. Equation (A.52)
implies that the {ckℓ} also satisfy

M∑
k=1

ckℓ ckm = δℓm, 1 ≤ ℓ,m ≤ M. (A.53)
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To see why this is true, consider the M ×M matrix D whose kth row
and ℓth column contains the element ckℓ for 1 ≤ k, ℓ ≤ M . Equation
(A.52) states that the columns of D are orthonormal with respect to
the standard inner product (often referred to as the dot product) on
CM , the canonical M -dimensional complex coordinate space. A square
matrix whose columns are orthonormal also has the property that its
rows are orthonormal, which is exactly the meaning of Equation (A.53).

Substituting Equation (A.51) into the expression for |e⟩ and rear-
ranging, we find

|e⟩ =
M∑

k=1
∆k

(
M∑

ℓ=1
ckℓ |uk⟩

)
=

M∑
ℓ=1

(
M∑

k=1
∆k ckℓ

)
|uk⟩ . (A.54)

The components {∆′
k} can thus be expressed as ∆′

k = ∑
ℓ ∆k ckℓ for

1 ≤ k ≤ M . We may now derive the desired result using the linearity of
expectation and the properties of the {∆k},

E[∆′
k] =

M∑
k=1

E[∆k] ckℓ = 0 (A.55a)

E[∆′
j ∆′

k] =
M∑

j,k=1
E[∆j∆k] cjℓ ckℓ (A.55b)

=

σ
2∑M

k=1 c
2
kℓ if j = k

0 if j ̸= k
(A.55c)

=

σ
2 if j = k

0 if j ̸= k
.. (A.55d)

Note that in Equation (A.55d) we have used Equation (A.53). Thus,
we have shown that the {∆′

k} have zero mean and variance σ2 and are
pairwise uncorrelcated.

The fact that the {∆′
k} are uncorrelated can also be interpreted in

terms of the matrix D. This viewpoint is the one most commonly used
when considering a general decorrelation transformation of a vector-
valued random variable. Consider the vector-valued random variable
∆⃗ whose kth component is the random variable ∆k for 1 ≤ k ≤ M .
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Similarly, let ∆⃗′ be the vector-valued random variable with components
{∆′

k}. Since ∆′
k = ∑

ℓ ∆k ckℓ for 1 ≤ k ≤ M , we have ∆⃗′ = D ∆⃗. Since
the components of ∆⃗′ clearly have zero mean, the covariance matrix of
∆⃗′ can be expressed as

E[∆⃗′(∆⃗′)T ] = DE[∆⃗ ∆⃗T ]DT . (A.56)

The {∆k} satisfy E[∆j∆k] = σ2δjk by assumption, implying that
E[∆⃗∆⃗T ] = σ2IM where IM is the M ×M identity matrix. Thus, Equa-
tion (A.56) can be simplified to

E[∆⃗′(∆⃗′)T ] = σ2D IM DT = σ2DDT = σ2IM , (A.57)

where in the last line we have used that fact that DDT = IM because
the rows of D are orthonormal. The component in the jth row and
kth column of the matrix E[∆⃗′(∆⃗′)T ] is E[∆′

j∆′
k], and Equation (A.56)

states that it is equal to σ2 if j = k and 0 otherwise, as expected.

A.9 Generalized Operator Frames (Section 4.5.2)

The definition of a special class of IC POVMs referred to as tight IC
POVMs relies on the notion of a generalized operator frame with respect
to (w.r.t.) a given measure, as introduced in [11]. Given a measure α(·)
that maps each 1 ≤ k ≤ M to a non-negative number α(k) ≥ 0, a set of
operators {|Fk⟩⟩} in V is a generalized operator frame for V w.r.t. α(·)
if

C ||V ||2 ≤
M∑

k=1
α(k) |⟨⟨Fk|V ⟩⟩|2 ≤ D ||V ||2 for all |V ⟩⟩ ∈ V, (A.58)

for some 0 < C ≤ D < ∞.

Example A.1. Equation (4.26) is a special case of Equation (A.58) in
which α(·) is the counting measure, defined by

α(k) = 1, 1 ≤ k ≤ M. (A.59)

Thus, a set of operators satisfying Equation (4.26) is a frame for V w.r.t.
the counting measure.
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Example A.2. The trace measure [11] is defined by

α(k) = Tr(Fk), 1 ≤ k ≤ M. (A.60)

Note that Equation (A.60) only represents a valid measure when
Tr(Fk) ≥ 0 for all values of k. One instance in which this is true
is when the {|Fk⟩⟩} are the elements of a POVM. Substituting Equation
(A.60) into Equation (A.58) leads to

C ||V ||2 ≤
M∑

k=1
Tr(Fk) |⟨⟨Fk|V ⟩⟩|2 ≤ D ||V ||2 for all |V ⟩⟩ ∈ V (A.61)

for some 0 < C ≤ D < ∞. A set of operators {|Fk⟩⟩} in V satisfying
Equation (A.61) is a frame for V w.r.t. the trace measure. A tight frame
for V w.r.t. the trace measure is one for which the upper and lower
bounds in Equation (A.61) can both be set to the same value. Note that
in finite dimensions, if {|Fk⟩⟩} is a frame for V w.r.t. the trace measure,
then {

√
| Tr(Fk)| |Fk⟩⟩} is a frame for V w.r.t. the counting measure.

A.10 Distribution of Relative Frequencies (Section 5.3)

While the following derivation is motivated by the quantum state esti-
mation problem considered in Section 5.3, the concepts and conclusions
rely only on the laws of probability and not on the postulates of quan-
tum mechanics. Therefore we state the results without any reference
to density operators or quantum measurement. Let X be a discrete
random variable that takes values in the set {1, . . . ,M} with probability
mass function (PMF) {p(1), . . . , p(M)}, i.e.,

X = k with probability p(k), 1 ≤ k ≤ M. (A.62)

Assume that {xi, 1 ≤ i ≤ L} is a set of L independent realizations of
X and consider the set of relative frequencies {p̂(k) = ℓk/L}, where
ℓk is the number of realizations {xi} that are equal to k. Defining
dk = p̂(k) − p(k) for 1 ≤ k ≤ M , the goal is to evaluate the expected
values E[dk] and E[djdk] for all 1 ≤ j, k ≤ M .

We first address the case where j = k. Let k be a fixed integer
between 1 and M . To compute E[dk], note that the value of ℓk is
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binomially distributed with parameters p(k) and L [ref]. Its expected
value is E[ℓk] = Lp(k) and its variance is var(ℓk) = Lp(k) (1 − p(k)).
Using linearity of expectation we find that, unsurprisingly, the expected
value of dk is equal to zero,

E[dk] = E

[
p(k) − ℓk

L

]
= p(k) − Lp(k)

L
= 0. (A.63)

The variance of dk is

var(dk) = var
(
p(k) − ℓk

L

)
= var(ℓk)

L2 = p(k) (1 − p(k))
L

. (A.64)

Furthermore, since E[dk] = 0 we have E[d2
k] = var(dk).

Now let j and k be fixed integers between 1 and M with j ̸= k.
To compute E[dj dk], note that the joint distribution of {ℓ1, . . . , ℓM } is
given by a multinomial distribution with parameters L and {p1, . . . , pM }
[ref]. It can be shown using the properties of the multinomial distribution
that

E[ℓjℓk] = Lp(j) p(k) (L− 1). (A.65)

Using linearity of expectation and the fact that E[ℓj ] = Lp(j) and
E[ℓk] = Lp(k), we find that the value of E[djdk] is

E[djdk] = E

[(
ℓj
L

− p(j)
)(

ℓk
L

− p(k)
)]

(A.66a)

= E[ℓjℓk]
L2 − p(j) p(k) = −p(j) p(k)

L
. (A.66b)
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B.1 Generation of Pf -Pd Projection of LRT ROC from Suboptimal
SVT ROC

An explanation of the procedure is shown in Figure B.1. The graphs
in Figure B.1a show P SVT

f , P SVT
d , and the derivative dP SVT

d /dP SVT
f

as functions of the score variable. According to Equation (2.31) the
derivative is equal to the likelihood ratio function. Note that these graphs
are caricatures used only for visualization, since the procedure does
not require explicit knowledge of any of the aforementioned quantities
as functions of the score variable. A fixed LRT threshold value η0 ≥ 0
identifies multiple disjoint regions of s for which f1(s)/f0(s) ≥ η0,
highlighted in green for η0 = 1 in the figure. Together these regions
comprise DLRT(η0). Each individual region j covers an interval [aj , bj ]
with aj < bj and corresponds to the segment in the Pf -Pd projection
of the SVT ROC with endpoints (hf (bj), hd(bj)) and (hf (aj), hd(aj)).
The integrals of f0(·) and f1(·) over the region, shown in Figure B.1b,

109
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can be expressed as∫ bj

aj

ds f0(s) = (1 − F0(aj)) − (1 − F0(bj)) = hf (aj) − hf (bj) (B.1a)

∫ bj

aj

ds f1(s) = (1 − F1(aj)) − (1 − F1(bj)) = hd(aj) − hd(bj) (B.1b)

which are simply the changes in P SVT
f and P SVT

d between the endpoints
of the segment. Summing these changes over all regions corresponds
to summing the integrals of f0(·) and f1(·) over each disjoint portion
of DLRT(η). The resulting Pf -Pd projection of the LRT ROC made by
varying η0 over its entire range is illustrated in Figure B.1c.

B.2 QMOCs Generated using Standard Measurements are Ellipses

We show that any QMOC generated according to the method described
in Example 3.3 of Section 3.6, in which two-outcome quantum measure-
ments with associated standard POVMs are used to distinguish between
arbitrary qubit density matrices ρ0 and ρ1 with d = 2, is an ellipse.
More specifically, it is a rotated ellipse in the Pf -Pd plane centered at
the point (1/2, 1/2). The derivation also applies to the case where ρ0
and ρ1 represent two pure states with d > 2, as long as the standard
POVMs used to generate the QMOC have the following properties: The
first two elements of the POVM, E1 and E2, should be analogous to
those defined by Equation (3.19), but with the additional requirement
that |v1⟩ and |v2⟩ should lie in the plane defined by the two pure states.
The other measurement elements must therefore project onto subspaces
of the orthogonal complement of that plane. Again the final decision is
H1 if the measurement outcome associated with E2 occurs and H0 if the
measurement outcome associated with E2 occurs. The other possible
outcomes have zero probability of occurring and can be associated with
either final decision. Essentially, this reduces the problem to that of
distinguishing between two pure states with d = 2.
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Figure B.1: (a) Probability of false alarm, probability of detection, and derivative
of SVT ROC as functions of the score variable. The highlighted regions represent
regions where the derivative of the curve is greater than or equal to η0 = 1. (b)
Integrals of the conditional PDFs over the LRT decision region DLRT(η0) for η0 = 1.
(c) Pf -Pd projections of non-concave SVT ROC and LRT ROC generated using the
procedure given in the text.
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The coordinates of the QMOC in terms of the angle θ are

Pf = Tr(E1ρ0) = a0 cos2
(
θ

2

)
+ a1 sin2

(
θ

2

)
(B.2a)

Pd = Tr(E1ρ1) = b0 cos2
(
θ − α

2

)
+ b1 sin2

(
θ − α

2

)
. (B.2b)

Assuming for the moment that this is the parametric equation of a
rotated ellipse centered at (1/2, 1/2), we can center the ellipse at the ori-
gin and use trigonometric identities to derive equations for the centered
coordinates,

Pf − 1
2 = a0 − a1

2 cos θ (B.3a)

Pf − 1
2 = b0 − b1

2 cos(θ − α). (B.3b)

For ease of notation we now make the substitutions

x = Pf − 1
2 , y = Pd − 1

2 , a = a0 − a1
2 , b = b0 − b1

2 , (B.4)

and introduce the functions fx(·) and fy(·), so that the centered coordi-
nates become

x = fx(θ) = a cos θ (B.5a)

y = fy(θ) = b cos(θ − α). (B.5b)

(Note that the x and y above should not be confused with the {|xi⟩} and
{|yi⟩} in Equations (3.11).) The objective now is to show that x = fx(θ)
and y = fy(θ) represent a rotated ellipse centered at the origin. That is,
the objective is to show that they can be written in the form

x = gx(t) = q cosβ cos t− r sin β sin t (B.6a)

y = gy(t) = q sin β cos t+ r cosβ sin t (B.6b)

for some angle of rotation β from the horizontal, semi-major axis q,
semi-minor axis r, and parameter t (which will prove inconsequential
for our purposes). The functions gx(·) and gy(·) have been introduced
for convenience. We can solve for the parameters q, r, β in terms of the
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known values of a, b, α by using Equations (B.5) and (B.6) to find the
points on each ellipse with maximum x- and y-values and then setting
their coordinates equal to one another. Taking the derivative of fx(θ) and
setting it to zero, we find that the point with maximum x-value occurs
at θx = 0 and has coordinates (fx(0), fy(0)) = (a, b). The point with
maximum y-value occurs at θy = α and has coordinates (fx(α), fy(α)) =
(a cosα, b). Similarly, the point on the ellipse described by Equations
(B.6) with maximum x-value occurs at tx = tan−1(−(r/q) tan β) and
has coordinates

gx(tx) =
√
q2 cos2 β + r2 sin2 β (B.7a)

gy(tx) = q2 − r2√
q2/ sin2 β + r2/ cos2 β

. (B.7b)

The point with maximum y-value occurs at ty = tan−1(r/(q tan β)) and
has coordinates

gx(ty) = q2 − r2√
q2/ cos2 β + r2/ sin2 β

(B.8a)

gy(ty) =
√
q2 sin2 β + r2 cos2 β. (B.8b)

Setting fx(0) = gx(tx), fy(0) = gy(tx), fx(α) = gx(ty), and fy(α) =
gy(ty) and solving for q, r, and β in terms of a, b, and α yields

β = 1
2 tan−1

(2ab cosα
a2 − b2

)
(B.9a)

q =
[

1
2

(
a2 + b2 + a2 − b2

cos(2β)

)]1/2

(B.9b)

r =
[

1
2

(
a2 + b2 − a2 − b2

cos(2β)

)]1/2

. (B.9c)

It can be verified through straightforward algebra that when β, q,
and r are given by Equations (B.9), the coordinates x = fx(θ), y =
fy(θ) in Equation (B.5) satisfy the equation that defines an ellipse:
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Ax2 +Bxy + Cy2 +D = 0 with B2 − 4AC < 0, where

A = q2 sin2 β + r2 cos2 β (B.10a)

B = 2(q2 − r2) sin β cosβ (B.10b)

C = q2 cos2 β + r2 sin2 β (B.10c)

D = −q2r2. (B.10d)

This verifies our initial assumption that x = fx(θ) and y = fy(θ) are
the coordinates of an ellipse that is centered at the origin, rotated by an
angle β from the horizontal, and has semi-major axis q and semi-minor
axis r. The original QMOC is the same ellipse centered at the point
(1/2, 1/2).
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