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Abstract

The central topics of this thesis are operating characteristics for binary hypothesis
testing in classical and quantum settings and overcomplete quantum measurements for
quantum binary state discrimination. With this we explore decision and measurement
operating characteristics defined as the tradeoff between probability of detection and
probability of false alarm as parameters are varied. The thesis specifically addresses
the Neyman-Pearson optimality of receiver operating characteristics when they are
generated using threshold tests on the score variable rather than threshold tests on
the likelihood ratio. The analysis applies to any scalar score variable. In the quantum
setting, informationally overcomplete POVMs are explored to provide more robust
quantum binary state discrimination schemes. We focus on equal trace rank one or
Etro POVMs, which can be specified by arrangements of points on a sphere that we
refer to as an Etro sphere.
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Chapter 1

Introduction

Binary decisions guide our everyday lives in situations both critical and trivial. The

choices made by politicians and physicians may have impact on a global or individual

scale. Perhaps less consequential is whether or not we choose to carry an umbrella on a

cloudy day. Any choice made inherently involves a conscious, subconscious, or formal

tradeoff between benefits and detriments. The defense of a country may come at the

cost of soldiers’ lives, the prolongation of life at the cost of an individual patient’s

quality of life, the ability to keep dry in a downpour at the cost of the wasted effort of

carrying an umbrella on a sunny day. In some cases our analysis of the compounding

factors may be informal and the worst case outcome fairly inconsequential. But when

the worst case outcome could have severe consequences as, for example, in a clinical

setting or when deciding whether or not to fire a missile, it is much more desirable

to have a structured analysis and process for arriving at a final decision. This may

be a complicated task for many reasons, including the fact that the assignment of

relative costs to the outcomes of the two possible decisions is often a judgement call

itself. We may also lack a historical dataset that is large enough to allow for accurate

estimation of important quantities such as the a priori probabilities.

The overarching theme of this thesis is the study of such binary hypothesis testing

problems with a particular focus on the problem of quantum binary state discrimina-

tion. In Sections 1.1 and 1.2 below we provide some context regarding these problems

and describe several important quantities that will reappear many times in the the-
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sis, including the probabilities of false alarm and detection. Among the factors that

differentiate typical viewpoints on binary hypothesis testing in the classical versus

quantum settings is the meaning of the word “measurement”. Section 1.3 contains a

few remarks about measurement and gives a sense of our perspective. In Section 1.4

we provide a very brief review of an area in quantum mechanics where overcomplete-

ness and redundancy have been exploited. This is in preparation for discussions later

in the thesis about how overcompleteness can potentially be utilized in the context of

quantum binary state discrimination. Section 1.5 contains an outline of the remaining

chapters.

1.1 Binary Hypothesis Testing

Mathematically, the objective of a binary hypothesis testing problem is to make a

decision as to which of two possible hypotheses, denoted as 𝐻0 or 𝐻1, is true in

some optimal way based on the outcomes of measurements or observations made

on an input. The measurements or observations are assumed to result in a set of

numerical values that may be concatenated to form a vector or alternatively may be

combined algorithmically into a single value. In either case the result is frequently

modeled as a realization of a random variable referred to as the score variable. A

particular realization of the score variable can be viewed as being drawn from one

of two probability distributions conditioned on the true hypothesis. Based in part

on these probability distributions, classical decision theory is utilized to make a final

decision in an optimal way with respect to a specific criterion. Uncertainty in the final

decision is caused by overlap in the two conditional probability distributions resulting

from, for example, noise in a physical environment or variability in a population of

subjects.

Historically a quantity considered to be of significance for this problem is the

probability of error, denoted as 𝑃𝑒 and defined as the probability of identifying 𝐻0

to be true when 𝐻1 is in fact true or vice versa. Other probabilities that may be

of interest are (i) the probability of detection, denoted by 𝑃𝑑 and defined as the
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probability of deciding that 𝐻1 is true given that it is indeed true, (ii) the probability

of a miss, denoted by 𝑃𝑚 and defined as the probability of deciding that 𝐻0 is true

given that in fact 𝐻1 is true, and (iii) the probability of false alarm, denoted by 𝑃𝑓

and defined as the probability of deciding that 𝐻1 is true given that 𝐻0 is in fact

true. Also of importance are the a priori or prior probabilities, denoted by 𝑞0 and 𝑞1,

associated with whether 𝐻0 or 𝐻1 is true apart from any measurement, observation,

or decision. Various of these probabilities are of course connected mathematically

through the rules of probability.

Since in many scenarios the prior probabilities are difficult or impossible to assess,

it has become common in many contexts to formulate the decision making process

without explicitly requiring knowledge of these probabilities. One approach that has

become widespread for accomplishing this is to focus on the tradeoff between 𝑃𝑓

and 𝑃𝑑, often displayed using what is commonly referred to as a receiver operating

characteristic or ROC. ROCs originated in the radar signal detection community,

where they were used to characterize systems that detected the presence or absence

of military targets during World War II [75]. The use of ROCs has become increasingly

prevalent in a very broad set of application areas including biostatistics and machine

learning [5, 27, 50, 66, 71, 73, 84]. More generally, the term operating characteristic

can be used to refer to any representation of the tradeoff between 𝑃𝑓 and 𝑃𝑑 as one or

more parameters of a hypothesis testing system is varied. Many results of this thesis

are directly related to operating characteristics or are illustrated using different types

of operating characteristics.

1.2 Quantum Binary State Discrimination

Linear algebra is a core part of the mathematical language of signal processing includ-

ing as it is applied to binary hypothesis testing problems. A canonical example is the

problem of discriminating between two discrete time finite length signals in the pres-

ence of independent and identically distributed (IID) Gaussian noise. As described

further in Chapter 2, implementation of the minimum probability of error decision
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strategy can be accomplished using what is referred to as a matched filter that is then

followed by a sampler. The problem essentially boils down to discriminating between

two vectors belonging to a finite dimensional Hilbert space under the assumption that

IID Gaussian noise has been applied to their expansion coefficients with respect to

a given orthonormal basis. Geometric intuition suggests and a mathematical deriva-

tion confirms that the minimum probability of error solution corresponds essentially

to projecting the observed vector onto the direction defined by the difference of the

two vectors we wish to distinguish. And indeed it is well-understood that the matched

filter can be interpreted in this way.

The problem of discriminating between two finite dimensional vectors in the pres-

ence of additive noise is in some ways straightforward, but in fact it becomes increas-

ingly rich and interesting in the presence of modified assumptions and constraints.

The modifications considered in this thesis can be roughly grouped into two cate-

gories: (i) those stemming from frame theory and leading to an assumption that the

expansion coefficients correspond not a linearly dependent set of vectors rather than

a basis, and (ii) those stemming from the postulates of quantum mechanics. Specif-

ically, the problem of quantum binary state discrimination is merely a special case

of the problem of discriminating between two vectors in a finite dimensional Hilbert

space with the caveat that as a result of the postulates of quantum mechanics, the

noise values on the expansion coefficients are correlated both with each other and with

the true underlying vector. Modifying the quantum measurement used for discrimina-

tion can be done in such a way that the expansion coefficients correspond to linearly

dependent vectors instead of linearly independent vectors. To make these connections

more precise we now state the problem of quantum binary state discrimination.

In the binary hypothesis testing problem considered in this thesis, 𝐻0 and 𝐻1

each correspond to a specific physical environment or preparation procedure that has

resulted in a collection of 𝐿 quantum mechanical systems (QMSs), each of which can

be described by the same quantum state. The pre-decision operator is comprised of a

specific quantum measurement performed separately on each of the individual QMSs.

We assume for simplicity that the chosen quantum measurement has a finite number
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𝑀 of possible outcomes. The score variable is the 𝑀 -element vector containing the

relative frequencies of each possible measurement outcome. This problem along with

its many variations is often referred to as quantum binary state discrimination and

plays an important role in quantum communication systems [38, 19, 76, 3, 80, 79, 40].

In that context each possible state represents a different transmitted message. More

broadly, quantum hypothesis testing can be seen as a way to read out the information

that has been computed by other quantum technologies and is contained in the state

of a quantum system [10, 72]. The measurement strategy that achieves minimum

probability of error was derived by Helstrom [38].

As described in more detail in Chapter 4, a quantum state can always be rep-

resented by a Hermitian operator 𝜌 referred to as a density operator acting on a

Hilbert space. We will always assume that the Hilbert space is finite dimensional

for simplicity. An 𝑀 -outcome quantum measurement always has an associated set

of 𝑀 Hermitian operators {𝐸𝑘, 1 ≤ 𝑘 ≤ 𝑀} acting on the same Hilbert space. The

{𝐸𝑘} always satisfy the definition of what is referred to as a positive operator-valued

measure (POVM). 𝜌 and the {𝐸𝑘} can be interpreted as elements of a common vector

space 𝒱 that can be referred to as an operator space, and the probabilities {𝑝(𝑘)}
mentioned above can be interpreted as basis expansion coefficients of 𝜌 whenever

the {𝐸𝑘} span 𝒱 . The {𝐸𝑘} can also be chosen to be linearly dependent while still

spanning 𝒱 , in which case the {𝑝(𝑘)} contain some amount of redundancy.

If the expansion coefficients (i.e., probabilities) corresponding to each density op-

erator could be determined precisely then the two hypotheses could be perfectly dis-

tinguished. What prevents this from being possible is that in the problem formulation

given above, there are only 𝐿 QMSs available for measurement. Thus only relative

frequencies can be obtained. A vector of relative frequencies can be expressed as a

vector of true probabilities added to an error vector. But the distribution of the error

vector depends directly on the true probabilities, and additionally the error values

must add to zero and so they are also correlated with each other. This is why as

stated above, the error values on the expansion coefficients are correlated with each

other and with the true hypothesis.
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1.3 Classical Versus Quantum Measurement

Quantum binary state discrimination naturally involves a tradeoff between 𝑃𝑓 and 𝑃𝑑

and therefore it also involves the notion of an operating characteristic. Interestingly,

operating characteristics of any kind are significantly less prevalent in the quantum

binary state discrimination literature. Perhaps one of the principal reasons for this is

that although there are many similarities between the classical and quantum scenarios,

there are also some fundamental differences that stem from the underlying differences

between the postulates of classical versus quantum physics. Of particular importance

and as described in Chapter 4 are the stipulations made by the postulates of quantum

mechanics about the state of a quantum system and about the concept of quantum

measurement.

To give a sense of the differences in how measurement is thought of in classical

and quantum settings, we provide here a brief discussion that takes its inspiration in

part from the delicate and comprehensive treatment of the topic in Chapter 1 of [58].

In all settings it is necessary to make a distinction between the word “measurement”

as it refers to a specified experimental setup in a hypothetical laboratory and as it

refers to the laws of classical or quantum physics that model our knowledge of the

behavior of the laboratory equipment and its physical interaction with the object or

system we wish to measure. Our main concern in this thesis is the latter connotation

of the word – all of our discussion can be aptly described as applications of the laws

of quantum physics to predict the behavior of hypothetical laboratory equipment.

In the classical world it is common to assume that the role of measurement is to

expose the pre-existing value of some property of the object or system of interest.

To measure the weight of a block of wood is to acquire knowledge of an intrinsic

property that it has. Measurements as performed in a laboratory are interactive pro-

cesses between the measuring apparatus and the object or system being measured.

Placing the wood on a scale causes the beam to tip to one side. The effect of the

interaction on the apparatus and/or the measured system can be thought of as the

outcome of the measurement. We interpret the tipping of the beam to a certain
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position as meaning that the weight of the wood is higher or lower than a specific

value. While measurements performed on quantum systems also necessarily involve

interaction between the apparatus and the measured system, and while the effects

of the interaction can again be thought of as the outcome of the measurement, it is

not the case that the alterations to the apparatus can in general be interpreted as

a result of intrinsic, pre-existing properties of the measured system. Related to this

statement is the fact that quantum measurements are in general not reproducible.

Two identically prepared quantum systems may interact with two identical measure-

ment apparatus and it would be entirely consistent with the laws of the quantum

physics for the effects on both the apparatus and the system to be different. And

this in comparison with an analogous classical scenario – if two identical blocks of

wood were placed on identical scales, we would of course expect the two beams to

tip to the same position. It is important to note, however, that the assumed repro-

ducibility of classical measurements do not take into account the presence of random

error. In a classical communication setting the receiver might measure two copies

of the same incoming bit sequence. But if the copies are each subject to different

errors produced by the communication channel, the measured bits will in general be

different. As is made more exact in Chapter 4, in this thesis we will be focused on

quantum measurements in which the possible effects of the measurement interaction

on any hypothetical laboratory equipment and on any measured system – that is, the

possible measurement outcomes – can only happen in finite number 𝑀 of ways. The

possibilities will be indexed by an integer 𝑘 with 1 ≤ 𝑘 ≤ 𝑀 . The laws of quantum

physics allow us to predict the probabilities {𝑝(𝑘)} of the various outcomes and it is

these probabilities that are our main interest.

1.4 Overcompleteness in Quantum Mechanics

Quantum measurements that employ redundant, or overcomplete, representations of

the state of the system being measured have been studied in the context of quantum

state estimation. Roughly, the goal of that problem is to reconstruct an unknown
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quantum state from estimates of its probabilities corresponding to a particular quan-

tum measurement. This is mathematically analogous to reconstructing an unknown

vector from imprecise versions of its expansion coefficients with respect to a given set

of linearly independent or linearly dependent vectors that span the space in question.

In the case of quantum binary state discrimination the two vectors we wish to

distinguish are elements of an operator space 𝒱 . It was mentioned in Section 1.2 that

the POVM {𝐸𝑘} associated with a given quantum measurement can be chosen to

span 𝒱 . When this is the case the POVM satisfies the definition of what is referred to

as an informationally complete (IC) POVM, which is one that maps every quantum

state to a unique probability distribution over the possible measurement outcomes

[2, 8, 23, 24, 28, 29, 30, 62, 64, 67, 81, 82, 83]. When the {𝐸𝑘} span 𝒱 and are linearly

dependent, it is referred to as being informationally overcomplete (IOC). Due to a

fundamental result that states that the elements of an IC or IOC POVM always form

a frame for 𝒱 , there is strong overlap in the mathematical analysis of quantum state

estimation with the field of frame theory, including, for example, a consideration of

the optimal dual frame for reconstruction [82]. Less attention has been given to how

overcompleteness might benefit quantum state discrimination.

1.5 Outline

In Chapter 2 we establish our notation and terminology surrounding general binary

hypothesis testing problems. Multiple widely used criteria for determining the opti-

mal binary decision rule for a given score variable are reviewed, all of which lead to

threshold tests performed on the likelihood ratio. In scenarios where the information

needed to implement the optimal likelihood ratio test is not fully known, a common

strategy is to threshold the score variable as opposed to thresholding the likelihood

ratio. A central topic of Chapter 2 is the development of a condition that, when sat-

isfied, guarantees that the ROC generated using threshold tests on the score variable

is equivalent to the ROC that would have been generated using threshold tests on

the likelihood ratio.

Chapter 3 summarizes our viewpoint on several core concepts of linear algebra and
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frame theory. The objective is to introduce the mathematical machinery and notation

necessary to apply the concepts to quantum measurement in Chapters 4 and 5. In

Chapter 4 we review the quantum state and measurement postulates and use them

to precisely state the quantum binary state discrimination problem considered in this

thesis. Helstrom’s minimum probability of error solution is reviewed and examples of

two types of operating characteristics are presented.

In Chapter 5 we phrase the quantum binary state discrimination problem using

the language of linear algebra applied to operator spaces. The operator space 𝒱 in

question contains all density operators and POVM elements. A direct sum decom-

position of 𝒱 into two orthogonal subspaces leads us to define a counterpart to the

well-known Bloch ball and Bloch sphere for a special class of POVMs that we refer

to as equal trace rank one (Etro) POVMs. An Etro POVM corresponding to a qubit

measurement can be fully specified by 𝑀 points on what we refer to as an Etro sphere

of radius
√
2/𝑀 .

In Chapter 6 we present an exploratory investigation into how overcompleteness

in Etro POVMs can be exploited in the context of qubit binary state discrimination.

Specifically, Etro POVMs constructed from arrangments of points corresponding to

the vertices of a Platonic solid have been of particular interest in the quantum state es-

timation community due in large part to the fact that they all provide straightforward

state reconstruction formulas. State discrimination does not require state reconstruc-

tion, allowing for the construction of Etro POVMs using various point arrangements

on the sphere. In the qubit binary state discrimination problem considered Chapter

6, we assume that the overall alignment of the two states relative to the coordinates

of the Bloch sphere is unknown. Helstrom’s minimum probability of error solution

is irrelevant in this case since its implementation requires complete knowledge of the

two states. We compare a selection of Etro POVMs based on the minimum and max-

imum probabilities of error they can achieve over all possible rotational alignments

of the two states relative to the Bloch sphere.

Chapter 7 provides a selection of concluding remarks and suggestions for topics

of future study.
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Chapter 2

Operating Characteristics for Binary

Hypothesis Testing

After first defining a simple framework that encompasses general binary hypothesis

testing problems, in Section 2.2 we review optimal binary decision strategies with re-

spect to the minimum probability of error, minimum risk or Bayes’ cost, and Neyman-

Pearson criteria. All of these criteria lead to the family of likelihood ratio test (LRT)

decision rules, which can sometimes but not always be recast as what we refer to as

score variable threshold test (SVT) decision rules. A principal contribution of the

thesis is described in Section 2.5. It addresses the relation between SVT and LRT re-

ceiver operating characteristics or ROCs for a scalar score variable, and in particular

when the LRT ROC, which is optimal with respect to all of the criteria mentioned

above, can be recovered from a sub-optimal SVT ROC. ROCs can also be referred to

as decision operating characteristics in our terminology.

2.1 Framework

A given binary hypothesis testing problem might belong to one of a number of more

specific problem types. For example, an established binary hypothesis testing prob-

lem in the signal processing community is that of determining whether an incoming

waveform consists only of noise or of noise in addition to a pre-determined signal.
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Figure 2-1: Binary hypothesis testing framework.

Another common objective is to determine which out of a pre-determined pair of

signals an incoming waveform represents. These two problems are typically referred

to as signal detection and signal discrimination or signal classification, respectively.

In a machine learning setting, the problem of determining to which of two categories

a given data point belongs is often referred to as binary classification. Additional

examples are given at the end of Section 2.1 and are described using the terminology

introduced next. Note however that the discussion of Chapter 3 pertains to general

binary hypothesis testing problems and not to one specific subcategory.

The framework that we consider in this thesis is shown in Figure 2-1. It starts with

an input that may take many different forms depending on context. For instance, the

input may be a patient who is healthy or ill or it may be a collection of quantum me-

chanical systems that was produced by one of two preparation procedures. The true

state of the input is assumed to be dependent on a random quantity 𝐻 representing

the true hypothesis, where 𝐻 = 𝐻0 or 𝐻 = 𝐻1. The objective is to make a binary

decision about whether 𝐻 = 𝐻0 or 𝐻 = 𝐻1 in an optimal way with respect to a

specific optimality criterion. The a priori or prior probabilities that each hypothesis

is true will be denoted as

𝑃 (𝐻 = 𝐻𝑖) = 𝑞𝑖 , 𝑖 ∈ {0, 1}. (2.1)

Note that the values of the {𝑞𝑖} may not be readily available and may instead need

to be estimated using available data and application-specific modeling. As described

in more detail in Section 2.4, the absence of the use of priors in the formulation of

decision, or receiver, operating characteristic curves is an important advantage to

that approach. The first step in making a binary decision about the true hypothesis
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is to process the input using what we refer to as a pre-decision operator. This results

in a sample of a random variable sometimes referred to as the score variable. We

will denote the score variable itself by upper case 𝑆, the sample value of the score

variable by lower case 𝑠, and will assume for simplicity that 𝑆 is real-valued. The

conditional probability distributions of the score variable corresponding to each pos-

sible hypothesis, also sometimes referred to as likelihood functions, will be denoted

as

𝑃 (𝑆 = 𝑠 |𝐻 = 𝐻𝑖) = 𝑓𝑖(𝑠) , 𝑖 ∈ {0, 1}. (2.2)

The decision about the true hypothesis can be viewed as a decision about whether a

specific value of 𝑠 was drawn from 𝑓0(·) or 𝑓1(·). When 𝑓0(𝑠) > 0 and 𝑓1(𝑠) > 0, it

is impossible to identify the true hypothesis with certainty. This problem has been

studied extensively in the field of classical decision theory. In that context each binary

decision rule is typically described using a decision region 𝒟 that is a subset of the

sample space of 𝑆. The final decision, which will be represented by a second random

quantity �̂�, where �̂� = 𝐻0 or �̂� = 𝐻1. An error is made when �̂� ̸= 𝐻. If 𝑠 lies in

𝒟 then we set �̂� = 𝐻1. Otherwise we set �̂� = 𝐻0.1 This can be summarized as

�̂� =

⎧
⎪⎨
⎪⎩
𝐻1 if 𝑠 ∈ 𝒟

𝐻0 if 𝑠 /∈ 𝒟.
(2.3)

Two of the most common families of decision regions are those corresponding to

likelihood ratio tests and those corresponding to what we refer to in [47] as score

variable threshold tests.

The probabilities of false alarm (𝑃𝑓 ) and detection (𝑃𝑑) can both be written as

functions of the conditional distributions {𝑓𝑖(·)} and the decision region 𝒟. Recall

that the probability of false alarm is defined as the conditional probability that we

decide �̂� = 𝐻1 given that 𝐻 = 𝐻0. The probability of detection is the conditional

1There also exist randomized decision strategies in which each value of the score variable is
associated with a certain probability of deciding that �̂� = 𝐻1 or �̂� = 𝐻0, but we will not be
considering those in this thesis.
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probability that �̂� = 𝐻1 given that 𝐻 = 𝐻0. We have

𝑃𝑓 = 𝑃 (�̂� = 𝐻1|𝐻 = 𝐻0) =

∫︁

𝑠∈𝒟
𝑑𝑠 𝑓0(𝑠) (2.4a)

𝑃𝑑 = 𝑃 (�̂� = 𝐻1|𝐻 = 𝐻1) =

∫︁

𝑠∈𝒟
𝑑𝑠 𝑓1(𝑠). (2.4b)

In Equations (2.4) and throughout Chapter 2, we have arbitrarily assumed that 𝑆 is

continuous and have thus used an integral instead of a sum to calculate probability

values. The results can be appropriately modified for the discrete case, and indeed

in Chapter 4 we will assume that 𝑆 is discrete. The probability of error, denoted by

𝑃𝑒 can be expressed as 𝑃𝑒 = 𝑞0 𝑃𝑓 + 𝑞1 (1 − 𝑃𝑑). Obviously, the values of 𝑃𝑓 and 𝑃𝑑

inherently depend on 𝑓0(·), 𝑓1(·), and 𝒟. Operating characteristics can be generated

by varying parameters of the pre-decision operator, which effectively changes 𝑓0(·)
and 𝑓1(·), as well as by varying the binary decision rule which is done by varying 𝒟.

These two possibilities correspond to the two classes of the operating characteristics

described in Sections 2.3 and 2.4.

Example 2.1. In a typical radar signal detection problem the input to the pre-decision

operator is the waveform reflected by a target and received by the radar system fol-

lowing the emission of an electromagnetic pulse by the radar transmitter. The pre-

decision operator is a linear filter followed by a sampler. The score variable is the

sampled value at a specified time at the output of the filter. The value of this score

variable is used to make a binary decision about whether or not a target is present.

Example 2.2. In a medical decision-making scenario, the input is a series of clinical

measurements made on a patient and the pre-decision operator might be a machine

learning algorithm that combines the measurements into a single number. The score

variable is this composite number and its value is used to make a decision about

whether the patient is healthy or ill.

Example 2.3. Consider a scenario in which the input is a realization 𝑥 of a real-

valued Gaussian random variable 𝑋 with zero mean and variance of either 𝜎2
0 or

44



𝜎2
1, i.e., 𝐻 = 𝐻𝑖, where 𝑖 ∈ {0, 1}. To distinguish between the two hypotheses with

minimum probability of error, we set the score variable to 𝑠 = 𝑥2 and the decision

region 𝒟 to 𝒟 = {𝑠 : 𝑠 ≥ 𝛾}, where 𝛾 ≥ 0 is a fixed threshold value that depends

on the prior probabilities. This choice of decision region corresponds to what we will

refer to as a score variable threshold test or SVT. Decision strategies that minimize

probability of error are the topic of Section 2.2.1. This specific example is elaborated

on further in Chapter 2.

In practice and when possible, it can be useful to relate the decision region 𝒟
connected to the score variable to a corresponding decision region connected to the

input. For a given 𝛾 ≥ 0, we have 𝑠 ≥ 𝛾 exactly when 𝑥 ≥ √
𝛾 or 𝑥 ≤ −√

𝛾. A one-

sided threshold decision region on 𝑠 is equivalent to a symmetric two-sided threshold

decision region on 𝑥.

2.2 Optimal Decision Rules with respect to Common

Criteria

In Section 2.2 we briefly review decision rules that are optimal with respect to the

minimum probability of error, minimum Bayes’ cost, and Neyman-Pearson criteria.

Identifying the optimal decision rule for a given criterion amounts to finding the

associated optimal decision region 𝒟. All of the optimal decision regions have the

form of an LRT with some threshold 𝜂 ≥ 0.

2.2.1 Minimum Probability of Error

One of the most common optimality criteria used in binary decision making is the

minimum probability of error or MPE criterion. To find the optimal decision region

we start by writing the total probability of error, denoted as 𝑃𝑒, as an expectation

over all possible values of the score variable 𝑆,

𝑃𝑒 =

∫︁
𝑑𝑠 𝑓𝑆(𝑠)𝑃𝑒|𝑠. (2.5)
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Here 𝑓𝑆(𝑠) is the overall probability distribution function of 𝑆 and 𝑃𝑒|𝑠 is the condi-

tional probability of error given that 𝑆 = 𝑠. 𝑓𝑆(𝑠) is non-negative for all values of

𝑠, so to minimize 𝑃𝑒 it is sufficient to minimize 𝑃𝑒|𝑠 for each value of 𝑠 individually.

To see how this can be achieved, recall that if 𝑠 lies in the decision region 𝒟 then we

decide �̂� = 𝐻1. An error is made when 𝑠 lies in 𝒟 but in fact 𝐻 = 𝐻0. The reverse

is true for when 𝑠 does not lie in 𝒟. 𝑃𝑒|𝑠 can be written as

𝑃𝑒|𝑠 =

⎧
⎪⎪⎨
⎪⎪⎩

𝑃 (𝐻 = 𝐻0|𝑆 = 𝑠) if 𝑠 ∈ 𝒟

𝑃 (𝐻 = 𝐻1|𝑆 = 𝑠) if 𝑠 /∈ 𝒟.
(2.6)

The conditional probability 𝑃 (𝐻 = 𝐻𝑖|𝑆 = 𝑠) for 𝑖 ∈ {0, 1} is referred to as the

a posteriori, or posterior, probability that 𝐻 = 𝐻𝑖 given that 𝑆 = 𝑠. To minimize

𝑃𝑒|𝑠 we should choose the hypothesis that has the maximum a posteriori probability

conditioned on the observation 𝑆 = 𝑠. Thus the optimal decision rule with respect to

the MPE criterion is

�̂� =

⎧
⎪⎨
⎪⎩
𝐻1 if 𝑃 (𝐻 = 𝐻1|𝑆 = 𝑠) ≥ 𝑃 (𝐻 = 𝐻0|𝑆 = 𝑠)

𝐻0 if 𝑃 (𝐻 = 𝐻1|𝑆 = 𝑠) < 𝑃 (𝐻 = 𝐻0|𝑆 = 𝑠).

(2.7)

Note that the values of 𝑆 = 𝑠 for which the a posteriori probabilities are equal can be

associated with either final decision without affecting the total probability of error.

Applying Bayes’ rule to the 𝑃 (𝐻 = 𝐻𝑖|𝑆 = 𝑠) yields

𝑃 (𝐻 = 𝐻𝑖|𝑆 = 𝑠) =
𝑃 (𝑆 = 𝑠|𝐻 = 𝐻𝑖)𝑃 (𝐻 = 𝐻𝑖)

𝑓𝑆(𝑠)
=
𝑓𝑖(𝑠) 𝑞𝑖
𝑓𝑆(𝑠)

, 𝑖 ∈ {0, 1}. (2.8)

Cancelling the factors of 𝑓𝑆(𝑠) on both sides of the inequalities and rearranging leads

to the following equivalent decision strategy,

�̂� =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝐻1 if
𝑓1(𝑠)

𝑓0(𝑠)
≥ 𝑞0
𝑞1

𝐻0 if
𝑓1(𝑠)

𝑓0(𝑠)
<
𝑞0
𝑞1
.

(2.9)
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The quantity 𝑓1(𝑠)/𝑓0(𝑠) is referred to as the likelihood ratio associated with the value

𝑆 = 𝑠, and a decision rule that applies a threshold to the likelihood ratio is termed a

likelihood ratio test or LRT. In the terminology of decision regions introduced above,

the optimal MPE decision region 𝒟MPE is an LRT with threshold value 𝜂 = 𝑞0/𝑞1,

𝒟MPE =

{︂
𝑠 :

𝑓1(𝑠)

𝑓0(𝑠)
≥ 𝑞0
𝑞1

}︂
. (2.10)

It may also be desirable in some cases to assign different relative cost values to the

different possible decision scenarios – a detection, a false alarm, etc. The expected

cost incurred over all values of 𝑆 is sometimes referred to as the Bayes’ cost and the

corresponding optimal decision rule is the one that minimizes Bayes’ cost. If 𝑐𝑖𝑗 is

the cost of deciding �̂� = �̂�𝑖 when in truth 𝐻 = 𝐻𝑗, then the probability of error

corresponds to the special case where 𝑐01 = 𝑐10 = 1 and 𝑐00 = 𝑐11 = 0. A parallel

analysis to the one described above can be used to show that the optimal decision

rule with respect to the minimum Bayes’s cost criterion is

�̂� =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝐻1 if
𝑓1(𝑠)

𝑓0(𝑠)
≥ 𝑞0(𝑐10 − 𝑐00)

𝑞1(𝑐01 − 𝑐11)

𝐻0 if
𝑓1(𝑠)

𝑓0(𝑠)
<
𝑞0(𝑐10 − 𝑐00)

𝑞1(𝑐01 − 𝑐11)
.

(2.11)

Thus, the minimum Bayes’ cost decision rule is an LRT with threshold 𝜂 = [𝑞0(𝑐10 −
𝑐00)]/[𝑞1(𝑐01 − 𝑐11). Its decision region 𝒟BC is

𝒟BC =

{︂
𝑠 :

𝑓1(𝑠)

𝑓0(𝑠)
≥ 𝑞0(𝑐10 − 𝑐00)

𝑞1(𝑐01 − 𝑐11)

}︂
. (2.12)

As we summarize below, the optimal decision region for the Neyman-Pearson criterion

has a very similar form.

2.2.2 Neyman-Pearson Criterion

While the minimum probability of error and minimum Bayes’ cost criteria are intu-

itively desirable in that they minimize the notion of average cost over many decisions,
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implementation of the resulting optimal decision rules may be impractical if the pri-

ors are unknown and difficult to estimate. The minimum Bayes’ cost criterion also

requires us to assign relative costs to the different possible decisions, which may be a

highly subjective task with no obvious or clear answer. Another common optimality

criterion used in classical binary hypothesis testing scenarios involves placing bounds

on either the probability of false alarm or the probability of a missed detection. As an

example, in the radar community 𝑃𝑓 is often constrained to be below 10−6 since false

detection of a target can trigger costly actions and a waste of expensive resources.

In this and other similar situations, a reasonable objective is to maximize 𝑃𝑑 subject

to a given tolerable upper bound on 𝑃𝑓 . This is referred to as the Neyman-Pearson

criterion. The optimal Neyman-Pearson decision rule is an LRT with a threshold

value 𝜂 that is chosen to ensure that 𝑃𝑓 is exactly equal to its upper bound [39, 51],

i.e., the optimal Neyman-Pearson decision region 𝒟NP is

𝒟NP =

{︂
𝑠 :

𝑓1(𝑠)

𝑓0(𝑠)
≥ 𝜂0

}︂
where 𝜂0 is chosen s.t. 𝑃𝑓 = 𝛼. (2.13)

Recall that the threshold value 𝜂0 affects the value of 𝑃𝑓 through the integral given

in Equation (2.4a). An informal argument [51] that provides intuition as to why

Equation (2.13) is optimal with respect to the Neyman-Pearson criterion is as follows.

Assume that the decision region 𝒟 has been chosen to be Neyman-Pearson optimal.

Then by definition it is impossible to modify it in such a way that 𝑃𝑑 is increased

while 𝑃𝑓 stays the same. Mathematically we can think of modification of the decision

region as taking two small portions of the real axis, one that lies in 𝒟 and is denoted

as the interval [𝑠, 𝑠+ 𝑑𝑠] and one that lies outside of 𝒟 and is denoted as the interval

[𝑠′, 𝑠′ + 𝑑𝑠′], and interchanging their decision region assignments. In other words, we

remove the interval [𝑠, 𝑠+ 𝑑𝑠] from 𝒟 and add the interval [𝑠′, 𝑠′ + 𝑑𝑠′]. According to

Equations (2.4), the resulting changes in 𝑃𝑓 and 𝑃𝑑 are

Δ𝑃𝑓 = 𝑓0(𝑠
′) 𝑑𝑠′ − 𝑓0(𝑠) 𝑑𝑠 (2.14a)

Δ𝑃𝑑 = 𝑓1(𝑠
′) 𝑑𝑠′ − 𝑓1(𝑠) 𝑑𝑠. (2.14b)
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If we assume that the value of 𝑃𝑓 stays the same (Δ𝑃𝑓 = 0), then since the original

decision region was Neyman-Pearson optimal we know by definition that the value of

𝑃𝑑 must have stayed the same or decreased (Δ𝑃𝑑 ≤ 0). Applying these conditions to

Equations (2.14) and combining them together leads to the requirement that

𝑓1(𝑠
′) 𝑑𝑠′

𝑓0(𝑠′) 𝑑𝑠′
≥ 𝑓1(𝑠) 𝑑𝑠

𝑓0(𝑠) 𝑑𝑠
. (2.15)

After cancelling the factors of 𝑑𝑠 and 𝑑𝑠′, the right-hand side of the inequality is equal

to the likelihood ratio at the point 𝑆 = 𝑠, which lay in the original, Neyman-Pearson

optimal decision region 𝒟. Similarly, the left-hand side is the likelihood ratio as the

point 𝑆 = 𝑠′, which lay outside of this region. Since the intervals [𝑠, 𝑠 + 𝑑𝑠] and

[𝑠′, 𝑠′ + 𝑑𝑠′] were arbitrary so long as they lay inside or outside of 𝒟, respectively,

Equation (2.15) says that for the Neyman-Pearson optimal decision region 𝒟, the

likelihood ratio for values of the score variable lying inside 𝒟 is always greater than

or equal to the likelihood ratio for values lying outside 𝒟. In other words, the Neyman-

Pearson optimal decision regions represent a threshold test on the likelihood ratio.

Example 2.4. It was stated in Example 2.1 that in a typical radar signal detection

problem the pre-decision operator is a linear filter followed by a sampler. We summa-

rize here a well-known example [39, 51] in which the filter and sampler are designed

to compute the likelihood ratio of the incoming samples. Consider a scenario in which

the samples 𝑥[𝑛] of an incoming waveform consist only of noise or of noise in addition

to a pre-determined, finite length signal 𝑦[𝑛],

𝑥[𝑛] =

⎧
⎪⎪⎨
⎪⎪⎩

𝑤[𝑛] if 𝐻 = 𝐻0

𝑤[𝑛] + 𝑦[𝑛] if 𝐻 = 𝐻1

, 1 ≤ 𝑛 ≤ 𝑁. (2.16)

In Equation (2.16), 𝑤[𝑛] is assumed to be an independent and identically-distributed

zero-mean Gaussian random process with variance 𝜎2. The conditional PDFs of the

𝑁 samples, 𝑓𝑖(𝑥[1], . . . , 𝑥[𝑁 ]) for 𝑖 ∈ {0, 1}, are also Gaussian and their ratio can be
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expressed as

𝑓1(𝑥[1], . . . , 𝑥[𝑁 ])

𝑓0(𝑥[1], . . . , 𝑥[𝑁 ])
= exp

[︃
− 1

2𝜎2

𝑁∑︁

𝑛=1

𝑦[𝑛]2 +
1

𝜎2

𝑁∑︁

𝑛=1

𝑥[𝑛] 𝑦[𝑛]

]︃
. (2.17)

Straightforward algebra leads to the conclusion that for an LRT threshold value 𝜂0,

the likelihood ratio is greater than or equal to 𝜂0 whenever

𝑁∑︁

𝑛=1

𝑥[𝑛] 𝑦[𝑛] ≥ 𝜎2 ln(𝜂0) +
1

2

𝑁∑︁

𝑛=1

𝑦[𝑛]2. (2.18)

The sum on the left-hand side of the inequality can be computed by inputting the

incoming samples 𝑥[𝑛] into a linear filter whose impulse response is ℎ[𝑛] = 𝑦[−𝑛] and

sampling the output of the filter at the appropriate time. ℎ[𝑛] is commonly referred

to as a matched filter since it is “matched” to 𝑦[𝑛]. The value of 𝜂0 could be chosen

to be optimal with respect to minimum probability of error, minimum Bayes’ cost, or

the Neyman-Pearson criterion.

2.3 Measurement Operating Characteristics

It is common in many practical scenarios for the optimal pre-decision operator to

be only partially known. A lack of information about the two possible hypotheses

for instance, may make it impossible to fully parameterize the optimal pre-decision

operator for a given optimality criterion. In such a case it may be desirable to fix

the binary decision rule while varying some parameter or parameters of the pre-

decision operator as a way of determining or at least estimating its optimal form. An

operating characteristic can be generated by plotting or tabulating the values of 𝑃𝑓

and 𝑃𝑑 obtained for each individual pre-decision operator and we refer to operating

characteristics generated in this way as measurement operating characteristics or

MOCs. If the input to the system is a series of sample values 𝑥[𝑛], for instance, and

the optimal pre-decision operator is known to be a filter of a given bandwidth, then

the center frequency of the filter might be varied while the binary decision rule is kept
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fixed. A comparison of empirical values of the probability of error achieved with each

center frequency could be used to obtain a rough estimate of its optimal (with respect

to minimum probability of error) value. MOCs generated in the quantum setting are

discussed in Chapter 4.

2.4 Receiver Operating Characteristics

When considering a specific optimality criterion under a fixed set of conditions – fixed

priors, for example – the primary goal is to find the single optimal decision rule with

respect to that criterion and those conditions. But it is often very useful to consider

entire families of decision rules that are optimal with respect to potentially different

criteria and for possibly different sets of conditions. Receiver operating characteristics

or ROCs are a useful tool that allows us to accomplish exactly this. In reference to

Figure 2-1, ROCs are generated by fixing the pre-decision operator, varying the deci-

sion region of the binary decision rule, and plotting the resulting probabilities of false

alarm and detection. For the sake of consistency with the literature we will continue

to refer to them as ROCs. But to be more consistent with the analogous curve intro-

duced in Chapter 4 for the quantum binary state discrimination problem, they could

equally well be referred to as decision operating characteristics or DOCs. Our pur-

pose for defining this slightly different terminology is to emphasize that these types

of operating characteristics need not be considered specific to traditional applications

such as radar signal detection or clinical decision making.

Among the ways of utilizing ROCs, it has become common in many communities

to compare two decision-making strategies based on global properties of their corre-

sponding ROC. Such a comparison is inherently difficult because of the fundamental

difference between metrics used to compare individual decision rules and metrics used

to compare entire ROCs, which represent collections of decision rules. It is less clear

how to interpret the latter in terms of realizable differences in performance since ul-

timately only a single rule can be used. Nevertheless, the area under an ROC or

AUC is one such property that is widely used in the literature and in practice. There
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is significant debate over whether the AUC is a reasonable metric despite its popu-

larity and many alternatives have been proposed although not widely accepted. For

additional details we refer the reader to [34, 45].

Throughout the remainder of Chapter 2, we assume for simplicity that 𝑓0(·) and

𝑓1(·) are continuous and strictly positive functions. This implies that the likelihood

ratio function 𝑓1(·)/𝑓0(·) is continuous. We assume in addition that the likelihood

ratio function is not constant over any finite interval. In Sections 2.4.1 and 2.4.2

below we review known properties of LRT and SVT ROCs and introduce notation

for their parametric formulas with respect to the LRT or SVT threshold value. Our

main motivation in doing so is to set the stage for the results presented in Section 2.5

that relate to when an SVT ROC is optimal and how, if it is not, the LRT ROC can

be recovered. These results can be extended to more general scalar score variables.

However, the analysis is more complicated and does not lead to additional insight, so

we do not address this more general case.

2.4.1 LRT ROCs

The LRT ROC associated with a given score variable may be obtained by plotting

the values of 𝑃𝑓 and 𝑃𝑑 resulting from all possible LRT thresholds. Each possible

operating point on the LRT ROC is optimal with respect to the MPE criterion for

some combination of priors, the minimum Bayes’ cost criterion for some combination

of prior probabilities and relative costs, and the Neyman-Pearson criterion for some

upper bound on the value of 𝑃𝑓 . By looking at the entire operating characteristic,

we can see the optimal operating points with respect to each of these criteria for all

possible sets of prior probabilities, all possible relative costs, and all possible upper

bounds on 𝑃𝑓 .

It will be advantageous to introduce notation for the parametric formulas of the

LRT ROC of a given score variable, where the parameter being varied along the curve
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is the LRT threshold value. We define the functions 𝑔𝑓 (·) and 𝑔𝑑(·) as

𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂) =

∫︁

𝒟LRT(𝜂)

𝑑𝑠 𝑓0(𝑠) (2.19a)

𝑃 LRT
𝑑 = 𝑔𝑑(𝜂) =

∫︁

𝒟LRT(𝜂)

𝑑𝑠 𝑓1(𝑠). (2.19b)

When 𝜂 = +∞, 𝒟LRT(𝜂) is empty and 𝑔𝑓 (𝜂) = 𝑔𝑑(𝜂) = 0. At the other extreme when

𝜂 = 0, 𝒟LRT(𝜂) contains the entire real line and 𝑔𝑓 (𝜂) = 𝑔𝑑(𝜂) = 1. 𝑔𝑓 (·) and 𝑔𝑑(·) are

always non-increasing in 𝜂, since for two threshold values 𝜂0 ≤ 𝜂1, 𝒟LRT(𝜂1) always

lies within 𝒟LRT(𝜂0). Under the current assumptions 𝑔𝑓 (·) and 𝑔𝑑(·) are continuous

and strictly decreasing, so they are invertible.

Next we briefly review well-known properties of ROCs generated using LRTs and

SVTs applied to a given score variable. Ultimately these properties will be helpful in

connecting the SVT ROC and LRT ROC of a given score variable, including when

they are identical and when, if they are not identical, one can be obtained from the

other. The properties are as follows.

(i) The slope of an LRT ROC curve at the point (𝑃 LRT
𝑓 , 𝑃 LRT

𝑑 ) = (𝑔𝑓 (𝜂0), 𝑔𝑑(𝜂0))

associated with a fixed threshold value 𝜂0 is equal to 𝜂0. That is,

𝑑𝑃 LRT
𝑑

𝑑𝑃 LRT
𝑓

⃒⃒
⃒⃒
⃒
𝑃LRT
𝑓 =𝑔𝑓 (𝜂0)

=
𝑔′𝑑(𝜂0)

𝑔′𝑓 (𝜂0)
= 𝜂0, (2.20)

where 𝑔′𝑓 (·) and 𝑔′𝑑(·) denote the derivatives of 𝑔𝑓 (·) and 𝑔𝑑(·), respectively.

(ii) LRT ROC curves are concave.

A derivation of Equation (2.20) can be found in many classical decision theory

textbooks (see, for example, [39]) and relies mainly on a change of variables in the

integrals in Equations (2.19) from an integration over all possible score variable values

to an integration over all possible likelihood ratio values. The mathematical details

are not relevant to the focus of this article, so we omit them. Property (ii) follows

directly from Equation (2.20) in combination with the monotonicity of 𝑔𝑓 (·) and 𝑔𝑑(·).
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As the LRT threshold value 𝜂 decreases from +∞ to 0, we move from left to right

along the curve and the slope decreases. This is evident in the LRT ROCs shown

in Examples 2.5 and 2.6 below. Another way of stating this is that concavity is a

necessary condition for the Neyman-Pearson optimality of an ROC curve. Under the

current assumptions, LRT ROCs are necessarily strictly concave.

2.4.2 SVT ROCs

Another commonly used family of decision regions stems from the somewhat simpler

strategy of thresholding the score variable itself, rather than thresholding the likeli-

hood ratio.2 We will refer to such a strategy as a score variable threshold test or SVT

[47]. Each member of the SVT family of decision regions has the form

𝒟SVT(𝛾) = {𝑠 : 𝑠 ≥ 𝛾} for some real number 𝛾. (2.21)

Again, the SVT ROC associated with a given score variable may be obtained by

varying the threshold 𝛾 over all possible values and plotting the corresponding values

of 𝑃𝑓 and 𝑃𝑑.

SVTs are especially common in scenarios where ROCs are generated using em-

pirical datasets. In these contexts the score variable is typically a finely-tuned com-

bination of many measurements, possibly computed by applying a machine learning

algorithm to a vector of feature values. Thus, it is often less amenable to mathe-

matical analysis and in particular to accurate modeling of the distributions 𝑓0(·) and

𝑓1(·). In principle this does not preclude the use of LRTs, since 𝑓0(·) and 𝑓1(·) can be

estimated from histograms derived from training data. However, reliable estimation

of probability densities from empirical data is well-known to be a difficult problem

[56, 63]. Estimation of the likelihood ratio from empirical data is even more difficult

because small errors in the estimate of the denominator of the ratio can lead to large
2Of course, we may always redefine the score variable to be the likelihood ratio random variable,

i.e., the random variable 𝑆′ = 𝑓1(𝑆)/𝑓0(𝑆) where 𝑆 is the original score variable. An LRT per-
formed with respect to the original score variable may then be reinterpreted as an SVT performed
with respect to the new score variable. But this may not be a feasible strategy if the conditional
distributions 𝑓0(·) and 𝑓1(·) are inaccessible.
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errors in the estimate of the ratio itself. It is in part for this reason that other decision

strategies besides LRTs, including SVTs as a particularly common choice, are used in

many practical binary hypothesis testing situations.

For an SVT ROC we define the functions ℎ𝑓 (·) and ℎ𝑑(·) as

𝑃 SVT
𝑓 = ℎ𝑓 (𝛾) =

∫︁

𝒟SVT(𝛾)

𝑑𝑠 𝑓0(𝑠) (2.22a)

𝑃 SVT
𝑑 = ℎ𝑑(𝛾) =

∫︁

𝒟SVT(𝛾)

𝑑𝑠 𝑓1(𝑠). (2.22b)

Equation (2.22) can be simplified by defining 𝐹𝑖(·) to be the cumulative distribution

function (CDF) of 𝑓𝑖(·),

𝐹𝑖(𝑢) =

∫︁ 𝑢

−∞
𝑑𝑠 𝑓𝑖(𝑠), 𝑖 ∈ {0, 1}, (2.23)

for any real number 𝑢. Equation (2.22) can then be rewritten as

𝑃 SVT
𝑓 = ℎ𝑓 (𝛾) = 1− 𝐹0(𝛾) (2.24a)

𝑃 SVT
𝑑 = ℎ𝑑(𝛾) = 1− 𝐹1(𝛾). (2.24b)

When 𝛾 = +∞, 𝒟SVT(𝛾) is empty and ℎ𝑓 (𝛾) = ℎ𝑑(𝛾) = 0. When 𝛾 = −∞, 𝒟SVT(𝛾)

is the whole real line and ℎ𝑓 (𝛾) = ℎ𝑑(𝛾) = 1. Since 𝐹0(·) and 𝐹1(·) are non-decreasing

in 𝛾, ℎ𝑓 (·) and ℎ𝑑(·) are non-increasing in 𝛾. Alternatively, ℎ𝑓 (·) and ℎ𝑑(·) are non-

increasing in 𝛾 since for any two thresholds 𝛾0 ≤ 𝛾1, 𝒟SVT(𝛾1) is always contained

within 𝒟SVT(𝛾0). Under the current assumptions ℎ𝑓 (·) and ℎ𝑑(·) are strictly decreas-

ing and therefore invertible.

Example 2.5. Let the conditional distributions 𝑓0(·) and 𝑓1(·) be Gaussian with a

common variance 𝜎2 but different means denoted by 𝜇0 and 𝜇1, respectively. An

example with 𝜎2 = 1, 𝜇0 = −1, and 𝜇1 = 1 is shown in Figure 2-2a. For these

values of 𝜎, 𝜇0, and 𝜇1, the likelihood ratio function ℓ(·) = 𝑓1(·)/𝑓0(·) is strictly

monotonic and therefore invertible. As a result, we have 𝒟LRT(𝜂) = 𝒟SVT(ℓ
−1(𝜂)) and
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(a) (b)

Figure 2-2: (a) Gaussian conditional distributions with variance 𝜎2 = 1 and mean
𝜇0 = −1 or 𝜇1 = 1. (b) LRT and SVT ROCs, which are identical for these conditional
distributions.

𝒟SVT(𝛾) = 𝒟LRT(ℓ(𝛾)) for all 𝜂 and all 𝛾 and the LRT and SVT ROCs are identical.

The LRT ROC is shown in Figure 2-2b. Each point on the curve corresponds to a

specific LRT threshold. The parametric formula for the LRT ROC as a function of

the LRT threshold are

𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂) = 1− Φ

(︂
ℓ−1(𝜂)− 𝜇0

𝜎

)︂
(2.25a)

𝑃 LRT
𝑑 = 𝑔𝑑(𝜂) = 1− Φ

(︂
ℓ−1(𝜂)− 𝜇1

𝜎

)︂
, (2.25b)

where Φ(·) is the CDF of the standard normal distribution. It can be verified through

straightforward algebra that for any 𝜂0 ≥ 0, we have 𝑔′𝑑(𝜂0)/𝑔′𝑓 (𝜂0) = 𝜂0. The para-

metric formulas for the SVT ROC as a function of the SVT threshold are

𝑃 SVT
𝑓 = ℎ𝑓 (𝛾) = 1− Φ

(︂
ℓ(𝛾)− 𝜇0

𝜎

)︂
(2.26a)

𝑃 SVT
𝑑 = ℎ𝑑(𝛾) = 1− Φ

(︂
ℓ(𝛾)− 𝜇1

𝜎

)︂
. (2.26b)
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Example 2.6. Let the conditional distributions 𝑓0(·) and 𝑓1(·) be Gaussian with zero

mean but different variances denoted by 𝜎2
0 and 𝜎2

1, respectively. An example with

𝜎2
0 = 0.45 and 𝜎2

1 = 1.25 is shown in Figure 2-3a. For these values of 𝜎0 and 𝜎1,

the likelihood ratio function ℓ(·) = 𝑓1(·)/𝑓0(·) is an even function of 𝑠 that is strictly

decreasing for 𝑠 < 0 and strictly increasing for 𝑠 ≥ 0. Since ℓ(·) is not invertible, the

LRT and SVT ROCs are different as shown in Figure 2-3b. The parametric formulas

for the LRT ROC as a function of the LRT threshold are

𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂) = 2− 2Φ

(︂
𝑢

𝜎0

)︂
(2.27a)

𝑃 LRT
𝑑 = 𝑔𝑑(𝜂) = 2− 2Φ

(︂
𝑢

𝜎1

)︂
(2.27b)

where 𝑢 ≥ 0 is the unique non-negative value that satisfies ℓ(𝑢) = 𝜂 and Φ(·) is the

CDF of the standard normal distribution. Again it can be verified through straight-

forward algebra that for any 𝜂0 ≥ 0, we have 𝑔′𝑑(𝜂0)/𝑔
′
𝑓 (𝜂0) = 𝜂0. The parametric

formulas for the SVT ROC as a function of the SVT threshold are

𝑃 SVT
𝑓 = ℎ𝑓 (𝛾) = 1− Φ

(︂
ℓ(𝛾)

𝜎0

)︂
(2.28a)

𝑃 SVT
𝑑 = ℎ𝑑(𝛾) = 1− Φ

(︂
ℓ(𝛾)

𝜎1

)︂
. (2.28b)

2.5 Relation between LRT and SVT ROCs

For a given score variable, we might be interested in whether or not its SVT ROC is

identical to its LRT ROC. When this is the case, we can perform optimal MPE and

Neyman-Pearson decision rules by performing SVTs instead of LRTs. This means

in particular that we do not need to estimate the conditional distributions of the

score variable, nor do we need to estimate the likelihood ratio function. The question

is equivalent to asking when any LRT decision region 𝒟LRT(𝜂) can be written as

an equivalent SVT decision region 𝒟SVT(𝛾) and vice versa. It is straightforward to

57



(a) (b)

Figure 2-3: (a) Gaussian conditional distributions with mean 𝜇 = 0 and variance
𝜎2
0 = 0.45 or 𝜎2

1 = 1.25. (b) LRT and SVT ROCs.

see that this is the case only when the likelihood ratio 𝑓1(𝑠)/𝑓0(𝑠) is an invertible

function of the score variable, because then if we define ℓ(𝑠) = 𝑓1(𝑠)/𝑓0(𝑠) we have

𝒟LRT(𝜂) = 𝒟SVT(ℓ
−1(𝜂)) and 𝒟SVT(𝛾) = 𝒟LRT(ℓ(𝛾)). Of course, this is not true in

general.

Since the SVT and LRT ROCs of a given score variable are not necessarily the

same, unlike an LRT ROC, there is no reason a priori to assume that an SVT ROC

need be concave. An interesting question is whether or not, if the SVT ROC of a

given score variable is concave, it must be identical to the LRT ROC of that score

variable. The answer turns out to be surprisingly simple, relying only on a calculation

of the slope of an SVT ROC as a function of the SVT threshold and is addressed in

Section 2.5.1.

In Section 2.5.1 we state a condition under which SVT ROCs are guaranteed to

be Neyman-Pearson optimal. We describe a procedure that can be used to recover

the optimal ROC from a non-optimal SVT ROC, i.e., an SVT ROC for which this

condition is not met, in Section 2.5.2.
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2.5.1 Optimality of a Concave SVT ROC

A principal result presented in [47] is that if an ROC that was generated using SVTs

on a given score variable is concave, then it is guaranteed to be the LRT ROC for that

score variable. In other words, concavity is a sufficient condition for the Neyman-

Pearson optimality of the SVT ROC of a given score variable. To show that this

is true, let ℎ′𝑓 (·) and ℎ′𝑑(·) denote the derivatives of ℎ𝑓 (·) and ℎ𝑑(·), respectively, as

defined in Equation (2.24). A key observation is that due to the properties of the

CDFs {𝐹𝑖(·)}, we have ℎ′𝑓 (𝛾) = 𝑓0(𝛾) and ℎ′𝑑(𝛾) = 𝑓1(𝛾). And thus at the point on

the curve corresponding to the SVT threshold 𝛾0, the derivative of the curve is

𝑑𝑃 SVT
𝑑

𝑑𝑃 SVT
𝑓

⃒⃒
⃒⃒
⃒
𝑃SVT
𝑓 =ℎ𝑓 (𝛾0)

=
ℎ′𝑑(𝛾0)

ℎ′𝑓 (𝛾0)
=
𝑓1(𝛾0)

𝑓0(𝛾0)
. (2.29)

Equation (2.29) guarantees that if an SVT ROC is concave, then it must be identical

to the LRT ROC of the underlying score variable. This is because if the SVT ROC is

concave, then the current assumptions guarantee that it will be strictly concave. Its

slope will therefore be an invertible (strictly decreasing) function of 𝑃 SVT
𝑓 . Since 𝑃 SVT

𝑓

is itself an invertible (strictly decreasing) function of 𝛾, the slope of the curve will also

be an invertible (strictly increasing) function of 𝛾. But according to Equation (2.29),

the slope of the curve as a function of 𝛾 is simply equal the likelihood ratio function.

In summary, if the SVT ROC is concave then the likelihood ratio function must an

invertible function of the SVT threshold, or equivalently an invertible function of the

score variable. This implies that the SVT and LRT ROC of the score variable must

be identical, proving the result. Note that this result implicitly yields a method for

checking whether or not the likelihood ratio function is a monotonic function of the

score variable without explicitly computing it for all values of 𝑠. Specifically, we may

simply generate the SVT ROC and if it is concave, then the likelihood ratio function

is necessarily monotonic in the score variable.

The above result is different from the statement in [77], which says that given any

concave curve with endpoints at (0, 0) and (1, 1), one can always construct a pair of
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conditional distributions for which that curve is the LRT ROC. In that context, the

curve and the distributions are strictly abstract and the curve need not have been

generated in any particular way relating to the distributions (in fact, it need not have

been generated in any particular way at all, i.e. it is essentially just an arbitrary

continuous map from the interval [0, 1] to itself). On the other hand, the result

stemming from Equation (2.29) says that if the given curve (i) is an ROC that was

generated using SVTs on a specific pair of distributions associated with a given score

variable and (ii) is strictly concave, then the curve is optimal for those distributions.

The fact that the SVT ROC of a given score variable is Neyman-Pearson optimal

if it is concave leaves open the question of what can be said about a given score

variable if its SVT ROC is not concave. In this case the SVT ROC is not identical

to the LRT ROC of the score variable and thus it is not Neyman-Pearson optimal.

However, as we show in Section 2.5.2, it is still possible to recover the LRT ROC of

the score variable from its SVT ROC. Moreover, the recovery does not depend on

any knowledge of the conditional distributions of the score variable.

2.5.2 Constructing the Optimal ROC from a Non-Concave

SVT ROC

In Section 2.5.2 we develop a procedure for constructing the LRT ROC of a score

variable directly from its SVT ROC. It is assumed of course that the SVT ROC

is not concave, since otherwise it would already be optimal according to Section

2.5.1. Consider for a moment the scenario where the functions 𝑃 SVT
𝑓 = ℎ𝑓 (𝛾) and

𝑃 SVT
𝑑 = ℎ𝑑(𝛾) are known for all SVT thresholds 𝛾. Equivalently the SVT threshold

associated with each point on the SVT ROC is known. A simple way of constructing

the LRT ROC would be to differentiate ℎ𝑓 (·) and ℎ𝑑(·) with respect to 𝛾 to recover

𝑓0(·) and 𝑓1(·), respectively. Then LRTs could be directly performed for all LRT

thresholds to compute the functions 𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂) and 𝑃 LRT

𝑑 = 𝑔𝑑(𝜂). If, on the other

hand, 𝑃 SVT
𝑑 is known as a function of 𝑃 SVT

𝑓 but neither one is known as a function of

the SVT threshold, i.e., the functions ℎ𝑓 (·) and ℎ𝑑(·) are unknown, then it is less clear
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how to recover the LRT ROC. This scenario is the focus of the current discussion.

An example is shown in Figure 2-4 for concreteness and ease of visualization.

The conditional PDFs 𝑓0(·) and 𝑓1(·) shown in the left-hand panel were designed

specifically to generate distinctly different SVT and LRT ROCs. For any 𝜂0 ≥ 0,

the following procedure allows us to recover 𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂0) and 𝑃 LRT

𝑑 = 𝑔𝑑(𝜂0). A

detailed explanation of the underlying logic follows.

1. Identify the segments of the SVT ROC for which the slope 𝑑𝑃 SVT
𝑑 /𝑑𝑃 SVT

𝑓 is

greater than or equal to 𝜂0. These segments are highlighted in green for 𝜂0 = 1

in Figure 2-5.

2. Add the segments together end-to-end to compute the location of the desired

point on the LRT ROC. The point for 𝜂0 = 1 is marked by a black circle in

Figure 2-5. Mathematically, this can be done by recording the changes in 𝑃 SVT
𝑓

and 𝑃 SVT
𝑑 over each segment. Let these changes be denoted by Δ𝑃

(𝑗)
𝑓 and Δ𝑃

(𝑗)
𝑑

where 𝑗 is an index over segments. 𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂0) and 𝑃 LRT

𝑑 = 𝑔𝑑(𝜂0) can be

computed by summing the Δ𝑃
(𝑗)
𝑓 and Δ𝑃

(𝑗)
𝑑 values,

𝑃 LRT
𝑓 = 𝑔𝑓 (𝜂0) =

∑︁

𝑗

Δ𝑃
(𝑗)
𝑓 (2.30a)

𝑃 LRT
𝑑 = 𝑔𝑑(𝜂0) =

∑︁

𝑗

Δ𝑃
(𝑗)
𝑑 . (2.30b)

An explanation of the procedure is shown in Figure 2-5. The graphs in Figure

2-5a show 𝑃 SVT
𝑓 , 𝑃 SVT

𝑑 , and the derivative 𝑑𝑃 SVT
𝑑 /𝑑𝑃 SVT

𝑓 as functions of the score

variable. According to Equation (2.29) the derivative is equal to the likelihood ratio

function. Note that these graphs are caricatures used only for visualization, since the

procedure does not require explicit knowledge of any of the aforementioned quantities

as functions of the score variable. A fixed LRT threshold value 𝜂0 ≥ 0 identifies

multiple disjoint regions of 𝑠 for which 𝑓1(𝑠)/𝑓0(𝑠) ≥ 𝜂0, highlighted in green for

𝜂0 = 1 in the figure. Together these regions comprise 𝒟LRT(𝜂0). Each individual

region 𝑗 covers an interval [𝑎𝑗, 𝑏𝑗] with 𝑎𝑗 < 𝑏𝑗 and corresponds to the segment in the
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Figure 2-4: Sample conditional PDFs 𝑓0(·) and 𝑓1(·) along with the corresponding
SVT and LRT ROCs. Assuming that the SVT ROC is known, the objective is to
construct the LRT ROC.

SVT ROC curve with endpoints (ℎ𝑓 (𝑏𝑗), ℎ𝑑(𝑏𝑗)) and (ℎ𝑓 (𝑎𝑗), ℎ𝑑(𝑎𝑗)). The integrals of

𝑓0(·) and 𝑓1(·) over the region, shown in Figure 2-5b, can be expressed as

∫︁ 𝑏𝑗

𝑎𝑗

𝑑𝑠 𝑓0(𝑠) = (1− 𝐹0(𝑎𝑗))− (1− 𝐹0(𝑏𝑗)) = ℎ𝑓 (𝑎𝑗)− ℎ𝑓 (𝑏𝑗) (2.31a)

∫︁ 𝑏𝑗

𝑎𝑗

𝑑𝑠 𝑓1(𝑠) = (1− 𝐹1(𝑎𝑗))− (1− 𝐹1(𝑏𝑗)) = ℎ𝑑(𝑎𝑗)− ℎ𝑑(𝑏𝑗) (2.31b)

which are simply the changes in 𝑃 SVT
𝑓 and 𝑃 SVT

𝑑 between the endpoints of the segment.

Summing these changes over all regions corresponds to summing the integrals of 𝑓0(·)
and 𝑓1(·) over each disjoint portion of 𝒟LRT(𝜂). The resulting LRT ROC made by

varying 𝜂0 over its entire range is illustrated in Figure 2-5c.

This procedure is different than the use of randomization to replace a convex

region on an ROC curve by the straight line connecting its endpoints [78, 60]. In that

case, a biased coin is flipped and the result dictates whether the decision region of the

first endpoint or that of the second endpoint is used. It is straightforward to show

that the effective probabilities of false alarm and detection then lie on the straight line

between the endpoints. However, the resulting curve is not Neyman-Pearson optimal.

One way of seeing this is to observe that the LRT ROC curve of a continuous score

variable, even in the absence of the assumptions made in this paper, can never have

any linear regions – it must either be continuous and strictly concave or discontinuous
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Figure 2-5: (a) Probability of false alarm, probability of detection, and derivative
of SVT ROC as functions of the score variable. The highlighted regions represent
regions where the derivative of the curve is greater than or equal to 𝜂0 = 1. (b)
Integrals of the conditional PDFs over the LRT decision region 𝒟LRT(𝜂0) for 𝜂0 = 1.
(c) Non-concave SVT ROC and LRT ROC generated using the procedure given in
the text.
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and strictly concave over each of its disjoint regions.

Suppose that for a certain value of 𝜂0 ≥ 0, we wish to not only compute 𝑔𝑓 (𝜂0)

and 𝑔𝑑(𝜂0) but also to identify the decision region 𝒟LRT(𝜂0). If the functions ℎ𝑓 (·) and

ℎ𝑑(·) are known then as previously stated, we can simply differentiate them to recover

𝑓0(·) and 𝑓1(·), respectively, and then compute the decision region analytically. But

the constructive procedure above also implicitly provides a method for identifying

𝒟LRT(𝜂0) without requiring explicit computation of the conditional PDFs or their

ratio. Specifically, we may plot the derivative of the SVT ROC curve as a function of

the SVT threshold as shown in Figure 2-5a and then read the decision region 𝒟LRT(𝜂0)

directly off the graph by checking where the derivative is greater than or equal to 𝜂0.
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Chapter 3

A Perspective on Linear Algebra and

Frame Representations

In Chapter 2 we discussed a framework for general binary hypothesis testing systems

and then elaborated on two ways of designing the decision region of the binary de-

cision rule – using an SVT or an LRT. By contrast, Chapters 4 through 6 will be

directed more towards the design of the pre-decision operator, and specifically for the

problem of quantum binary state discrimination. A thorough and precise statement

of the problem requires use of the postulates of quantum mechanics, which them-

selves are often phrased using language and concepts stemming from linear algebra.

In particular, according to the postulates of quantum mechanics, quantum states and

measurements can be mathematically represented through the vectors and operators

associated with a given Hilbert space. The Hilbert spaces considered in this thesis

are assumed to be finite-dimensional for simplicity, and as such many of the results

rely heavily on linear algebra as it pertains to finite-dimensional Hilbert spaces. The

purpose of Chapter 3 aside from establishing our notation and terminology is to sum-

marize our viewpoint on this topic by reviewing a selection of key results that are

used in Chapters 4 through 6. Of particular importance are the concepts and results

related to frame representations of a given finite-dimensional Hilbert space.

We review basic concepts related to finite-dimensional Hilbert spaces, inner prod-

ucts, and the concept of the Hermitian adjoint of a linear transformation in Section
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3.1. A crucial concept is the relationship of the range and nullspace of a given linear

transformation with those of its adjoint. In Section 3.2 we give our perspective on

a selection of core concepts from the field of frame theory. The technical results re-

viewed in Section 3.2 have been long established, but our viewpoint on them, which

involves lifting a vector in one Hilbert space to a different vector in a larger space using

a given frame representation, is less traditional. Our main motivation in discussing

frame representations is to apply the concepts to operator-valued Hilbert spaces as

described in Section 3.4. The robustness of frame representations to certain types

of error affecting the reconstruction of an unknown vector is described in Section

3.5. While the purpose of Chapter 3 is to set the stage for the discussions of binary

hypothesis testing for quantum systems in Chapters 4 through 6, but none of the

concepts discussed are specific to quantum mechanics.

3.1 Hilbert Spaces

By definition a Hilbert space is a vector space that is equipped with an inner product

and that is complete.1 We will denote by 𝒱 and 𝒲 two Hilbert spaces with dimensions

dim 𝒱 = 𝑁 and dim 𝒲 =𝑀 . Several key results of the thesis concern the dependence

of certain performance metrics on the value of 𝑀 for fixed 𝑁 . For simplicity we will

assume that both 𝒱 and 𝒲 are equipped with the same inner product. It will always

be assumed that the corresponding field 𝐹 is either the real numbersR or the complex

numbers C. We have arbitrarily chosen to phrase much of the following discussion

only in terms of 𝒱 , but we emphasize that the concepts apply to any finite-dimensional

Hilbert space.

To be consistent with the relevant quantum mechanics literature we will use

Dirac’s bra-ket notation, in which a vector in 𝒱 is represented by a ket (for ex-

ample, |𝑣⟩) and its conjugate transpose is represented by a bra (for example, ⟨𝑣|).

1Completeness means that if the sum of the lengths of an infinite sequence of vectors in 𝒱
converges to some finite number, then the sum of the vectors themselves converge to a vector in
𝒱,
∑︀∞

𝑖=1 ||𝑣𝑖|| < ∞ implies
∑︀∞

𝑖=1 |𝑣𝑖⟩ ∈ 𝒱. This is sometimes informally described as 𝒱 having “no
holes”. For brevity we do not expound on the concept of completeness further.
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For a specified basis {|𝑢𝑛⟩ , 1 ≤ 𝑛 ≤ 𝑁} for 𝒱 , we will occasionally use the notation

|𝑣⟩ = [𝑐1, . . . , 𝑐𝑁 ]
𝑇 as shorthand to indicate that |𝑣⟩ = ∑︀𝑛 𝑐𝑛 |𝑢𝑛⟩. Unless otherwise

noted the inner product between two vectors |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 will be denoted by ⟨𝑣1|𝑣2⟩
and the squared norm of a vector |𝑣⟩ ∈ 𝒱 will be defined as the inner product of |𝑣⟩
with itself, denoted by ||𝑣||2 = ⟨𝑣|𝑣⟩. The angle 𝜃 between two vectors |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱
is defined via the relation ||𝑣1|| ||𝑣2|| cos 𝜃 = ⟨𝑣1|𝑣2⟩. Inner products are discussed in

more detail in Section 3.1.2.

3.1.1 Linear Transformations

A linear transformation 𝑇 : 𝒱 → 𝒲 is a mapping from vectors in 𝒱 to vectors in 𝒲
with the property that

|𝑇 (𝑎 𝑣1 + 𝑏 𝑣2)⟩ = 𝑎 |𝑇 (𝑣1)⟩+ 𝑏 |𝑇 (𝑣2)⟩ (3.1)

for all |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 and all 𝑎, 𝑏 ∈ 𝐹 . Note that when a vector |𝑣⟩ is used as the input

to a linear transformation 𝑇 , the output will denoted interchangeably by 𝑇 |𝑣⟩, |𝑇𝑣⟩,
or |𝑇 (𝑣)⟩. When 𝒲 = 𝒱 , 𝑇 is typically referred to as a linear operator on 𝒱 . The

nullspace and range of 𝑇 , denoted by 𝑁(𝑇 ) and 𝑅(𝑇 ), respectively, are defined as

𝑁(𝑇 ) = { |𝑣⟩ ∈ 𝒱 |𝑇 (𝑣) = 0 } (3.2a)

𝑅(𝑇 ) = {𝑇 (𝑣) for all |𝑣⟩ ∈ 𝒱 }. (3.2b)

It can be shown that 𝑁(𝑇 ) has the properties required to be a subspace of 𝒱 and

similarly 𝑅(𝑇 ) is a subspace of 𝒲 . If dim 𝑅(𝑇 ) = 𝑑 for some 0 ≤ 𝑑 ≤ 𝑀 , then 𝑇 is

said to have rank 𝑑. A fundamental result in linear algebra states that dim 𝑁(𝑇 ) +

dim 𝑅(𝑇 ) =𝑀 .

It is often of great value to analyze vectors in 𝒱 in terms of their unique compo-

nents in multiple subspaces. This notion can be formalized using the concept of a

direct sum decomposition. Given two subspaces 𝒰1 and 𝒰2 of 𝒱 , 𝒱 can be written as

the direct sum 𝒱 = 𝒰1 ⊕ 𝒰2 if every |𝑣⟩ ∈ 𝒱 can be written uniquely as the sum of
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two components with one in each subspace,

|𝑣⟩ = |𝑢1⟩+ |𝑢2⟩ , |𝑢1⟩ ∈ 𝒰1, |𝑢2⟩ ∈ 𝒰2. (3.3)

Consider the pair of linear operators 𝒫1 and 𝒫2 on 𝒱 defined to satisfy

𝒫1 |𝑣⟩ = |𝑢1⟩ , 𝒫2 |𝑣⟩ = |𝑢2⟩ , (3.4)

for all |𝑣⟩ ∈ 𝒱 , where |𝑢1⟩ and |𝑢2⟩ are defined as in Equation (3.3). For 𝑖 ∈ {1, 2},
𝒫𝑖 extracts the component of |𝑣⟩ lying in 𝒰𝑖 with respect to the decomposition 𝒱 =

𝒰1 ⊕𝒰2 and is referred to as a projection operator – or projector for short – onto 𝒰𝑖.

More generally, a projection operator is defined as any idempotent linear operator 𝒫 ,

i.e., a linear operator satisfying 𝒫2 = 𝒫 , on 𝒱 . An operator with these properties is

a projector onto its range 𝑅(𝒫) and we always have 𝒱 = 𝑅(𝒫)⊕𝑁(𝒫).

It is important to note that for a given subspace 𝒰 of 𝒱 , there are many different

projection operators onto 𝒰 with each one corresponding to a different decomposition

of 𝒱 as 𝒱 = 𝒰⊕𝒰 ′ for some other subspace 𝒰 ′. When 𝒰 ′ is the orthogonal complement

of 𝒰 , denoted as 𝒰 ′ = 𝒰⊥, each one of the corresponding pair of projectors satisfy

the definition of a so-called orthogonal projector and together they are said to form a

complete set of orthogonal projectors. The precise definition of orthogonal projectors

is stated in Section 3.1.3 as it relies on the definition of the Hermitian adjoint of a

linear transformation.

The concept of a direct sum decomposition along with its corresponding set of

projection operators generalizes in a straightforward manner to sets of up to 𝑁 sub-

spaces. For example, assume that {|𝑢𝑛⟩ , 1 ≤ 𝑛 ≤ 𝑁} is a basis for 𝒱 and let {𝒰𝑛} be

the set of one-dimensional subspaces spanned by the individual basis vectors. A given

vector |𝑣⟩ ∈ 𝒱 can always be expressed as a sum of a unique set of 𝑁 components,

with one component lying in each of the {𝒰𝑛}. Thus 𝒱 = 𝒰1 ⊕ · · · ⊕ 𝒰𝑁 .
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3.1.2 Inner Products

A given vector space may be equipped with multiple inner products, and the one used

in technical analysis is important because it defines the geometry of the space in some

sense. The notion of the angle between two vectors and the definition of orthogonality,

for instance, both stem directly from the definition of the inner product. By definition

an inner product is a mapping 𝐺 : 𝒱 × 𝒱 → 𝐹 that satisfies the following properties

for all |𝑣1⟩ , |𝑣2⟩ , |𝑣3⟩ ∈ 𝒱 and for all 𝑎, 𝑏 ∈ 𝐹 ,

𝐺(𝑣1, 𝑣2) = 𝐺(𝑣2, 𝑣1)
*, (3.5a)

𝐺(𝑎 𝑣1 + 𝑏 𝑣2, 𝑣3) = 𝑎𝐺(𝑣1, 𝑣3) + 𝑏𝐺(𝑣2, 𝑣3), (3.5b)

𝐺(𝑣1, 𝑎 𝑣2 + 𝑏 𝑣3) = 𝑎*𝐺(𝑣1, 𝑣2) + 𝑏*𝐺(𝑣1, 𝑣3), (3.5c)

𝐺(𝑣1, 𝑣1) > 0 whenever |𝑣1⟩ ≠ 0. (3.5d)

where the superscript * signifies complex conjugation. If 𝐹 is equal to R, then

complex conjugation can of course be disregarded. As with linear transformations,

note that for two vectors |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 we will typically write 𝐺(|𝑣1⟩ , |𝑣2⟩) as simply

𝐺(𝑣1, 𝑣2) for the sake of notational clarity. For a given inner product 𝐺(·, ·), the

squared norm of a vector |𝑣⟩ is defined to be the inner product of |𝑣⟩ with itself,

𝐺(𝑣, 𝑣). The angle 𝜃 between two vectors |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 is defined via the relation
√︀
𝐺(𝑣1, 𝑣1)𝐺(𝑣2, 𝑣2) cos 𝜃 = 𝐺(𝑣1, 𝑣2). |𝑣1⟩ and |𝑣2⟩ are said to be orthogonal if

𝐺(𝑣1, 𝑣2) = 0. A given basis for 𝒱 , that is, any set of linearly independent vectors

that span 𝒱 , is referred to as orthonormal if each of the basis vectors has unit norm

and if they are collectively pairwise orthogonal.

In Section 3.2 we will make use of the following convenient fact involving the

definition of multiple inner products on the same Hilbert space. In the absence of any

other constraints, we can always assume that an arbitrary basis {|𝑢𝑛⟩ , 1 ≤ 𝑛 ≤ 𝑁}
for 𝒱 is orthonormal with respect to the ⟨·|·⟩ inner product. If it were not, we could

always construct an inner product 𝐺(·, ·) under which the {|𝑢𝑛⟩} were orthonormal

along with an invertible function relating 𝐺(·, ·) to ⟨·|·⟩. To see why this is true,
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let {|𝑢𝑛⟩} and {|𝑒𝑛⟩} be two different bases for 𝒱 and assume that the {|𝑒𝑛⟩} are

orthonormal with respect to the ⟨·|·⟩ inner product but that the {|𝑢𝑛⟩} are not. Thus

we have ⟨𝑒𝑚|𝑒𝑛⟩ = 𝛿𝑚𝑛 for all 1 ≤ 𝑚, 𝑛 ≤ 𝑁 , where 𝛿𝑚𝑛 takes the value 1 if 𝑚 = 𝑛

and 0 otherwise. Consider a mapping 𝐺 : 𝒱 × 𝒱 → 𝐹 that is defined to satisfy

𝐺(𝑢𝑚, 𝑢𝑛) = 𝛿𝑚𝑛 (3.6)

for all 1 ≤ 𝑚, 𝑛 ≤ 𝑁 and also to satisfy Equations (3.5a) to (3.5c). These constraints

together imply that 𝐺(·, ·) also satisfies Equation (3.5d). Therefore, 𝐺(·, ·) is a valid

inner product on 𝒱 and the {|𝑢𝑛⟩} are orthonormal with respect to this inner product.

Let |𝑣⟩ be an arbitrary nonzero vector in 𝒱 , then |𝑣⟩ can always be written as |𝑣⟩ =
∑︀

𝑛 𝑐𝑛 |𝑢𝑛⟩ for some combination of scalars {𝑐𝑛}, at least one of which is nonzero. We

have

𝐺(𝑣, 𝑣) = 𝐺

(︃
𝑁∑︁

𝑚=1

𝑐𝑚 |𝑢𝑚⟩ ,
𝑁∑︁

𝑛=1

𝑐𝑛 |𝑢𝑛⟩
)︃

=
𝑁∑︁

𝑚,𝑛=1

𝑐*𝑚 𝑐𝑛𝐺(𝑢𝑚, 𝑢𝑛) =
𝑁∑︁

𝑚,𝑛=1

|𝑐𝑛|2 > 0.

(3.7)

To relate 𝐺(·, ·) back to the ⟨·|·⟩ inner product, we now show that there is an invertible

linear operator 𝐿 on 𝒱 with the property that for all |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 ,

𝐺(𝐿 |𝑣1⟩ , 𝐿 |𝑣2⟩) = ⟨𝑣1|𝑣2⟩ . (3.8)

It is straightforward to show that to satisfy Equation (3.8) it is sufficient to have

𝐺(𝐿 |𝑢𝑚⟩ , 𝐿 |𝑢𝑛⟩) = ⟨𝑢𝑚|𝑢𝑛⟩ for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . The derivation relies on the fact

that any |𝑣1⟩ , |𝑣2⟩ ∈ 𝒱 can be written as linear combinations of the {|𝑢𝑛⟩} and on

the properties of 𝐺(·, ·) and ⟨·|·⟩. To find a suitable operator 𝐿 we first express

|𝑢𝑖⟩ and |𝑢𝑗⟩ for any 1 ≤ 𝑖, 𝑗 ≤ 𝑁 in terms of the {|𝑒𝑛⟩}, |𝑢𝑖⟩ =
∑︀

𝑚 𝑐𝑚 |𝑒𝑚⟩ and

|𝑢𝑗⟩ =
∑︀

𝑛 𝑑𝑛 |𝑒𝑛⟩. 𝐺(𝐿 |𝑢𝑖⟩ , 𝐿 |𝑢𝑗⟩) can be written as

𝐺(𝐿 |𝑢𝑖⟩ , 𝐿 |𝑢𝑗⟩) = 𝐺

(︃
𝑁∑︁

𝑚=1

𝑐𝑚𝐿 |𝑒𝑚⟩ ,
𝑁∑︁

𝑛=1

𝑑𝑛𝐿 |𝑒𝑛⟩
)︃

=
𝑁∑︁

𝑚,𝑛=1

𝑐*𝑚 𝑑𝑛𝐺(𝐿 |𝑒𝑚⟩ , 𝐿 |𝑒𝑛⟩)

(3.9)
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and ⟨𝑢𝑖|𝑢𝑗⟩ can be written as

⟨𝑢𝑖|𝑢𝑗⟩ =
⟨

𝑁∑︁

𝑚=1

𝑐𝑚 |𝑒𝑚⟩
⃒⃒
⃒⃒
⃒

𝑁∑︁

𝑛=1

𝑑𝑛 |𝑒𝑛⟩
⟩

=
𝑁∑︁

𝑘=1

𝑐*𝑛 𝑑𝑛. (3.10)

Note that in Equation (3.10) we have used the orthonormality of the {|𝑒𝑛⟩} with

respect to the ⟨·|·⟩ inner product. For the two to be equal, it is sufficient to have

𝐺(𝐿 |𝑒𝑚⟩ , 𝐿 |𝑒𝑛⟩) = 𝛿𝑚𝑛 for all 1 ≤ 𝑚, 𝑛 ≤ 𝑁 . A suitable linear operator can be

defined by the relation

𝐿 |𝑒𝑛⟩ = |𝑢𝑛⟩ (3.11)

for all 1 ≤ 𝑛 ≤ 𝑁 . Because the {|𝑒𝑛⟩} and {|𝑢𝑛⟩} are both bases for 𝒱 , 𝐿 is clearly

invertible.

3.1.3 Hermitian Adjoints

The concept of the Hermitian adjoint of a linear transformation is fundamental to

many applications of linear algebra [4, 74]. In what follows we review the definition

of the adjoint as well as several of its key properties. A crucial takeaway is a set of

relations that connect the range and nullspace of a linear transformation to those of

its adjoint. Let 𝑇 : 𝒱 → 𝒲 be a linear transformation. The Hermitian adjoint – or

adjoint for short – of 𝑇 is defined as a linear transformation 𝑇 † : 𝒲 → 𝒱 satisfying

⟨𝑤|𝑇𝑣⟩ = ⟨𝑇 †𝑤|𝑣⟩ (3.12)

for all |𝑣⟩ ∈ 𝒱 and all |𝑤⟩ ∈ 𝒲 . It is always unique for a given inner product under

the assumptions made in this thesis. When 𝑇 is a linear operator and 𝑇 = 𝑇 †, 𝑇 is

referred to as a Hermitian or self-adjoint operator. The adjoint of the adjoint is always

the original transformation, i.e., (𝑇 †)† = 𝑇 . This follows from taking the complex

conjugate of both sides of Equation (3.12) and applying Equation (3.5a), leading

to ⟨𝑇𝑣|𝑤⟩ = ⟨𝑣|𝑇 †𝑤⟩. Given a linear transformation 𝑇 =
∑︀

𝑚 |𝑦𝑚⟩ ⟨𝑥𝑚| where the

{|𝑥𝑚⟩} are elements of 𝒱 and the {|𝑦𝑚⟩} are elements of 𝒲 , it is straightforward to
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Figure 3-1: Relationship between the ranges and nullspaces of a linear transformation
𝑇 : 𝒱 → 𝒲 and its adjoint 𝑇 † : 𝒲 → 𝒱 .

show that the adjoint 𝑇 † can always be written as 𝑇 † =
∑︀

𝑚 |𝑥𝑚⟩ ⟨𝑦𝑚|.

A fundamental result of linear algebra states that 𝑁(𝑇 †) = 𝑅(𝑇 )⊥. Since (𝑇 †)† =

𝑇 this implies by symmetry that 𝑁(𝑇 ) = 𝑅(𝑇 †)⊥. These relations are illustrated

in Figure 3-1 and can be derived as follows. We first show that 𝑁(𝑇 †) ⊂ 𝑅(𝑇 )⊥.

Assuming that |𝑤1⟩ is an arbitrary element of 𝑁(𝑇 †), we wish to show that |𝑤1⟩ is

orthogonal to all elements of 𝑅(𝑇 ). Let |𝑤2⟩ be an arbitrary element of 𝑅(𝑇 ), then

by definition there is some |𝑣⟩ ∈ 𝒱 such that |𝑤2⟩ = 𝑇 |𝑣⟩. |𝑤1⟩ must be orthogonal

to |𝑤2⟩ because

⟨𝑤1|𝑤2⟩ = ⟨𝑇𝑣|𝑤2⟩ = ⟨𝑣|𝑇 †𝑤2⟩ = 0. (3.13)

We now show that 𝑅(𝑇 )⊥ ⊂ 𝑁(𝑇 †), and this proves that 𝑁(𝑇 †) = 𝑅(𝑇 )⊥. Assuming

that |𝑤⟩ is an arbitrary element of 𝑅(𝑇 )⊥, we wish to show that it must also be an

element of 𝑁(𝑇 †). By definition |𝑤⟩ must be orthogonal to all elements of 𝑅(𝑇 ), i.e.,

⟨𝑇𝑣|𝑤⟩ = 0 for all |𝑣⟩ ∈ 𝒱 . This expression can be rewritten as

⟨𝑇𝑣|𝑤⟩ = ⟨𝑣|𝑇 †𝑤⟩ = 0 (3.14)

for all |𝑣⟩ ∈ 𝒱 , and this implies that 𝑇 † |𝑤⟩ = 0, i.e., |𝑤⟩ ∈ 𝑁(𝑇 †).

As mentioned in Section 3.1.1, a projection operator on 𝒱 is defined as any linear,

idempotent operator on 𝒱 . An operator 𝒫 with these properties is a projector onto

its range 𝑅(𝒫) and we always have 𝒱 = 𝑅(𝒫)⊕𝑁(𝒫). By definition an orthogonal
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projection operator is a projection operator that is also Hermitian, 𝒫† = 𝒫 . And in

this case it is straightforward to show that we always have 𝑁(𝒫) = 𝑅(𝒫)⊥, so the

corresponding direct sum decomposition of 𝒱 utilizes two orthogonal subspaces.

3.2 Frame Representations

As is well-known, a given vector in a finite-dimensional Hilbert space can always be

represented in terms of its coefficients with respect to a fixed basis for the space and a

basis expansion corresponds to a complete representation of each vector. Frames are

a generalization of bases allowing for an overcomplete representation of a vector in the

space as a linear combination of linearly dependent vectors. In effect, the coefficients

in an overcomplete frame expansion can be viewed as corresponding to multiple linear

combinations of the coefficients in a basis expansion. Among the advantages of an

overcomplete representation is the redundancy of the information in the coefficients

representing the vector. Consequently frames and frame representations often provide

an important mechanism for describing, analyzing and implementing robust vector

representations that are less sensitive to errors in the coefficients representing the

vectors. Constructing an overcomplete representation can be as simple as replicating

each basis vector multiple times, but there are of course a variety of more strategic

ways of introducing and exploiting redundancy. Extensive research has been devoted

to this topic and its many extensions in the field of frame theory [13, 16, 17, 41, 42]. We

emphasize that the many core concepts of frame theory that are not essential to the

discussions of subsequent chapters are not included here. For a comprehensive review

of the foundations of frame theory, we refer the reader to, for example, [13, 16, 17].

Throughout Section 3.2 we assume that 𝒱 is a subspace of 𝒲 , implying that

dim 𝒱 ≤ dim 𝒲 , i.e., 𝑁 ≤ 𝑀 . We will denote the orthogonal projection operator

from 𝒲 onto 𝒱 by 𝒫𝒱 . The notation {|𝑓𝑘⟩ , 1 ≤ 𝑘 ≤ 𝑀} will always be used to

denote a frame for 𝒱 as defined below and the notation {|𝑤𝑘⟩ , 1 ≤ 𝑘 ≤ 𝑀} will

always be used to refer to an orthonormal basis for 𝒲 . As explained in Section 3.1.2,

in the absence of any other assumptions no generality is lost by assuming that the
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{|𝑤𝑘⟩} are orthonormal. Note that while the {|𝑤𝑘⟩} are a basis for 𝒲 they are in

general neither a basis nor a frame for 𝒱 , since not every linear combination of them

necessarily lies in 𝒱 .

3.2.1 Definition of a Frame

Consider any set of 𝑀 vectors {|𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀} that lie in and span 𝒱 but that are

not necessarily linearly independent. Since 𝒱 is finite-dimensional, any set of vectors

with these properties form what is referred to as a frame for 𝒱 . More generally, an

𝑀 -element frame for 𝒱 is defined as any set of 𝑀 vectors {|𝑓𝑘⟩} in 𝒱 that satisfy

𝐶 ||𝑣||2 ≤
𝑀∑︁

𝑘=1

| ⟨𝑓𝑘|𝑣⟩ |2 ≤ 𝐷 ||𝑣||2, ∀ |𝑣⟩ ∈ 𝒱 (3.15)

for some 0 < 𝐶 ≤ 𝐷 < ∞ [16]. When 𝐶 and 𝐷 are set to form the tightest

possible bounds, they are typically referred to as upper and lower frame bounds of

{|𝑓𝑘⟩}, respectively. The requirement that 𝐶 > 0 ensures that the frame vectors span

𝒱 . Equation (3.15) can additionally be extended to include continuous frames and

frames with a countably infinite number of elements but for simplicity, in this thesis

we will only address the case where there are a finite number 𝑀 of frame vectors.

Unlike in finite dimensions, in infinite dimensions Equation (3.15) is not necessarily

satisfied by any set of vectors that lie in and span 𝒱 .

3.2.2 Analysis and Synthesis Operators and Maps

Associated with any frame for 𝒱 are two linear transformations referred to as the

analysis and synthesis operators of the frame [13]. The analysis operator 𝐴 takes as its

input any |𝑣⟩ ∈ 𝒱 and generates a set of frame coefficients defined by {𝑎𝑘 = ⟨𝑓𝑘|𝑣⟩ , 1 ≤
𝑘 ≤ 𝑀}. The synthesis operator 𝐹 takes as its input any set {𝑐𝑘, 1 ≤ 𝑘 ≤ 𝑀} of

coefficients and produces as its output the vector
∑︀

𝑘 𝑐𝑘 |𝑓𝑘⟩ ∈ 𝒱 . The {𝑐𝑘} used

as input to the synthesis operator do not necessarily need to have been obtained by

applying the analysis operator to some |𝑣⟩ ∈ 𝒱 . Indeed, there may not be any |𝑣⟩ ∈ 𝒱
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such that 𝑐𝑘 = ⟨𝑓𝑘|𝑣⟩ for 1 ≤ 𝑘 ≤𝑀 .

In this thesis we take a particular perspective that requires the definition of the

following two linear operators on 𝒲 , derived from 𝐴 and 𝐹 and denoted by 𝐴0 and

𝐹0. Since 𝐴0 and 𝐹0 are closely related to 𝐴 and 𝐹 but are not strictly identical,

we refer to them as the analysis and synthesis maps of the frame to avoid ambiguity.

The analysis map 𝐴0 maps any vector |𝑣⟩ ∈ 𝒱 to a specific vector |𝑤⟩ ∈ 𝒲 according

to the relation

|𝑣⟩ ∈ 𝒱 −→ |𝑤⟩ = 𝐴0 |𝑣⟩ =
𝑀∑︁

𝑘=1

⟨𝑓𝑘|𝑣⟩ |𝑤𝑘⟩ =
𝑀∑︁

𝑘=1

𝑎𝑘 |𝑤𝑘⟩ ∈ 𝒲 . (3.16)

Because the {|𝑓𝑘⟩} span 𝒱 , 𝐴0 has rank 𝑁 , 𝑅(𝐴0) is an 𝑁 -dimensional subspace

of 𝒲 and 𝑁(𝐴0) = 𝒱⊥ is an (𝑀 − 𝑁)-dimensional subspace of 𝒲 . An important

implication is that 𝐴0 is left-invertible, meaning that there is a linear operator (not

necessarily unique) that recovers |𝑣⟩ from 𝐴0 |𝑣⟩ for every |𝑣⟩ ∈ 𝒱 . As explained in

Section 3.2.3, each left-inverse of 𝐴0 is connected to one member of a collection of

frames referred to as the dual frames of {|𝑓𝑘⟩}. Since the {|𝑤𝑘⟩} are orthonormal we

have ||𝐴0 |𝑣⟩ ||2 =
∑︀

𝑘 |𝑎𝑘|2, so the definition of a frame given in Equation 3.15 can be

rewritten as

𝐶 ||𝑣||2 ≤ ||𝐴0 |𝑣⟩ ||2 ≤ 𝐷 ||𝑣||2,∀ |𝑣⟩ ∈ 𝒱 . (3.17)

For a given frame {|𝑓𝑘⟩} for 𝒱 , the analysis map 𝐴0 can always be expressed as

𝐴0 =
𝑀∑︁

𝑘=1

|𝑤𝑘⟩ ⟨𝑓𝑘| . (3.18)

The action of 𝐴0 is summarized schematically in Figure 3-2. Both sides of the diagram

represent decompositions of 𝒲 into a direct sum of two orthogonal subspaces, 𝒲 =

𝒱 ⊕ 𝒱⊥ and 𝒲 = 𝑅(𝐴0)⊕𝑅(𝐴0)
⊥.

The synthesis map 𝐹0 maps any vector |𝑤⟩ ∈ 𝒲 to a specific vector |𝑣⟩ ∈ 𝒱 in

a way that relies on the basis coefficients of |𝑤⟩ with respect to the {|𝑤𝑘⟩} basis.
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Figure 3-2: The analysis map 𝐴0 takes vectors in 𝒱 to a (possibly) different subspace
of 𝒲 with the same dimension as 𝒱 . It takes vectors in 𝒱⊥ to the zero vector. The
synthesis map 𝐹0 takes vectors in 𝑅(𝐴0) to the subspace 𝒱 . It takes vectors in 𝑅(𝐴0)

⊥

to the zero vector.

Specifically, 𝐹0 is defined by the relation

|𝑤⟩ =
𝑀∑︁

𝑘=1

𝑐𝑘 |𝑤𝑘⟩ ∈ 𝒲 −→ |𝑣⟩ = 𝐹0 |𝑤⟩ =
𝑀∑︁

𝑘=1

𝑐𝑘 |𝑓𝑘⟩ ∈ 𝒱 . (3.19)

Since the {|𝑤𝑘⟩} are orthonormal, the basis coefficients {𝑐𝑘} can be expressed as

𝑐𝑘 = ⟨𝑤𝑘|𝑤⟩ for 1 ≤ 𝑘 ≤𝑀 and 𝐹0 can always be expressed as

𝐹0 =
𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑤𝑘| . (3.20)

The action of 𝐹0 is also shown in Figure 3-2. Since the {|𝑓𝑘⟩} span 𝒱 , the range of 𝐹0

is 𝑅(𝐹0) = 𝒱 . If the {|𝑓𝑘⟩} are linearly dependent, then 𝐹0 has a non-trivial nullspace

𝑁(𝐹0) that is an (𝑀−𝑁)-dimensional subspace of 𝒲 . It is easily verified that 𝐹0 = 𝐴†
0

and thus 𝐴0 = 𝐹 †
0 .2 As noted in Section 3.1.3 this implies that 𝑁(𝐴0) = 𝑅(𝐹0) ⊥

and 𝑁(𝐹0) = 𝑅(𝐴0)
⊥.

For some frames, the synthesis map can also be written as 𝐹0 =
∑︀

𝑘 |𝑓𝑘⟩ ⟨𝑔𝑘| for a

set of basis vectors {|𝑔𝑘⟩} for 𝒲 that is different from {|𝑤𝑘⟩}. This implies that we

could have started with {|𝑔𝑘⟩} as a basis for 𝒲 instead of with {|𝑤𝑘⟩}, and we would

2The analysis and synthesis operators are also adjoints of each other, 𝐹 † = 𝐴 and 𝐴† = 𝐹 .
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have arrived at the same synthesis map. To see why this is true, note that instead

of defining 𝐹0 using Equation (3.19) we could equivalently define it according to the

relation

𝐹0 |𝑤𝑘⟩ = |𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀. (3.21)

Equation (3.19) then follows by linearity. For Equation (3.21) to be true the {|𝑔𝑗⟩}
must satisfy the relation

𝑀∑︁

𝑗=1

|𝑓𝑗⟩ ⟨𝑔𝑗|𝑤𝑘⟩ = |𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀. (3.22)

We can then expand the {|𝑓𝑗⟩} and {|𝑔𝑗⟩} as linear combinations of the {|𝑤𝑗⟩} to

arrive at a system of linear equations in which the unknowns are the basis coefficients

of the {|𝑔𝑗⟩}. Depending on the frame, the equations may or may not have multiple

solutions. Another way to look at it is to note that if the {|𝑓𝑘⟩} are linearly dependent,

then there is a linear combination of them that is equal to zero. Let {𝑐𝑘} be a set of

coefficients such that
∑︀

𝑘 𝑐𝑘 |𝑓𝑘⟩ = 0. Then to satisfy Equation (3.22) it is sufficient

to have

⟨𝑔𝑗|𝑤𝑘⟩ = 𝛿𝑗𝑘 𝑐𝑘, 1 ≤ 𝑗, 𝑘 ≤𝑀. (3.23)

This is again a system of linear equations that may or may not have more than one

solution depending on the frame.

We emphasize that the operators 𝐴0 and 𝐹0 have been introduced primarily for

the purpose of providing us with a convenient interpretation of the analysis and

synthesis operations of the frame {|𝑓𝑘⟩} as operations acting on the larger space 𝒲 .

By definition 𝐴0 and 𝐹0 implicitly depend on our choice of basis vectors {|𝑤𝑘⟩} and

we are free to choose the {|𝑤𝑘⟩} in such a way that the interpretation of 𝐴0 and 𝐹0

is simplified as much as possible. Note that an arbitrary linear operator 𝑇 acting on

𝒲 that has rank 𝑁 and satisfies 𝑁(𝑇 ) = 𝒱⊥ can always be written in the form of

Equation (3.18) and can thus be interpreted as the analysis map of a given frame

for 𝒱 . Similarly, an arbitrary linear operator 𝑇 acting on 𝒲 that has rank 𝑁 and

satisfies 𝑅(𝑇 ) = 𝒱 can always be written in the form of Equation (3.20) and can thus
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be interpreted as the synthesis map of a given frame for 𝒱 .

3.2.3 Dual Frames

The concept of a dual frame arises naturally when considering how an arbitrary

vector |𝑣⟩ ∈ 𝒱 can be written as a linear combination of a given set of frame vectors

{|𝑓𝑘⟩}. Given an arbitrary vector |𝑣⟩ ∈ 𝒱 , consider the problem of obtaining a set of

coefficients {�̃�𝑘} such that

|𝑣⟩ =
𝑀∑︁

𝑘=1

�̃�𝑘 |𝑓𝑘⟩ . (3.24)

Since the {|𝑓𝑘⟩} may be linearly dependent the solution is in general not unique. A

very useful and established approach to finding a suitable set of {�̃�𝑘} is by using a

so-called dual frame of {|𝑓𝑘⟩}. A frame {|𝑓𝑘⟩} for 𝒱 is referred to as a dual frame of

{|𝑓𝑘⟩} if

|𝑣⟩ =
𝑀∑︁

𝑘=1

⟨𝑓𝑘|𝑣⟩ |𝑓𝑘⟩ , ∀ |𝑣⟩ ∈ 𝒱 . (3.25)

A dual frame is always guaranteed to exist [16], and as we will show below if {|𝑓𝑘⟩}
is dual to {|𝑓𝑘⟩} then the reverse is also true. Clearly, Equation (3.24) is satisfied

by setting �̃�𝑘 = ⟨𝑓𝑘|𝑣⟩ for 1 ≤ 𝑘 ≤ 𝑀 , where {|𝑓𝑘⟩} is any dual frame of {|𝑓𝑘⟩}.
When a vector |𝑣⟩ ∈ 𝒱 is written in the form of Equation (3.25), {|𝑓𝑘⟩} is typically

referred to as the analysis frame while {|𝑓𝑘⟩} is referred to as the synthesis frame.

Correspondingly, if the analysis map of {|𝑓𝑘⟩} is denoted as 𝐴0, then Equation (3.25)

has the equivalent forms

|𝑣⟩ =
𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑓𝑘|𝑣⟩ = 𝐹0𝐴0 |𝑣⟩ , ∀ |𝑣⟩ ∈ 𝒱 (3.26a)

𝐹0𝐴0 = 𝒫𝒱 . (3.26b)

Given a frame {|𝑓𝑘⟩} for 𝒱 , the dual frame of {|𝑓𝑘⟩} is only unique when the

frame vectors are linearly independent in which case they form a basis for 𝒱 . When

the frame vectors are linearly dependent, one way of characterizing the set of all dual
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frames is to consider the coefficient vector |�̃�⟩ corresponding to a particular dual

frame and a particular |𝑣⟩ ∈ 𝒱 ,

|�̃�⟩ = 𝐴0 |𝑣⟩ =
𝑀∑︁

𝑘=1

�̃�𝑘 |𝑤𝑘⟩ ∈ 𝒲 , (3.27)

with squared norm ||�̃�||2 =
∑︀

𝑘 �̃�
2
𝑘. In general, distinct dual frames lead to distinct

coefficient vectors. The dual frame that results in the minimum squared norm ||�̃�||2

is

|𝑓𝑘⟩ = (𝐹0𝐴0)
−1 |𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀. (3.28)

A derivation of this fact is included in Section 3.2.4. The dual frame defined by

Equation (3.28) is referred to as the canonical dual frame of {|𝑓𝑘⟩} [16]. Its synthesis

map, which we will denote by 𝐹can, is equal to 𝐹can = (𝐹0𝐴0)
−1𝐹0. Its analysis map

is 𝐴can = 𝐹 †
can = 𝐴0(𝐹0𝐴0)

−1, where we have used the fact that for an invertible

linear operator 𝑇 , we have (𝑇−1)† = (𝑇 †)−1. It is significant that the nullspace of

𝐹can and the range of 𝐴0 are related via 𝑁(𝐹can) = 𝑅(𝐴0)
⊥. This property is utilized

in Section 3.5. Note that if {|𝑓𝑘⟩} is the canonical dual of {|𝑓𝑘⟩}, then the reverse is

also true. This can be verified by interchanging the roles of the {|𝑓𝑘⟩} and {|𝑓𝑘⟩} in

Equation (3.28) and substituting in the expressions for 𝐹can and 𝐴can.

The concept of a dual frame also arises when considering how an arbitrary vector

|𝑣⟩ ∈ 𝒱 can be linearly reconstructed from its frame coefficients {𝑎𝑘 = ⟨𝑓𝑘|𝑣⟩}. Here

{|𝑓𝑘⟩} is assumed to be a fixed frame for 𝒱 . Given the {𝑎𝑘}, consider the problem of

finding a synthesis frame {|𝑓𝑘⟩} such that

|𝑣⟩ =
𝑀∑︁

𝑘=1

𝑎𝑘 |𝑓𝑘⟩ , ∀ |𝑣⟩ ∈ 𝒱 . (3.29)

Equation (3.29) states that {|𝑓𝑘⟩} is a dual frame of {|𝑓𝑘⟩}. It has the equivalent
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forms

|𝑣⟩ = 𝐹0𝐴0 |𝑣⟩ , ∀ |𝑣⟩ ∈ 𝒱 (3.30a)

𝐹0𝐴0 = 𝒫𝒱 . (3.30b)

Taking the adjoint of both sides of Equations (3.26b) and (3.30b) shows that they

too are equivalent. In summary, Equations (3.25), (3.26), (3.29), and (3.30) are all

equivalent and a dual frame could be defined according to any of them. The canonical

dual frame is of significance in relation to Equation (3.29) because, as explained in

Section 3.5, setting {|𝑓𝑘⟩} to be the canonical dual frame of {|𝑓𝑘⟩} minimizes the

expected reconstruction error when an unknown vector |𝑣⟩ ∈ 𝒱 is estimated from

imprecise versions of the {𝑎𝑘}.

3.2.4 The Canonical Dual Frame

Two significant properties of the canonical dual frame were stated above in Section

3.2.3. The first is that for a specific |𝑣⟩ ∈ 𝒱 and a specific frame {|𝑓𝑘⟩} for 𝒱 ,

the canonical dual frame leads to the coefficient vector |�̃�⟩ =
∑︀

𝑘 ⟨𝑓𝑘|𝑣⟩ |𝑤𝑘⟩ with

minimum norm. The second is that it minimizes the expected reconstruction error

when imprecise frame coefficients are used to estimate an unknown vector. In Section

3.2.4 we derive the first of these properties. A derivation of the second is given in

Section 3.5.

Let |𝑣⟩ be an arbitrary vector in 𝒱 and let {|𝑓𝑘⟩} be a frame for 𝒱 . We wish to

find the dual frame {|𝑓𝑘⟩} of {|𝑓𝑘⟩} that minimizes the squared norm of the coefficient

vector 𝐴0 |𝑣⟩ =
∑︀

𝑘 ⟨𝑓𝑘|𝑣⟩ |𝑤𝑘⟩. It is sufficient to solve for the analysis map 𝐴0 of the

optimal dual frame. Denoting the synthesis map of {|𝑓𝑘⟩} by 𝐹0, the problem can be

formulated as

minimize
𝐴0 : 𝒱 → 𝒲

||𝐴0 |𝑣⟩ ||2 (3.31a)

subject to 𝐹0𝐴0 |𝑣⟩ = |𝑣⟩ (3.31b)
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The optimal coefficient vector must satisfy 𝐴0 |𝑣⟩ ∈ 𝑅(𝐴0). To see why this is true,

note that 𝐴0 |𝑣⟩ can always be written as the sum of a component in 𝑅(𝐴0) and a

component in 𝑅(𝐴0)
⊥ = 𝑁(𝐹0),

𝐴0 |𝑣⟩ = |𝑤1⟩+ |𝑤2⟩ (3.32)

where |𝑤1⟩ ∈ 𝑅(𝐴0) and |𝑤2⟩ ∈ 𝑁(𝐹0). We have ||𝐴0 |𝑣⟩ ||2 = ||𝑤1||2 + ||𝑤2||2 and

𝐹0𝐴0 |𝑣⟩ = 𝐹0 |𝑤1⟩. Assume that Equation (3.32) holds for a given dual frame. If

|𝑤2⟩ were nonzero, then we could always find a different dual frame with analysis

map 𝐴0 satisfying 𝐴0 |𝑣⟩ = |𝑤1⟩. Equation (3.31b) would still be satisfied (𝐹0𝐴0 |𝑣⟩ =
𝐹0 |𝑤1⟩ = |𝑣⟩) and the new coefficient vector would have smaller squared norm

(||𝐴0 |𝑣⟩ ||2 ≤ ||𝐴0 |𝑣⟩ ||2). Next note that since |𝑣⟩ was assumed to be arbitrary, Equa-

tion (3.31b) implies that dim𝑅(𝐴0) ≥ 𝑁 . Since dim𝑅(𝐴0) = 𝑁 according to Section

3.2.2, the requirements that 𝐴0 |𝑣⟩ ∈ 𝑅(𝐴0) for arbitrary |𝑣⟩ ∈ 𝒱 and dim𝑅(𝐴0) ≥ 𝑁

together imply that the optimal analysis map satisfies 𝑅(𝐴0) = 𝑅(𝐴0). Therefore, by

definition of 𝑅(𝐴0) we must have 𝐴0 |𝑣⟩ = 𝐴0 |𝑥⟩ for some |𝑥⟩ ∈ 𝒱 . Substituting into

Equation (3.31b), we find that 𝐹0𝐴0 |𝑣⟩ = 𝐹0𝐴0 |𝑥⟩. It is straightforward to show that

the operator (𝐹0𝐴0), often referred to as the frame operator of {|𝑓𝑘⟩}, is always invert-

ible. Thus, |𝑥⟩ = (𝐹0𝐴0)
−1 |𝑣⟩ and so 𝐴0 |𝑣⟩ = 𝐴0 |𝑥⟩ = 𝐴0(𝐹0𝐴0)

−1 |𝑣⟩. Again using

the fact that |𝑣⟩ was assumed to be arbitrary, this implies that 𝐴0 = 𝐴0(𝐹0𝐴0)
−1,

which is equal to the analysis map of the canonical dual frame.

3.3 Parseval Frames and Naimark’s Theorem

Reconstructing an unknown vector from its frame coefficients {𝑎𝑘} using the canonical

dual frame requires the inversion of the the operator (𝐹0𝐴0), a task that can lead

to issues of computational complexity or instability. Tight frames are an important

class of frames that circumvent these issues due to the fact that they are self-dual

up to a constant factor. Parseval frames are tight frames for which the constant is

equal to one. As detailed below, the synthesis and analysis maps of a Parseval frame
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can be made to have a particularly simple form by choosing the {|𝑤𝑘⟩} according to

Naimark’s Theorem.

3.3.1 Parseval Frames

A tight frame {|𝑓𝑘⟩} for 𝒱 is one that satisfies Parseval’s identity [16] up to a constant

factor,
𝑀∑︁

𝑘=1

| ⟨𝑓𝑘|𝑣⟩ |2 = 𝐶 ||𝑣||2 ∀ |𝑣⟩ ∈ 𝒱 (3.33)

for some 𝐶 > 0. In terms of the analysis map 𝐴0 of {|𝑓𝑘⟩}, Equation (3.33) can be

written as ||𝐴0 |𝑣⟩ ||2 = 𝐶||𝑣||2 for all |𝑣⟩ ∈ 𝒱 . When 𝐶 = 1 the frame is referred

to as a Parseval frame. Orthonormal bases are a special case of Parseval frames

with 𝑀 = 𝑁 . In reference to Equation (3.15), Equation (3.33) is equivalent to the

statement the the frame bounds of {|𝑓𝑘⟩} are equal, 𝐶 = 𝐷.

Parseval frames are always self-dual. This follows from the fact that the sum in

Equation (3.33) can be alternately expressed as

𝑀∑︁

𝑘=1

| ⟨𝑓𝑘|𝑣⟩ |2 =
𝑀∑︁

𝑘=1

⟨𝑣|𝑓𝑘⟩ ⟨𝑓𝑘|𝑣⟩ = ⟨𝑣|
(︃

𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑓𝑘|𝑣⟩
)︃
. (3.34)

For the above expression to be equal to ||𝑣||2 = ⟨𝑣|𝑣⟩ for all |𝑣⟩ ∈ 𝒱 , we must have

𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑓𝑘|𝑣⟩ = |𝑣⟩ ∀ |𝑣⟩ ∈ 𝒱 . (3.35)

And Equation (3.35) states by definition that {|𝑓𝑘⟩} is a dual frame of itself. Con-

sequently when {|𝑓𝑘⟩} is a Parseval frame, the task of reconstructing a vector |𝑣⟩
from the collection of coefficients {𝑎𝑘 = ⟨𝑓𝑘|𝑣⟩} using the canonical dual frame is

especially straightforward. A given Parseval frame is in fact its own canonical dual

frame [16]. This is because Equation (3.35) implies that (𝐹0𝐴0) = 𝐼 where 𝐼 is the

identity operator on 𝒱 . Substituting into Equation (3.28) leads to

|𝑓𝑘⟩ = (𝐹0𝐴0)
−1 |𝑓𝑘⟩ = 𝐼−1 |𝑓𝑘⟩ = |𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀. (3.36)
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A similar line of logic to the one given above can be used to show that a frame that

is self-dual is itself always a Parseval frame.

3.3.2 Naimark’s Theorem

Naimark’s Theorem is well-known in both the frame theory and quantum physics

communities as well as in operator theory more generally. The version stated below

will perhaps be most familiar to readers with a background in frame theory [14, 16].

The version more typically used in the quantum physics community is stated in terms

of positive operator-valued measures, which are defined in Chapter 4, and often arises

in the context of the physical realizability of non-standard measurements [55, 57]. As

a result we review the latter version of the theorem in Chapter 4. In the statement

of Naimark’s Theorem given below we continue to assume that 𝒱 and 𝒲 are finite

dimensional, but we emphasize that this is not its most general form.

Naimark’s Theorem. As typically stated in the terminology of frame theory: A

frame {|𝑓𝑘⟩ , 1 ≤ 𝑘 ≤ 𝑀} for 𝒱 is a Parseval frame if and only if there exists an

orthonormal basis {|𝑤𝑘⟩ , 1 ≤ 𝑘 ≤𝑀} for 𝒲 such that

𝒫𝒱 |𝑤𝑘⟩ = |𝑓𝑘⟩ , 1 ≤ 𝑘 ≤𝑀. (3.37)

A derivation of Naimark’s Theorem is included below. We will refer to Equation

(3.37) as Naimark’s identity for convenience. Note that for a given frame {|𝑓𝑘⟩} for

𝒱 , it is trivial to construct a set of basis vectors {|𝑤𝑘⟩} for 𝒲 satisfying Naimark’s

identity if they are not required to be orthonormal. For example, if {|𝑢𝑘⟩ , 𝑁 + 1 ≤
𝑘 ≤ 𝑀} is an orthonormal basis for 𝒱⊥ then setting |𝑤𝑘⟩ = |𝑓𝑘⟩ for 1 ≤ 𝑘 ≤ 𝑁 and

|𝑤𝑘⟩ = |𝑓𝑘⟩ + |𝑢𝑘⟩ for 𝑁 + 1 ≤ 𝑘 ≤ 𝑀 is sufficient. Naimark’s Theorem guarantees

that when {|𝑓𝑘⟩} is a Parseval frame, we can always construct the {|𝑤𝑘⟩} in such a

way that they satisfy Naimark’s identity and are orthonormal.

Let {|𝑓𝑘⟩} be an arbitrary frame for 𝒱 and assume that there exists an orthonormal

basis {|𝑤𝑘⟩} for 𝒲 satisfying Naimark’s identity. To show that {|𝑓𝑘⟩} must be a
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Parseval frame, note that an arbitrary vector |𝑣⟩ ∈ 𝒱 can always be written as

|𝑣⟩ =
𝑀∑︁

𝑘=1

⟨𝑤𝑘|𝑣⟩ |𝑤𝑘⟩ =
𝑀∑︁

𝑘=1

𝑏𝑘 |𝑤𝑘⟩ , (3.38)

where we have defined 𝑏𝑘 = ⟨𝑤𝑘|𝑣⟩ for 1 ≤ 𝑘 ≤𝑀 . Since the {|𝑤𝑘⟩} are orthonormal,

the squared norm of |𝑣⟩ is equal to the sum of the squared magnitudes of the {𝑏𝑘},
||𝑣||2 = ⟨𝑣|𝑣⟩ =

∑︀
𝑘 |𝑏𝑘|2. On the other hand, since the {|𝑤𝑘⟩} satisfy Naimark’s

identity, we also have 𝑏𝑘 = ⟨𝑤𝑘|𝑣⟩ = ⟨𝑓𝑘|𝑣⟩ for all 1 ≤ 𝑘 ≤ 𝑀 , i.e., the basis

coefficients and the frame coefficients of |𝑣⟩ are always identical. This is because the

component of |𝑤𝑘⟩ in 𝒱⊥ has no impact on the value of its inner product with |𝑣⟩.
Thus,

𝑀∑︁

𝑘=1

| ⟨𝑓𝑘|𝑣⟩ |2 =
𝑀∑︁

𝑘=1

|𝑏𝑘|2 = ||𝑣||2 for all |𝑣⟩ ∈ 𝒱 , (3.39)

which implies by definition that {|𝑓𝑘⟩} is a Parseval frame.

Now assume that {|𝑓𝑘⟩} is a Parseval frame. To show that there always exists

an orthonormal basis {|𝑤𝑘⟩} for 𝒲 satisfying Naimark’s identity, let {|𝑒𝑘⟩} be an

arbitrary orthonormal basis for 𝒲 and consider expanding each of the {|𝑓𝑘⟩} as a

linear combination of the {|𝑒𝑘⟩},

|𝑓𝑘⟩ =
𝑀∑︁

𝑗=1

⟨𝑒𝑗|𝑓𝑘⟩ |𝑒𝑗⟩ =
𝑀∑︁

𝑗=1

𝑐𝑗𝑘 |𝑒𝑗⟩ , 1 ≤ 𝑘 ≤𝑀, (3.40)

where we have defined 𝑐𝑗𝑘 = ⟨𝑒𝑗|𝑓𝑘⟩ for 1 ≤ 𝑗, 𝑘 ≤𝑀 . Then the vectors

|𝑤𝑘⟩ =
𝑀∑︁

ℓ=1

𝑐𝑘ℓ |𝑒ℓ⟩ , 1 ≤ 𝑘 ≤𝑀 (3.41)

form an orthonormal basis for 𝒲 . Since 𝒲 has dimension 𝑀 , to verify that the 𝑀

vectors {|𝑤𝑘⟩} span 𝒲 it is sufficient to verify that they are orthonormal. To verify

that the {|𝑤𝑘⟩} are orthonormal assume that |𝑣⟩ =∑︀𝑚 𝑏𝑚 |𝑒𝑚⟩ is an arbitrary vector

in 𝒱 where 𝑏𝑚 = ⟨𝑒𝑚|𝑣⟩ for 1 ≤ 𝑚 ≤ 𝑀 . Substituting the expansions of |𝑣⟩ and of
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the {|𝑓𝑘⟩} into the left-hand side of Equation (3.35) and rearranging leads to

𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑓𝑘|𝑣⟩ =
𝑀∑︁

𝑘=1

(︃
𝑀∑︁

𝑗=1

𝑐𝑗𝑘 |𝑒𝑗⟩
)︃(︃

𝑀∑︁

ℓ=1

𝑐*ℓ𝑘 ⟨𝑒ℓ|
)︃(︃

𝑀∑︁

𝑚=1

𝑏𝑚 |𝑒𝑚⟩
)︃

(3.42a)

=
𝑀∑︁

𝑗=1

[︃
𝑀∑︁

ℓ=1

𝑏ℓ

(︃
𝑀∑︁

𝑘=1

𝑐𝑗𝑘𝑐
*
ℓ𝑘

)︃]︃
|𝑒𝑗⟩ . (3.42b)

For the above expression to be equal to the right-hand side of Equation (3.35), |𝑣⟩ =
∑︀

𝑗 𝑏𝑗 |𝑒𝑗⟩ for an arbitrary |𝑣⟩ ∈ 𝒱 , we must have
∑︀

𝑘 = 𝑐𝑗𝑘𝑐
*
ℓ𝑘 = 𝛿𝑗ℓ which implies

that ⟨𝑤ℓ|𝑤𝑗⟩ = 𝛿𝑗ℓ, i.e., the {|𝑤𝑘⟩} are orthonormal.

3.3.3 Synthesis and Analysis Maps of a Parseval Frame

If {|𝑓𝑘⟩} is a Parseval frame and the {|𝑤𝑘⟩} are chosen to satisfy Naimark’s identity,

then the analysis and synthesis maps of {|𝑓𝑘⟩} are 𝐴0 = 𝐹0 = 𝒫𝒱 . To show that this

is true, first note that as mentioned above, for an arbitrary vector |𝑣⟩ ∈ 𝒱 , the basis

coefficients {𝑏𝑘 = ⟨𝑤𝑘|𝑣⟩} and the frame coefficients {𝑎𝑘 = ⟨𝑓𝑘|𝑣⟩} of 𝒱 are identical.

This leads to

𝐴0 |𝑣⟩ =
𝑀∑︁

𝑘=1

|𝑤𝑘⟩ ⟨𝑓𝑘|𝑣⟩ =
𝑀∑︁

𝑘=1

𝑏𝑘 |𝑤𝑘⟩ = |𝑣⟩ . (3.43)

For this to be true for all |𝑣⟩ ∈ 𝒱 we must have 𝐴0 = 𝒫𝒱 and thus 𝐹0 = 𝐴†
0 = 𝒫𝒱 .

An alternate derivation relies on the fact that since Parseval frames are self-dual

we have (𝐹0𝐴0) = 𝒫𝒱 according to Equation (3.26b). 𝐴0 can be expressed as

𝐴0 =
𝑀∑︁

𝑘=1

|𝑤𝑘⟩ ⟨𝑓𝑘| = 𝒫𝒱

(︃
𝑀∑︁

𝑘=1

|𝑓𝑘⟩ ⟨𝑓𝑘|
)︃

= 𝒫𝒱 𝐹0𝐴0 = 𝒫𝒱 , (3.44)

where we have used the fact that 𝒫2
𝒱 = 𝒫𝒱 . Since orthogonal projection operators are

Hermitian, taking the adjoint of both sides leads to the conclusion that 𝐴†
0 = 𝐹0 = 𝒫𝒱 .
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3.4 Frame Representations of Operator Spaces

The goal of Section 3.4 is to extend the discussion of frame representations to vector

spaces 𝒱 whose elements are Hermitian operators acting on a given Hilbert space ℋ
of dimension 𝑑. Such a vector space is sometimes referred to as an operator space.

Unlike in Chapter 4, in Section 3.4 we do not assume that ℋ necessarily represents

the state space of a quantum system. Rather, the concepts addressed apply to any

finite-dimensional Hilbert space. A key perspective that we take is the geometric

characterization of positive semidefinite operators using a ball and sphere in operator

space when ℋ has dimension 2. The concepts are applied to operator spaces in

quantum mechanics in Chapters 4 and 6.

For the remainder of the thesis, 𝒱 and 𝒲 will be used to denote operator spaces

defined in relation to a given Hilbert space ℋ. And in certain contexts we may wish

to consider an element 𝑉 of 𝒱 alternately as an operator acting on an element of

ℋ or as a “vector” in 𝒱 (that is, an element of the operator-valued vector space 𝒱).

Following a combination of the conventions in [24, 67], when we wish to emphasize

that a Hermitian operator 𝑉 on ℋ is being used as an element of 𝒱 we will denote it

using modified bra-ket notation as |𝑉 ⟩⟩. The inner product between any two operators

𝑉1, 𝑉2 ∈ 𝒱 will be denoted as ⟨⟨𝑉1|𝑉2⟩⟩. A specific expression for ⟨⟨𝑉1|𝑉2⟩⟩ is given

in Equation (3.49) below. The same notation carries over to elements of 𝒲 . Linear

operators acting on 𝒲 (“superoperators” [67]) will be denoted using bold font. For

example, A0 and F0 will denote the analysis and synthesis maps, respectively, of a

given frame for 𝒱 .

3.4.1 Definitions of 𝒱 and 𝒲

Assume that ℋ is a Hilbert space of dimension 𝑑. The set of all Hermitian operators

on ℋ forms an operator space 𝒱 over the real numbers with dimension 𝑁 = 𝑑2. 𝒱
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can always be decomposed into the two orthogonal subspaces 𝒰 and 𝒰⊥, defined as

𝒰⊥ = span{𝐼}, (3.45a)

𝒰 = span{𝑉 ∈ 𝒱 : ⟨⟨𝐼|𝑉 ⟩⟩ = Tr(𝑉 ) = 0}, (3.45b)

where 𝐼 denotes the identity operator on ℋ and Tr(·) is the trace operator. 𝒰 is the

span of all trace 0 operators in 𝒱 . It has dimension (𝑁 − 1) = (𝑑2 − 1) and is always

isomorphic to R𝑑2−1 [67]. 𝒰⊥ is the span of the identity and has dimension 1. Given

an an arbitrary operator 𝑉 ∈ 𝒱 , the orthogonal projection of 𝑉 onto 𝒰⊥ is always

equal to 𝒫𝒰⊥(𝑉 ) = ⟨⟨𝐼|𝑉 ⟩⟩ |𝐼⟩⟩/𝑑 = Tr(𝑉 ) |𝐼⟩⟩/𝑑, where the factor of 1/𝑑 accounts

for the fact that |𝐼⟩⟩/
√
𝑑 has unit norm. Therefore, 𝑉 can always be written as

|𝑉 ⟩⟩ = 𝒫𝒰⊥ |𝑉 ⟩⟩+ 𝒫𝒰 |𝑉 ⟩⟩ = Tr(𝑉 )√
𝑑

|𝐼⟩⟩√
𝑑
+ 𝒫𝒰 |𝑉 ⟩⟩. (3.46)

For an arbitrary real number 𝜏 , 𝑉 has trace 𝜏 if and only if 𝒫𝒰⊥(𝑉 ) = 𝜏 |𝐼⟩⟩/𝑑. The

set of all elements in 𝒱 with trace 𝜏 then forms a hyperplane in 𝒱 that is orthogonal

to the identity.

There are many ways of constructing a larger operator space 𝒲 that contains 𝒱 .

As an example, consider extending ℋ to a larger space ℋ′ of dimension 𝑑′ > 𝑑. ℋ′

can be expressed as the direct sum of ℋ and its orthogonal complement ℋ⊥, where

ℋ⊥ has dimension (𝑑′ − 𝑑). Informally, we may define 𝒲 to be the real span of all

Hermitian operators on ℋ′ that are “block-diagonal” with respect to the direct sum

decomposition ℋ′ = ℋ⊕ℋ⊥. Mathematically this can be phrased as follows. Given

a Hermitian operator 𝑉 on ℋ, 𝑉 can always be expressed as

𝑉 =
𝑑∑︁

𝑖=1

𝑎𝑖 |𝑥𝑖⟩ ⟨𝑥𝑖| , (3.47)

where the eigenvalues {𝑎𝑖} are real and the eigenvectors {|𝑥𝑖⟩} form an orthonormal

basis for ℋ. Since the {|𝑥𝑖⟩} are also elements of ℋ′, 𝑉 can also be viewed as a

Hermitian operator acting on ℋ′. It maps all vectors in ℋ⊥ to the zero vector.
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Similarly, given a Hermitian operator 𝑈 on ℋ⊥, 𝑈 can always be written as

𝑈 =
𝑑′−𝑑∑︁

𝑖=1

𝑏𝑖 |𝑦𝑖⟩ ⟨𝑦𝑖| , (3.48)

where the eigenvalues {𝑏𝑖} are real and the eigenvectors {|𝑦𝑖⟩} form an orthonormal

basis for ℋ⊥. Since the {|𝑦𝑖⟩} are also elements of ℋ′, 𝑈 can also be viewed as

a Hermitian operator on ℋ′ that maps all vectors in ℋ to the zero vector. We

define 𝒲 as the real span of all operators on ℋ′ that can be written in the form of

either Equation (3.47) or (3.48) – that is, the set of all linear combinations of such

operators with real coefficients. When constructed in this way, 𝒲 has dimension

𝑑2+(𝑑′−𝑑)2 = 𝑁 +(𝑑′−𝑑)2. If we desire 𝒲 to have a specific dimension 𝑀 > 𝑑2, we

can always choose 𝑑′ to be large enough so that 𝑁 + (𝑑′ − 𝑑)2 > 𝑀 and then redefine

𝒲 to be a subspace of itself with dimension 𝑀 . We will assume going forward that

a suitable operator space 𝒲 , constructed for example according to the procedure

just described, has been specified. The inner product between any two elements

|𝑊1⟩⟩, |𝑊2⟩⟩ ∈ 𝒲 will be denoted by ⟨⟨𝑊1|𝑊2⟩⟩ and defined by the relation

⟨⟨𝑊1|𝑊2⟩⟩ =
𝑑′∑︁

𝑖=1

𝛾𝑖 ⟨𝑒𝑖|𝑊2 |𝑒𝑖⟩ where 𝑊1 =
𝑑′∑︁

𝑖=1

𝛾𝑖 |𝑒𝑖⟩ ⟨𝑒𝑖| . (3.49)

In Equation (3.49), the {𝛾𝑖} are the eigenvalues of 𝑊1 and the {|𝑒𝑖⟩}, which lie in ℋ′,

are its eigenvectors. Because all elements of 𝒲 can be written as a linear combination

of operators of the form of Equations (3.47) and (3.48), each of the {|𝑒𝑖⟩} lie either

in ℋ or in ℋ⊥. It is straightforward to verify that the function defined in Equation

(3.49) satisfies all the properties of a valid inner product function on 𝒲 . It is in fact

a special case of the well-known Hilbert-Schmidt or trace inner product [49].

3.4.2 Operator-Valued Frames

For clarity we repeat the definition of a frame using operator space notation. Any set

of operators {𝐹𝑘, 1 ≤ 𝑘 ≤𝑀} that lie in and span an operator space 𝒱 form a frame

for 𝒱 . More generally an 𝑀 -element frame for 𝒱 is defined as any set of operators
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{𝐹𝑘} that lie in 𝒱 and satisfy

𝐶 ||𝑉 ||2 ≤
𝑀∑︁

𝑘=1

|⟨⟨𝐹𝑘|𝑉 ⟩⟩|2 ≤ 𝐷 ||𝑉 ||2 (3.50)

for some 0 < 𝐶 ≤ 𝐷 < ∞ and for all |𝑉 ⟩⟩ ∈ 𝒱 [67]. We will always assume

that the values of 𝐶 and 𝐷 are set to form the tightest possible bounds, in which

case they are referred to as the frame bounds of {𝐹𝑘}. A tight frame for 𝒱 is one

whose frame bounds are equal. In keeping with the current notation, from this point

forward we will use {𝑊𝑘, 1 ≤ 𝑘 ≤ 𝑀} to denote an orthonormal basis for 𝒲 , and

{𝐹𝑘, 1 ≤ 𝑘 ≤𝑀} to denote a frame for 𝒱 .

Regardless of whether the number of frame vectors is finite or infinite, the defini-

tion of an operator frame given in Equation (3.50) may also be extended to include

to the notion of a generalized operator frame with respect to a given measure. In the

terminology of [67], a set of operators satisfying Equation (3.50) is referred to as a

generalized operator frame with respect to the counting measure.

3.4.3 Operator Space for ℋ = C2

We explicitly describe the operator space 𝒱 when ℋ = C
2, i.e., 𝑑 = 2. Our in-

tent aside from providing a concrete example in low dimensions is to also present

some geometric intuition regarding where operators with constant trace and positive

semidefinite operators lie in 𝒱 . The concepts presented in Section 3.4.3 are relevant

to the simulations presented in Chapter 6 involving qubit density operators. For

generalizations to values of 𝑑 > 2, we refer the reader to, for example, [29, 67].

When ℋ = C2, 𝒱 has dimension 𝑑2 = 4. The set of operators {𝐼/
√
2, 𝜎1/

√
2,

𝜎2/
√
2, 𝜎3/

√
2} where {𝜎1, 𝜎2, 𝜎3} are the Pauli operators [49] is a commonly used

basis for 𝒱 . It is an orthonormal basis with respect to the inner product defined by

Equation (3.49). We have 𝒰⊥ = span{𝐼/
√
2} and 𝒰 = span{𝜎1/

√
2, 𝜎2/

√
2, 𝜎3/

√
2}.

The Pauli operators will prove to be a convenient choice of orthonormal basis for 𝒰 in

the context of quantum mechanics as they are directly related to the representation

of an arbitrary qubit density operator in terms of its Bloch vector.
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Given an arbitrary operator 𝑉 ∈ 𝒱 , 𝑉 can always be written as a linear combi-

nation of the operators {𝐼/
√
2, 𝜎1/

√
2, 𝜎2/

√
2, 𝜎3/

√
2},

𝑉 = 𝑐0
|𝐼⟩⟩√
2
+ 𝑐1

|𝜎1⟩⟩√
2

+ 𝑐2
|𝜎2⟩⟩√

2
+ 𝑐3

|𝜎3⟩⟩√
2
. (3.51)

In Equation (3.51) the basis expansion coefficients are 𝑐0 = ⟨⟨𝐼|𝑉 ⟩⟩/
√
2 = Tr(𝑉 )/

√
2

and 𝑐𝑖 = ⟨⟨𝜎𝑖|𝑉 ⟩⟩/
√
2 = Tr(𝜎𝑖𝑉 )/

√
2 for 1 ≤ 𝑖 ≤ 3. A crucial relation that forms

the foundation of much of the discussion in Chapters 4 and 6 is that if 𝑉 is positive

semidefinite then we always have

√︁
𝑐21 + 𝑐22 + 𝑐23 ≤ Tr(𝑉 )/

√
2, (3.52)

with equality if and only if 𝑉 has rank one. Equation (3.52) can be derived by solving

for the eigenvalues of 𝑉 in terms of the {𝑐𝑖} and requiring them to be non-negative.

One way of interpreting Equation (3.52) is as follows. Given a positive semidefinite

operator 𝑉 with basis expansion coefficients {𝑐𝑖}, there is always an associated closed

ball in R3 of radius Tr(𝑉 )/
√
2. The column vector c = [𝑐1, 𝑐2, 𝑐3]

𝑇 corresponds to

coefficients of the orthogonal projection of 𝑉 onto 𝒰 and always lies within the ball.

c lies on the surface of the ball, that is, on the sphere of radius Tr(𝑉 )/
√
2, when 𝑉

has rank one.

Example 3.1. To help in providing an intuitive geometric picture, we temporarily

define 𝒱 = R
3 with dimension 𝑁 = 3 and orthonormal basis {|𝑏0⟩ , |𝑏1⟩ , |𝑏2⟩}. An

arbitrary vector |𝑥⟩ ∈ R3 can always be expressed as

|𝑥⟩ = 𝑐0 |𝑏0⟩+ 𝑐1 |𝑏1⟩+ 𝑐2 |𝑏1⟩ , (3.53)

where 𝑐𝑖 = ⟨𝑏𝑖|𝑥⟩ for 0 ≤ 𝑖 ≤ 2. As shown in Figure 3-3, the set of vectors in R3 that

satisfy 𝑐0 = 2−1/2 lie on a hyperplane while the set of vectors that satisfy 𝑐20 ≥ 𝑐21 + 𝑐22

lie on or within a cone. The set of vectors that satisfy both of the constraints lies at

the intersection of the hyperplane and the cone, which takes the form of an (𝑁−1) = 2

dimensional ball, i.e., a circle.
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Figure 3-3: Illustration of the constraints described in Example 3.1.

3.5 Robustness of Frame Representations

Given a vector |𝑣⟩ ∈ 𝒱 and an analysis frame {|𝑓𝑘⟩} for 𝒱 , |𝑣⟩ can always be repre-

sented in terms of its frame coefficients {𝑎𝑘 = ⟨𝑓𝑘|𝑣⟩}, for example by using Equation

(3.29). An important problem in classical signal processing is that of obtaining an

accurate representation of |𝑣⟩ using only imprecise versions of the {𝑎𝑘} after they have

been subjected to some source of error, such as quantization error. In Sections 3.5.1

and 3.5.2 we describe a version of this problem that incorporates a specific model for

the error source in more detail. We emphasize that there are many highly sophisti-

cated ways of exploiting the redundancy in the {𝑎𝑘} to obtain increasingly accurate

representations of |𝑣⟩ (see, for example, [12, 20] and references therein). However,

their details are beyond the discussion in Sections 3.5.1 and 3.5.2, and beyond the

scope of this thesis. Note also that as this topic is not directly relevant to binary

hypothesis testing, some readers may wish to proceed directly to Chapter 4.

We assume that |𝑣⟩ is approximated by a vector |𝑣⟩ that is computed by simply

replacing the true coefficients {𝑎𝑘} by their imprecise counterparts {�̂�𝑘} in Equation

(3.29),

|𝑣⟩ =
𝑀∑︁

𝑘=1

�̂�𝑘 |𝑓𝑘⟩ , (3.54)

where the synthesis frame {|𝑓𝑘⟩} is a dual frame of {|𝑓𝑘⟩}. The final error vector is
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defined as |𝑣𝑒⟩ = |𝑣⟩− |𝑣⟩ and the objective is to find the frame {|𝑓𝑘⟩} that minimizes

ℰ = E[||𝑣𝑒||2], where the expectation is taken over all possible values of the {�̂�𝑘}.
The central conclusions of Sections 3.5.1 and 3.5.2 are that the canonical dual frame

is optimal with respect to minimizing ℰ and that when {|𝑓𝑘⟩} is a so-called equal

norm tight frame, the minimum value of ℰ as obtained by reconstruction with the

canonical dual is proportional to Δ2/𝑀 , where Δ2 is the variance of the individual

error values. Throughout Section 3.5 we will use notation corresponding to vector-

valued vector spaces, but we emphasize that all of the analysis applies equally well to

operator spaces. Indeed, in Section 5.5 we will apply the same analysis to elements

of an operator space in the context of quantum state estimation.

3.5.1 Optimality of the Canonical Dual

Assume that the observed coefficients are {�̂�𝑘 = 𝑎𝑘+𝑒𝑘} and that the individual error

values {𝑒𝑘} have zero mean, variance 𝜎2, and are pairwise uncorrelated,

E[𝑒𝑘] = 0, 1 ≤ 𝑘 ≤𝑀, (3.55a)

E[𝑒𝑗𝑒𝑘] = 𝛿𝑗𝑘, 1 ≤ 𝑗, 𝑘 ≤𝑀. (3.55b)

Equations (3.55) have been shown to be a useful model mathematically in certain

scenarios, despite not always being literally true in practice (see, for example, Chapter

4 of [51]). Substituting {�̂�𝑘 = 𝑎𝑘 + 𝑒𝑘} into Equation (3.54) yields |𝑣⟩ = |𝑣⟩ + |𝑣𝑒⟩,
where |𝑣𝑒⟩ =

∑︀
𝑘 𝑒𝑘 |𝑓𝑘⟩ is the final error vector. Let |𝑤𝑒⟩ =

∑︀
𝑘 𝑒𝑘 |𝑤𝑘⟩ be the element

of 𝒲 whose coefficients in the {|𝑤𝑘⟩} basis are the {𝑒𝑘}. Denoting the synthesis map

of {|𝑓𝑘⟩} by 𝐹0, the final error vector can also be expressed as |𝑣𝑒⟩ = 𝐹0 |𝑤𝑒⟩. We wish

to find the synthesis frame that minimizes ℰ = E[ ||𝐹0 |𝑤𝑒⟩ ||2 ] where the expectation

is taken over all possible values of the {�̂�𝑘} or equivalently over all possible values of

the {𝑒𝑘}.
We now show that the optimal synthesis frame is the canonical dual of the analysis

frame [31]. This is true even when the {𝑒𝑘} have possibly different variances, as long

as they remain pairwise uncorrelated. The problem of minimizing ℰ can be formulated

92



as

minimize
𝐹0 : 𝒲 → 𝒱

E

[︁
||𝐹0 |𝑤𝑒⟩ ||2

]︁
(3.56a)

subject to 𝐹0𝐴0 |𝑣⟩ = |𝑣⟩ for all |𝑣⟩ ∈ 𝒱 , (3.56b)

where the minimization is performed over all linear operators 𝐹0 from 𝒲 to 𝒱 that

satisfy Equation (3.56b). Equation (3.56b) states that 𝐹0 must be a left-inverse of

𝐴0, which effectively specifies that 𝐹0 must be the synthesis operator of a frame that

is dual to the analysis frame. A left-inverse is guaranteed to exist because as stated

in Section 3.2.2, 𝐴0 has rank 𝑁 . Assume that 𝐹0 is an arbitrary left-inverse of 𝐴0.

To fully specify 𝐹0, it is both necessary and sufficient to specify separately its actions

on 𝑅(𝐴0) and 𝑅(𝐴0)
⊥. Its action on 𝑅(𝐴0) is fully constrained by Equation (3.56b),

whereas its action on 𝑅(𝐴0)
⊥ has no effect on Equation (3.56b) and can be chosen to

minimize ℰ .

Assume that {|𝑢𝑘⟩ , 1 ≤ 𝑘 ≤ 𝑁} is an orthonormal basis for 𝑅(𝐴0) and that

{|𝑢𝑘⟩ , 𝑁 + 1 ≤ 𝑘 ≤ 𝑀} is an orthonormal basis for 𝑅(𝐴0)
⊥. The vector |𝑤𝑒⟩ can

always be expressed as

|𝑤𝑒⟩ = |𝑤𝑒1⟩+ |𝑤𝑒2⟩ =
𝑁∑︁

𝑘=1

𝑐𝑘 |𝑢𝑘⟩+
𝑀∑︁

𝑘=𝑁+1

𝑐𝑘 |𝑢𝑘⟩ . (3.57)

Clearly, |𝑤𝑒1⟩ ∈ 𝑅(𝐴0) and |𝑤𝑒2⟩ ∈ 𝑅(𝐴0)
⊥. Note that since the {𝑐𝑘} are related to

the {𝑒𝑘} by an orthogonal transformation in 𝒲 , they also have zero mean, variance 𝜎2,

and are pairwise uncorrelated. Next note that since each of the {|𝑢𝑘⟩ , 1 ≤ 𝑘 ≤ 𝑁}
is an element of 𝑅(𝐴0), by definition there is a unique vector |𝑣𝑘⟩ ∈ 𝒱 satisfying

𝐴0 |𝑣𝑘⟩ = |𝑢𝑘⟩ for all 1 ≤ 𝑘 ≤ 𝑁 . Equation (3.56b) implies that {𝐹0 |𝑢𝑘⟩ = |𝑣𝑘⟩ , 1 ≤
𝑘 ≤ 𝑁}. Now it only remains to specify the vectors {𝐹0 |𝑢𝑘⟩ , 𝑁 + 1 ≤ 𝑘 ≤ 𝑀}. We

have ℰ = E[||𝐹0 |𝑤𝑒1⟩+𝐹0 |𝑤𝑒2⟩ ||2 and since the {𝑐𝑘} are uncorrelated all of the cross
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terms are equal to zero. Thus,

ℰ = E
[︁
||𝐹0 |𝑤𝑒⟩ ||2

]︁
= E

[︃
𝑁∑︁

𝑘=1

𝑐2𝑘 ||𝑣𝑘||2 +
𝑀∑︁

𝑘=𝑁+1

𝑐2𝑘 ||𝐹0 |𝑤𝑘⟩ ||2
]︃

(3.58a)

=
𝑁∑︁

𝑘=1

E[𝑐2𝑘] ||𝑣𝑘||2 +
𝑀∑︁

𝑘=𝑁+1

E[𝑐2𝑘] ||𝐹0 |𝑤𝑘⟩ ||2 (3.58b)

= 𝜎2

𝑁∑︁

𝑘=1

||𝑣𝑘||2 + 𝜎2

𝑀∑︁

𝑘=𝑁+1

||𝐹0 |𝑤𝑒⟩ ||2. (3.58c)

Since the value of the first sum is fixed and since all terms in both sums must be non-

negative, the minimal value is obtained when the second sum is equal to zero, which

happens when {𝐹0 |𝑤𝑘⟩ = 0, 𝑁 + 1 ≤ 𝑘 ≤ 𝑀}. Therefore, the optimal left-inverse

𝐹0 inverts 𝐴0 over 𝑅(𝐴0) and acts as the zero operator on 𝑅(𝐴0)
⊥. The unique left-

inverse with these properties is the Moore-Penrose pseudoinverse, denoted by 𝐴+
0 , of

𝐴0 [16]. Explicitly, 𝐴+
0 can be expressed as

𝐴+
0 = (𝐴†

0𝐴0)
−1𝐴†

0 = (𝐹0𝐴0)
−1𝐹0. (3.59)

We have 𝐴+
0 = 𝐹can and therefore the optimal left-inverse is 𝐹0 = 𝐴+

0 = 𝐹can. The

optimal synthesis frame is the canonical dual frame of {|𝑓𝑘⟩}. The minimum value of

ℰ is

ℰmin = E
[︀
||𝐹can |𝑤𝑒⟩||2

]︀
= E

[︀
||𝐹can |𝑤𝑒1⟩||2

]︀
, (3.60)

where |𝑤𝑒1⟩ ∈ 𝑅(𝐴0) is defined as in Equation (3.57).

3.5.2 Application to Equal-Norm Tight Frames

We simplify the expression for ℰmin for the case where {|𝑓𝑘⟩} is a tight frame for

𝒱 with the additional property that all of the frame vectors have the same norm.

Such a frame is typically referred to as an equal norm tight frame (ENTF) [15, 16].
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Mathematically, we assume that

𝑀∑︁

𝑘=1

| ⟨𝑓𝑘|𝑣⟩ |2 = 𝐶 ||𝑣||2 ∀ |𝑣⟩ ∈ 𝒱 , (3.61a)

||𝑓𝑘|| = 𝐵, 1 ≤ 𝑘 ≤𝑀, (3.61b)

for some constants 𝐵,𝐶 > 0. ENTFs are utilized, for example, in the context of

oversampling in classical signal processing to reduce the effect of quantization noise

on a bandlimited signal (see Appendix A.7 in [48]). They are also of interest in the

quantum physics community in the form of tight IC POVMs as used for quantum

state estimation [67].

It was shown in Section 3.5.1 that ℰmin = E[ ||𝐹can |𝑤𝑒1⟩||2 ]. To further simplify

this expression, first note that since |𝑤𝑒1⟩ is an element of 𝑅(𝐴0), there must be some

|𝑣⟩ ∈ 𝒱 such that 𝐴0 |𝑣⟩ = |𝑤𝑒1⟩. We have 𝐹can𝐴0 |𝑣⟩ = |𝑣⟩ and thus ||𝐹can |𝑤𝑒1⟩ ||2 =
||𝑣||2. By definition of a tight frame we have ||𝑤𝑒1||2 = ||𝑣||2/𝐶, and combining these

two expressions leads to ||𝐹can |𝑤𝑒1⟩ ||2 = ||𝑤𝑒1||2/𝐶. Recall that the {𝑐𝑘} have zero-

mean, variance 𝜎2, and are pairwise uncorrelated. This implies thatE[||𝑤𝑒1||2] = 𝑁Δ2

and so ℰmin = E[ |||𝑤𝑒1⟩||2 ]/𝐶 = 𝑁Δ2/𝐶. To emphasize the dependence of ℰmin on

the number 𝑀 of frame vectors, we utilize the relationship 𝐶𝑁 =𝑀𝐵2 which is true

for any ENTF satisfying Equations (3.61) [15]. This leads to

ℰmin =
𝑁2Δ2

𝑀 𝐵2
. (3.62)

Note that ℰmin is proportional to Δ2/𝑀 , so a reduction in the variance of the error

values and an increase in the number of frame vectors both individually lead to higher

quality reconstruction. When the variances of the {𝑒𝑘} are not assumed to be identical

for all values of 𝑘, {E[𝑒2𝑘] = Δ2
𝑘}, we have E[|| |𝑤𝑒1⟩ ||2] = (𝑁/𝑀)

∑︀
𝑘 Δ

2
𝑘 and therefore

ℰmin =
𝑁

𝑀𝐶

𝑀∑︁

𝑘=1

Δ2
𝑘 =

𝑁2

𝑀2𝐵2

𝑀∑︁

𝑘=1

Δ2
𝑘. (3.63)

As expected, Equation (3.63) reduces to Equation (3.62) when Δ2
𝑘 = Δ2 for all
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1 ≤ 𝑘 ≤𝑀 .
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Chapter 4

Operating Characteristics for

Quantum Binary State

Discrimination

In Chapter 4 we state the quantum binary state discrimination problem considered

in this thesis using the terminology and notation developed in Chapter 2. In Chapter

5 the same problem is phrased and interpreted using the mathematical concepts

related to linear algebra and operator spaces that were introduced in Chapter 3. The

terminology that we use surrounding quantum measurement is discussed briefly in

Section 4.1. The postulates of quantum mechanics that are relevant to this thesis

are stated in Section 4.2. This allows us to formally state the quantum binary state

discrimination problem in Section 4.3. In Section 4.4 we review Helstrom’s well-

known result regarding minimum probability of error decision strategies for quantum

binary state discriminiation. Helstrom’s result is the counterpart to the classical

MPE decision rules reviewed in Section 2.2.1. Examples of decision and measurement

operating characteristics in the quantum setting are given in Sections 4.5 and 4.6.
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Figure 4-1: Binary hypothesis testing framework.

4.1 Preliminaries

There are many ways in which classical and quantum systems differ and correspond-

ingly so do many of the issues related to hypothesis testing. Much of the terminology

related to quantum mechanics is phrased somewhat differently depending on whether

it is presented or described more from a physical and experimental perspective or from

a mathematical perspective. Quantum phenomena inherently occur in the physical

world. However, the fundamental underpinnings of the mathematical analysis of

quantum phenomena rely on a representation of quantum states as vectors or opera-

tors in a Hilbert space. While the mathematics provides the tools to make predictions

about the outcome of experiments, the experiments themselves occur in the physical

world. As succinctly phrased by Asher Peres in his book [58],

Quantum phenomena do not occur in a Hilbert space. They occur in a

laboratory.

Our focus in the remainder of the monograph is on the mathematics and the rep-

resentation of quantum states and operations on those states abstractly in Hilbert

space. And the terminology that we use will correspond to that representation. Con-

sequently in this preliminary section we define several significant terms as we will

be using them in the subsequent discussion. For our purposes, the state of a quan-

tum system will refer to the density operator associated with the physical procedure

used to prepare the system in a laboratory. The density operator is a mathematical

representation capturing all that is known about the system prior to measurements

on it. And the ways in which information can be obtained about the state through

measurement are constrained by the postulates of quantum mechanics. A key aspect
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of the postulates is the meaning of and constraints on the concept of measurement. In

all scenarios it is necessary to make a distinction between the word measurement as

it refers to a specified experimental setup in a real or hypothetical laboratory and as

it refers to the laws of classical or quantum physics that model our knowledge of the

interaction of the laboratory equipment with the object or system we wish to mea-

sure. In this thesis we borrow from the terminology in [49] in which every quantum

measurement is “described by a collection of measurement operators {𝐴𝑘}...operating

on the state space of the system being measured”. We use the term measurement to

refer to the collection of operators {𝐴𝑘}. We will assume in addition that the index 𝑘

satisfies 1 ≤ 𝑘 ≤𝑀 . When the measurement is made the state of system being mea-

sured changes in a probabilistic manner to a new state whose value depends on both

the original state and on one of the {𝐴𝑘}. Thus there are 𝑀 possible measurement

outcomes that can occur, each associated with a value of the index 𝑘 in the set of

operators. We will only be concerned with the value of the index 𝑘 representing the

operator used to compute the post-measurement state, and not with the value of the

post-measurement state itself, and consequently we will use the term measurement

outcome to refer to that index.

4.2 The Postulates of Quantum Mechanics

While there are in total four postulates of quantum mechanics, in Section 4.2 and

throughout this thesis we focus on the two postulates that relate specifically to this

monograph. Both are loosely paraphrased from Chapter 2 of [49].

Quantum State Postulate. The state of an isolated physical system can be repre-

sented by a density operator 𝜌 that acts on a complex Hilbert space ℋ. ℋ is often

referred to as the state space of the system. We assume for convenience that ℋ is

finite dimensional with dimension 𝑑. A given density operator can always be written

in the form

𝜌 =
𝐷∑︁

𝑗=1

𝑎𝑗 |𝜓𝑗⟩ ⟨𝜓𝑗| , (4.1)
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where 𝐷 > 0 is an integer, the {𝑎𝑗} are probabilities, and the {|𝜓𝑗⟩} are unit vectors

in ℋ that are often referred to as state vectors. For a given density operator 𝜌, it is

well-known that the value of 𝐷, the {𝑎𝑗}, and the {|𝜓𝑗⟩} are in general not unique.

We remark on this fact further below.

Quantum Measurement Postulate. Quantum measurements are described by a

collection {𝐴𝑘} of measurement operators that act on the state space ℋ of the sys-

tem being measured. Each value of the index 𝑘 corresponds to a different possible

measurement outcome. In this thesis we will assume for convenience that there are a

finite number, 𝑀 , of elements, and that 1 ≤ 𝑘 ≤ 𝑀 . Measurement elements satisfy

a completeness relation on ℋ,
𝑀∑︁

𝑘=1

𝐴†
𝑘𝐴𝑘 = 𝐼, (4.2)

where 𝐼 is the identity operator on ℋ. If the state of the system is described by the

density operator 𝜌 =
∑︀

𝑗 𝑎𝑗 |𝜓𝑗⟩ ⟨𝜓𝑗| immediately before a measurement described by

the operators {𝐴𝑘}, then with probability

𝑝(𝑘) =
𝐷∑︁

𝑗=1

𝑎𝑗 ⟨𝜓𝑗|𝐴†
𝑘𝐴𝑘 |𝜓𝑗⟩ (4.3)

the 𝑘th measurement outcome occurs. It is often convenient to write 𝑝(𝑘) using the

trace operator Tr(·),
𝑝(𝑘) = Tr

(︁
𝐴†

𝑘 𝐴𝑘 𝜌
)︁
. (4.4)

A derivation of Equation (4.4) from Equation (4.3) is given below. Once observed,

the 𝑘th measurement outcome indicates that the state of the system has collapsed to

the 𝑘th post-measurement state, denoted by 𝜌𝑘. The value of 𝜌𝑘 is determined by the

pre-measurement state 𝜌 and the measurement operator 𝐴𝑘 and is not relevant to this

monograph. An exact expression can be found in [49].

A density operator in the form of Equation (4.1) represents a quantum system

that has been prepared in the state 𝜌𝑗 = |𝜓𝑗⟩ ⟨𝜓𝑗| with probability 𝑎𝑗 [49]. If only

one of the {𝑎𝑗} is non-zero, i.e., 𝑎𝑚 = 1 for some 1 ≤ 𝑚 ≤ 𝐷 and 𝑎𝑗 = 0 for 𝑗 ̸= 𝑚,
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then 𝜌 = |𝜓𝑚⟩ ⟨𝜓𝑚| is said to represent a pure state. The state vector |𝜓𝑚⟩ is itself

also often referred to as a pure state. If more than one of the {𝑎𝑗} is non-zero, then

𝜌 is referred to as a mixed state – that is, a probabilistic mixture of the pure states

{|𝜓𝑗⟩}. Regardless of the state vectors and probabilities that are used, Equation (4.1)

implies that 𝜌 is always a positive semidefinite Hermitian operator with trace 1. This

is because

Tr(𝜌) =
𝐷∑︁

𝑗=1

𝑎𝑗 Tr (|𝜓𝑗⟩ ⟨𝜓𝑗|) =
𝐷∑︁

𝑗=1

𝑎𝑗 = 1, (4.5)

where we have used the linearity of the trace and the fact that for any vector |𝑥⟩ ∈ ℋ
we have Tr (|𝑥⟩ ⟨𝑥|) = ||𝑥||2. Since 𝜌 is Hermitian it can always be written in terms

of its eigenvalues and eigenvectors as

𝜌 =
𝑑∑︁

𝑗=1

𝜆𝑗 |𝑥𝑗⟩ ⟨𝑥𝑗| , (4.6)

where the {𝜆𝑗} are real and the {|𝑥𝑗⟩} are orthogonal. Equation (4.6) is a special case

of Equation (4.1) with 𝐷 = 𝑑 and {𝑎𝑗 = 𝜆𝑗}. The {𝜆𝑗} are always valid probabilities

as a result of the fact that 𝜌 is positive semidefinite and has trace 1. Therefore, a

given density operator 𝜌 can always be interpreted as the state of a system that has

been prepared in the state 𝜌𝑗 = |𝑥𝑗⟩ ⟨𝑥𝑗| with probability 𝜆𝑗. For convenience, we will

continue to specify density operators using their eigendecompositions as in Equation

(4.6).

Regarding the quantum measurement postulate, Equation (4.4) can be derived

from Equation (4.3) via

𝑝(𝑘) =
𝐷∑︁

𝑗=1

𝑎𝑗 Tr
(︁
⟨𝜓𝑗|𝐴†

𝑘𝐴𝑘 |𝜓𝑗⟩
)︁
= Tr

(︃
𝐷∑︁

𝑗=1

𝑎𝑗 ⟨𝜓𝑗|𝐴†
𝑘𝐴𝑘 |𝜓𝑗⟩

)︃
= Tr

(︁
𝐴†

𝑘 𝐴𝑘 𝜌
)︁
.

(4.7)

In Equation (4.7) we have used both the fact that the trace of a scalar is itself and the

cyclic property of the trace, Tr(𝐴𝐵) = Tr(𝐵𝐴) for any two suitable linear operators

𝐴 and 𝐵. Aside from notational convenience, as noted in Chapter 3 the trace operator

is also useful because it can be interpreted as an inner product function.
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Throughout this thesis we will only be concerned with the probability distribution

of measurement outcomes, {𝑝(𝑘), 1 ≤ 𝑘 ≤𝑀}, and not with the corresponding post-

measurement states. To that end, note that the {𝑝(𝑘)} depend on the measurement

operators {𝐴𝑘} only through the operators {𝐸𝑘 = 𝐴†
𝑘𝐴𝑘}. By construction the {𝐸𝑘}

have the properties

𝐸𝑘 = 𝐸†
𝑘 (Hermiticity) (4.8a)

⟨𝑥|𝐸𝑘 |𝑥⟩ ≥ 0, for all |𝑥⟩ ∈ ℋ (positive semidefiniteness) (4.8b)

𝑀∑︁

𝑘=1

𝐸𝑘 = 𝐼 (completeness). (4.8c)

In functional analysis, a collection of operators satisfying these three properties is

referred to as a positive operator-valued measure or POVM [7]. Distinct quantum

measurements can have the same corresponding POVM because replacing each 𝐴𝑘

by 𝑈𝐴𝑘, where 𝑈 is a unitary operator on ℋ, preserves the relation 𝐸𝑘 = 𝐴†
𝑘𝐴𝑘. It

is worth explicitly writing Equations (4.3) and (4.4) in terms of the operator 𝐸𝑘 and

the eigenvectors and eigenvalues of a given density operator 𝜌,

𝑝(𝑘) =
𝑑∑︁

𝑗=1

𝜆𝑗 ⟨𝑥𝑗|𝐸𝑘 |𝑥𝑗⟩ = Tr(𝐸𝑘 𝜌). (4.9)

Equation (4.9) is a crucial relation that is the basis for much of the discussion in

Chapter 5. A main focus of Chapter 5 is a particular class of POVMs referred to

as informationally complete or IC POVMs. An IC POVM is one that maps each

possible density operator to a unique sequence of probabilities [8]. Explicitly, given

two density operators 𝜌1 and 𝜌2 as well as an IC POVM {𝐸𝑘}, we have

𝑝1(𝑘) = 𝑝2(𝑘), 1 ≤ 𝑘 ≤𝑀, (4.10)

where 𝑝𝑖(𝑘) = Tr(𝐸𝑘 𝜌𝑖) for 𝑖 = 1, 2, if and only if 𝜌1 = 𝜌2. An important result

regarding IC POVMs that is reviewed in Chapter 5 connects each IC POVM to an
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overcomplete representation of an operator-valued vector space containing all valid

density operators.

A different class of POVMs correspond to the class of quantum measurements

referred to as standard measurements, also sometimes referred to as projective or von

Neumman measurements. A standard quantum measurement is one for which the

measurement operators {𝐴𝑘} form a complete set of orthogonal projectors on ℋ. The

POVM elements {𝐸𝑘 = 𝐴†
𝑘 𝐴𝑘} of a standard measurement also form a complete set

of orthogonal projectors on ℋ. This follows from the fact that orthogonal projection

operators are Hermitian and idempotent, so 𝐴†
𝑘𝐴𝑘 = 𝐴2

𝑘 = 𝐴𝑘 for all 1 ≤ 𝑘 ≤ 𝑀 for

a standard measurement. The reverse is also true – if the elements a given POVM

{𝐸𝑘} form a complete set of orthogonal projectors on ℋ, then all associated quantum

measurements must be standard measurements.

Example 4.1. Consider a density operator 𝜌 = |𝜓⟩ ⟨𝜓| that represents a pure state

along with a standard measurement whose elements have the form {𝐴𝑘 = |𝑣𝑘⟩ ⟨𝑣𝑘|}
for some orthonormal basis {|𝑣𝑘⟩} of ℋ. The corresponding standard POVM is {𝐸𝑘 =

|𝑣𝑘⟩ ⟨𝑣𝑘|}. It is straightforward to verify that the {𝐸𝑘} satisfy the three conditions

specified in Equation (4.8). When the measurement is made, the 𝑘th measurement

outcome occurs with probability

𝑝(𝑘) = Tr (𝐸𝑘 𝜌) = | ⟨𝑣𝑘|𝜓⟩ |2. (4.11)

Equation (4.11) states that the 𝑘th measurement outcome occurs with a probability

equal to the squared magnitude of the component of |𝑥⟩ in the direction of |𝑣𝑘⟩. If

|𝑥⟩ is orthogonal to |𝑣𝑘⟩ then the 𝑘th measurement outcome has zero probability of

occurring.

4.3 Quantum Binary State Discrimination

For the remainder of the thesis we consider the problem where the two possible hy-

potheses 𝐻0 and 𝐻1 correspond to two possible physical environments or preparation
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procedures that have resulted in 𝐿 quantum mechanical systems that can all be de-

scribed by the same density operator, either 𝜌0 or 𝜌1. As in Chapter 2, the prior

probabilities will continue to be denoted by 𝑃 (𝐻 = 𝐻0) = 𝑞0 and 𝑃 (𝐻 = 𝐻1) = 𝑞1.

The eigendecompositions of 𝜌0 and 𝜌1 will be denoted as

𝜌0 =
𝑑∑︁

𝑗=1

𝑎𝑗 |𝑥𝑗⟩ ⟨𝑥𝑗| , (4.12a)

𝜌1 =
𝑑∑︁

𝑗=1

𝑏𝑗 |𝑦𝑗⟩ ⟨𝑦𝑗| , (4.12b)

where the {|𝑥𝑗⟩} and {|𝑦𝑗⟩} each form orthonormal bases of ℋ and the {𝑎𝑗} and

{𝑏𝑗} are probabilities. To avoid ambiguity between the discrimination or hypothesis

testing system and the quantum mechanical system, from this point forward we will

abbreviate the latter as the QMS. To discriminate between the two hypotheses, each of

the 𝐿 QMSs is measured individually using a quantum measurement whose associated

POVM is {𝐸𝑘, 1 ≤ 𝑘 ≤ 𝑀}. The score variable is equal to the vector of relative

frequencies corresponding to the frequency of occurrence of each of the 𝑀 possible

outcomes. The decision region 𝒟 of the binary decision rule is some subset of the set

of all possible relative frequency vectors.

Throughout Chapter 4 we will assume that 𝐿 = 1 for simplicity. In this case the

score variable can equivalently be thought of as being equal to one of the index values

1 ≤ 𝑘 ≤𝑀 and the decision region 𝒟 of the binary decision rule is then some subset

of {1, 2, . . . ,𝑀}. For a given decision region 𝒟, the conditional distributions of the

score variable are

𝑓0(𝑘) =
𝑑∑︁

𝑗=1

𝑎𝑗 ⟨𝑥𝑗|𝐸𝑘 |𝑥𝑗⟩ = Tr (𝐸𝑘 𝜌0) , 1 ≤ 𝑘 ≤ 𝑑, (4.13a)

𝑓1(𝑘) =
𝑑∑︁

𝑗=1

𝑏𝑗 ⟨𝑦𝑗|𝐸𝑘 |𝑦𝑗⟩ = Tr (𝐸𝑘 𝜌1) , 1 ≤ 𝑘 ≤ 𝑑. (4.13b)

Then in analogy with Equation (2.4), the probabilities of false alarm and detection
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are

𝑃𝑓 =
∑︁

𝑘∈𝒟

𝑓0(𝑘) =
∑︁

𝑘∈𝒟

Tr (𝐸𝑘 𝜌0) = Tr

[︃(︃∑︁

𝑘∈𝒟

𝐸𝑘

)︃
𝜌0

]︃
(4.14a)

𝑃𝑑 =
∑︁

𝑘∈𝒟

𝑓1(𝑘) =
∑︁

𝑘∈𝒟

Tr (𝐸𝑘 𝜌1) = Tr

[︃(︃∑︁

𝑘∈𝒟

𝐸𝑘

)︃
𝜌1

]︃
. (4.14b)

It is not uncommon to assume that the quantum measurement that constitutes

the pre-decision operator only has 2 possible outcomes, i.e., 𝑀 = 2. This implies that

the score variable can only take on two possible values, which is significant because it

implies in turn that the decision region of the binary decision rule can only take on four

possible values: 𝒟 = {} (the empty set), 𝒟 = {1}, 𝒟 = {2}, or 𝒟 = {1, 2}. Recall

that classical ROCs are generated by varying 𝒟 in order to achieve different operating

points in the 𝑃𝑓 -𝑃𝑑 plane, with distinct operating points corresponding to distinct

decision regions. When 𝑀 = 2 in a quantum binary hypothesis testing system, there

are only four possible operating points on an operating characteristic analogous to

a classical ROC. Moreover, two of those operating points are (𝑃𝑓 , 𝑃𝑑) = (0, 0) and

(𝑃𝑓 , 𝑃𝑑) = (1, 1), which correspond to ignoring the outcome of the measurement and

consistently deciding either �̂� = 𝐻0 or �̂� = 𝐻1, respectively. This lack of flexibility

is different from classical ROCs, which are typically used in scenarios where there

is a large range – possibly even a continuous range – of potential operating points

that are “weighed” against each other using various optimality criteria. It is of course

important to remember that there are many alternative formulations of quantum

binary hypothesis testing in which this is not the case.

When we expand to the case were 𝐿 > 1 in Chapter 5, we will denote the score

variable by S as opposed to 𝑆 to emphasize that it is a vector-valued random variable

as opposed to a scalar random variable. A particular realization s will be denoted

by the column vector s = [𝑛1/𝐿, . . . , 𝑛𝑀/𝐿]
𝑇 where 𝑛𝑘 is the number of occurrences

of the 𝑘th measurement outcome. Clearly,
∑︀

𝑘 𝑛𝑘 = 𝐿. The conditional distributions

𝑓0(·) and 𝑓1(·) of the score variable are multinomial distributions.
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4.4 Minimum Probability of Error Decision Rules

In analogy with the classical MPE decision rules described in Section 2.2.1, we sum-

marize Helstrom’s well-known result [38] regarding discrimination between two fixed

density operators with minimum probability of error. We refer the reader to [38] for

the complete derivation and a generalization of the result to the minimum risk error

criterion. From this point forward, the word “optimal” will be used specifically to

describe systems that achieve minimum probability of error unless otherwise speci-

fied. Assume that the pre-decision operator is a quantum measurement with POVM

{𝐸1, 𝐸2} and that 𝒟 = {2}. That is, if the measurement outcome is 𝑠 = 1 then the

final decision is �̂�0 and if the measurement outcome is 𝑠 = 2 then the final decision

is �̂�1. The probability of error can be expressed as

𝑃𝑒 = 𝑞1 − 𝑞1 Tr

[︂
𝐸1

(︂
𝜌1 −

𝑞0
𝑞1
𝜌0

)︂]︂
. (4.15)

Helstrom’s result utilizes the orthonormal eigenvectors {|𝑧𝑗⟩ , 1 ≤ 𝑗 ≤ 𝑑} and real

eigenvalues {𝜂𝑗, 1 ≤ 𝑗 ≤ 𝑑} of the operator (𝜌1 − (𝑞0/𝑞1) 𝜌0). This operator or a

scaled version of it is sometimes referred to as the Lagrange operator [ref]. Helstrom

showed that the probability of error is minimized when 𝐸1 is the orthogonal projector

onto the subspace 𝒰1 = span{|𝑧𝑗⟩ : 𝜂𝑗 ≥ 0}. Since 𝐸1 + 𝐸2 = 𝐼 this implies that 𝐸2

must be the orthgonal projector onto the subspace 𝒰⊥
1 = span{|𝑧𝑗⟩ : 𝜂𝑗 < 0}, where

the superscript ⊥ indicates an orthogonal complement. Note that the |𝑧𝑗⟩ for which

𝜂𝑗 = 0 may be included in either subspace without changing the probability of error.

The optimal POVM elements can be written as

𝐸1 =
∑︁

𝑗:𝜂𝑗≥0

|𝑧𝑗⟩ ⟨𝑧𝑗| , 𝐸2 =
∑︁

𝑗:𝜂𝑗<0

|𝑧𝑗⟩ ⟨𝑧𝑗| . (4.16)

Helstrom noted that an equivalent way of achieving minimum probability of error

is to use the 𝑑-outcome POVM with elements 𝐸𝑘 = |𝑧𝑘⟩ ⟨𝑧𝑘| , 1 ≤ 𝑘 ≤ 𝑑. If the

measurement outcome is 𝑠 = 𝑘 where 𝜂𝑘 ≥ 0, then the final decision is �̂�1, otherwise

the final decision is �̂�0. Equivalently, 𝒟 = {𝑘 : 𝜂𝑘 ≥ 0}. Both of these POVMs have

106



the property that the elements form complete sets of orthogonal projectors on ℋ, so

they each correspond to standard quantum measurements.

4.5 Decision Operating Characteristics for Quantum

Systems

A performance characteristic analogous to classical ROCs can be made for the quan-

tum case by fixing the quantum measurement that constitutes the pre-decision oper-

ator and varying the decision region of the binary decision rule. We refer to such an

operating characteristic as a quantum decision operating characteristic or QDOC. In

the example below we show how the result presented in Section 2.5.1 can be applied

to QDOCs.

Example 4.2. For this example we set the dimension of ℋ to 𝑑 = 8 and we set

|𝑥𝑗⟩ = |𝑦𝑗⟩ = |𝑒𝑗⟩, 1 ≤ 𝑗 ≤ 8, where {|𝑒𝑗⟩} is any orthonormal basis for ℋ. Note

that ℋ is isomorphic to C8. The probabilities {𝑎𝑗} and {𝑏𝑗} are arbitrarily chosen to

be the uniform distribution and an asymmetric triangular distribution, respectively,

as shown in Figure 4-2a. We have 𝑎𝑗 = 1/8 for 1 ≤ 𝑗 ≤ 8 and 𝑏1 = 2/32, 𝑏2 =

4/32, 𝑏3 = 6/32, 𝑏4 = 8/32, 𝑏5 = 7/32, 𝑏6 = 5/32, 𝑏7 = 3/32, 𝑏8 = 1/32. We assume

that the pre-decision operator is an 8-outcome standard quantum measurement with

associated POVM elements 𝐸𝑘 = |𝑒𝑘⟩ ⟨𝑒𝑘|, 1 ≤ 𝑘 ≤ 8. According to Equation (4.13)

the conditional distributions of the score variable are

𝑓0(𝑘) =
8∑︁

𝑗=1

𝑎𝑗 ⟨𝑒𝑗|𝑒𝑘⟩ ⟨𝑒𝑘|𝑒𝑗⟩ = 𝑎𝑘, 1 ≤ 𝑘 ≤ 8, (4.17a)

𝑓1(𝑘) =
8∑︁

𝑗=1

𝑏𝑗 ⟨𝑒𝑗|𝑒𝑘⟩ ⟨𝑒𝑘|𝑒𝑗⟩ = 𝑏𝑘, 1 ≤ 𝑘 ≤ 8, (4.17b)

where we have used the fact that the {|𝑒𝑗⟩} are orthonormal. The LRT QDOC for this

POVM is indicated by the solid black circles shown in Figure 4-2b. Unlike an LRT

decision region, an SVT decision region and therefore an SVT QDOC inherently
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(a) (b)

Figure 4-2: (a) Conditional distributions of the score variable as given in Equation
(4.12). (b) QDOCs generated using LRT or SVT decision regions.

depends on the choice of ordering of the POVM elements. Since the index values

𝑘 ∈ {1, . . . , 8} represent convenient labels corresponding to the possible measurement

outcomes as opposed to actual numerical values, the ordering is arbitrary. Distinct

orderings correspond to distinct shapes of the conditional PMFs 𝑓0(·) and 𝑓1(·). In

Figure 4-2a we have assumed the natural ordering from 𝑘 = 1 to 𝑘 = 8, and this

results in the SVT QDOC represented by the hollow black circles in Figure 4-2b.

Linear interpolation was used between the points to aid in visualization of the shapes

of the curves. Of course, any operating point on any of the line segments could be

achieved using randomization between two LRT or SVT decision regions [39]. The

constructive procedure described in Section 2.5.2 could be used to reconstruct the

LRT QDOC from the SVT QDOC without any explicit knowledge of 𝜌0, 𝜌1, or any

of the {𝐸𝑘}. The same would be true for any two density operators 𝜌0 and 𝜌1 (whose

eigenvectors may or may not be the same) along with any POVM {𝐸𝑘}.
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4.6 Measurement Operating Characteristics for

Quantum Systems

An analogous operating characteristic to the CMOCs discussed in Section 2.3 for the

quantum case can be generated by keeping the decision regions of the binary decision

rule fixed while varying the parameters of the quantum measurement that constitutes

the pre-decision operator. We refer to this type of operating characteristic as a quan-

tum measurement operating characteristic or QMOC. The operating characteristics

defined by Bodor and Koniorczyk in [9] are QMOCs in our terminology. Examples

4.3 and 4.4 below below were directly motivated by the analysis and examples given

in [9].

In Example 4.3 we set the dimension of ℋ to 𝑑 = 2 and demonstrate the effects

of various parameters of 𝜌0 and 𝜌1 on the shape of the QMOC generated using all

possible standard measurements. As noted in [9], the optimal operating points for

all possible prior probabilities 𝑞0 and 𝑞1 lie on an ellipse. It is also pointed out in [9]

that this is not true in general for 𝑑 > 2. For arbitrary mixed states with 𝑑 > 2, the

collection of optimal operating points for all possible priors do not lie on an ellipse,

but rather on a series of disjoint segments in the 𝑃𝑓 -𝑃𝑑 plane. Using as motivation the

simulations in [9], we demonstrate this in Example 4.4. We additionally demonstrate

in Example 4.4, as is also shown in [9], that the operating points corresponding to a

large number of randomly chosen standard POVMs (some of which are not optimal

for any set of prior probabilities) form clusters in the 𝑃𝑓 -𝑃𝑑 plane. Each cluster

corresponds to a different pair of values for the ranks of the POVM elements.

Example 4.3. For this example we set 𝑑 = 2, so ℋ is isomorphic to C2. As in

Equations (4.12) we denote the eigenvectors and eigenvalues of 𝜌0 by {|𝑥𝑖⟩} and {𝑎𝑖},
respectively. We arbitrarily set 𝑎1 = 1/15 and 𝑎2 = 14/15. We may always express

the {|𝑥𝑖⟩} and {|𝑦𝑖⟩} as column vectors whose elements are the coefficients in a basis
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expansion in the {|𝑥𝑖⟩} basis (see Section 3.1),

|𝑥1⟩ =
[︃
1

0

]︃
, |𝑥2⟩ =

[︃
0

1

]︃
(4.18a)

|𝑦1⟩ =
[︃
cos(𝛽/2)

sin(𝛽/2)

]︃
, |𝑦2⟩ =

[︃
− sin(𝛽/2)

cos(𝛽/2)

]︃
. (4.18b)

The angle 𝛽 satisfies cos(𝛽/2) = ⟨𝑥1|𝑦1⟩ = ⟨𝑥2|𝑦2⟩ and is a measure of the degree

of separation between the 𝜌0 and 𝜌1. The pre-decision operator is assumed to be a

standard measurement with associated POVM {𝐸1 = |𝑣1⟩ ⟨𝑣1| , 𝐸2 = |𝑣2⟩ ⟨𝑣2|}, where

|𝑣1⟩ =
[︃
− sin(𝜃/2)

cos(𝜃/2)

]︃
, |𝑣2⟩ =

[︃
cos(𝜃/2)

sin(𝜃/2)

]︃
(4.19)

for some angle 𝜃. The decision region of the binary decision rule is 𝒟 = {2}. A

QMOC can be generated by fixing the values of 𝛽, 𝑏1, and 𝑏2 and varying the angle

𝜃. It is straightforward to show that

𝑃𝑓 = Tr(𝐸2 𝜌0) = 𝑎1 cos2
(︂
𝜃

2

)︂
+ 𝑎2 sin2

(︂
𝜃

2

)︂
(4.20a)

𝑃𝑑 = Tr(𝐸2 𝜌1) = 𝑏1 cos2
(︂
𝜃 − 𝛽

2

)︂
+ 𝑏2 sin2

(︂
𝜃 − 𝛽

2

)︂
. (4.20b)

In Section 4.6.1 we show that Equations (4.20) correspond to the parametric formula

for an ellipse. This was stated but not explicitly proven in [9]. Explicit formulas for

the parameters of the ellipse in terms of the {𝑎𝑖}, the {𝑏𝑖}, and 𝛼 are also given in

Section 4.6.1.

Figure 4-3 shows a collection of QMOCs each generated by fixing the values of 𝛽,

𝑏1, and 𝑏2 and varying the angle 𝜃. In Figure 4-3a, 𝑏1 and 𝑏2 are arbitrarily fixed to

𝑏1 = 3/4 and 𝑏2 = 1/4 and each QMOC corresponds to a different value of 𝛽. As 𝛽

approaches 0, the eccentricity of the ellipse increases. In Figure 4-3b, 𝛽 is arbitrarily

fixed to 𝛽 = 𝜋/5 while 𝑏1 and 𝑏2 are varied. As 𝑏1 and 𝑏2 approach 1/2, the ellipse

becomes more concentrated around the line 𝑃𝑑 = 1/2. Indeed, it is straightforward
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(a) (b)

Figure 4-3: (a) QMOCs generated with 𝑑 = 2 for a fixed 𝜌0 by varying the parameters
of 𝜌1 and the standard measurement that constitutes the pre-decison operator.

to show that the QMOC is inscribed in the rectangle with sides 𝑃𝑓 = min{𝑎1, 𝑎2},
𝑃𝑓 = max{𝑎1, 𝑎2}, 𝑃𝑑 = min{𝑏1, 𝑏2}, 𝑃𝑑 = max{𝑏1, 𝑏2}.

Example 4.4. We now set 𝑑 = 8, so ℋ is isomorphic to C8, and describe the collection

of operating points that results from performing Helstrom’s MPE decision strategy

for a range of prior probabilities 𝑞0 and 𝑞1. When the operating points of a large

number of randomly chosen standard measurements are plotted, the result is a series

of clusters in the 𝑃𝑓 -𝑃𝑑 plane.

The eigenvectors of 𝜌0 are set to |𝑥𝑗⟩ = |𝑒𝑗⟩, 1 ≤ 𝑗 ≤ 8, while the eigenvectors

of 𝜌1 are the vectors in an arbitrarily chosen orthonormal basis of C8. The {𝑎𝑖} and

{𝑏𝑖} are arbitrarily set to 𝑎1 = 1/141, 𝑎2 = 5/141, 𝑎3 = 10/141, 𝑎4 = 15/141, 𝑎5 =

20/141, 𝑎6 = 25/141, 𝑎7 = 30/141, 𝑎8 = 35/141 and 𝑏1 = 35/141, 𝑏2 = 30/141, 𝑏3 =

25/141, 𝑏4 = 20/141, 𝑏5 = 15/141, 𝑏6 = 10/141, 𝑏7 = 5/141, 𝑏8 = 1/141. The prior

probabilities 𝑞0 and 𝑞1 are varied over their entire ranges from 0 to 1. For each pair of

priors, the Lagrange operator (𝜌1 − (𝑞0/𝑞1)𝜌0) is formed and its eigendecomposition

is computed in order to identify Helstrom’s POVM elements 𝐸1 and 𝐸2 as defined in
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Equations (4.16). The MPE operating point then has coordinates

𝑃𝑓 = Tr (𝐸2 𝜌0) =
8∑︁

𝑗=1

𝑎𝑗 ⟨𝑥𝑗|𝐸2 |𝑥𝑗⟩ , (4.21a)

𝑃𝑑 = Tr (𝐸2 𝜌1) =
8∑︁

𝑗=1

𝑏𝑗 ⟨𝑦𝑗|𝐸2 |𝑦𝑗⟩ . (4.21b)

The result is the collection of upper operating points shown in Figure 4-4. They

form (𝑑 − 1) = 7 disjoint segments, in addition to the points (0, 0) (optimal for

𝑞1 = 0) and (1, 1) (optimal for 𝑞1 = 1). This is characteristic of the type of plot

that results from other arbitrary density operators 𝜌0 and 𝜌1 and for other values

of 𝑑 > 2. As noted in [9], each pair of prior probabilities 𝑞0 and 𝑞1 corresponds to

a different decomposition of ℋ in terms of Helstrom’s orthogonal subspaces 𝒰1 and

𝒰2. The discontinuities between the segments in Figure 4-4 correspond to changes in

the dimension of 𝒰2 (equivalently, the number of non-negative eigenvalues of (𝜌1 −
(𝑞1/𝑞0)𝜌0)). The exception to this pattern is the case where 𝜌0 and 𝜌1 represent two

pure states with 𝑑 > 2, since in that case the problem essentially reduces to the

case where 𝑑 = 2, with the effective state space being the two-dimensional subspace

spanned by the two pure states. In that case as stated in Example 4.3, the optimal

operating points for all sets of priors lie on an ellipse.

There are of course many different ways to decompose ℋ into a combination of

two orthogonal subspaces. Each decomposition corresponds to a different (potentially

suboptimal) two-outcome standard measurement that can be used to distinguish be-

tween 𝜌0 and 𝜌1. When randomly chosen two-outcome standard measurements are

used in this way, the corresponding operating points form a series of (𝑑− 1) clusters

in the 𝑃𝑓 -𝑃𝑑 plane that are apparently centered along the line 𝑃𝑓 = 𝑃𝑑. This is shown

by the lower operating points in Figure 4-4. Each cluster corresponds to a different

pair of dimensions for the orthogonal subspaces [9]. The fact that the clusters contain

points that are not on any of the disjoint segments of optimal operating points is a

reflection of the fact that not every decomposition of ℋ into two orthogonal subspaces

is optimal for some set of priors.
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Figure 4-4: Operating points obtained by 2-outcome standard measurements per-
formed on arbitrarily chosen density operators 𝜌0 and 𝜌1 with 𝑑 = 8. Upper segments
of operating points: Minimum probability of error operating points for a range of
prior probabilities, 0 ≤ 𝑞1 ≤ 1. Lower clusters of operating points: Operating points
obtained by randomly chosen two-outcome standard measurements. Many of these
measurements are not optimal for any pair of prior probabilities.
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4.6.1 QMOCs Generated using Standard Qubit Measurements

are Ellipses

We show that any QMOC generated according to the method described in Example

4.3 of Section 4.6, in which two-outcome quantum measurements with associated

standard POVMs are used to distinguish between arbitrary qubit density matrices 𝜌0

and 𝜌1 with 𝑑 = 2, is an ellipse. More specifically, it is a rotated ellipse in the 𝑃𝑓 -𝑃𝑑

plane centered at the point (1/2, 1/2). The derivation also applies to the case where

𝜌0 and 𝜌1 represent two pure states with 𝑑 > 2, as long as the standard POVMs used

to generate the QMOC have the following properties: The first two elements of the

POVM, 𝐸1 and 𝐸2, should be analogous to those defined by Equation (4.19), but

with the additional requirement that |𝑣1⟩ and |𝑣2⟩ should lie in the plane defined by

the two pure states. The other measurement elements must therefore project onto

subspaces of the orthogonal complement of that plane. Again the final decision is �̂�1

if the measurement outcome associated with 𝐸2 occurs and �̂�0 if the measurement

outcome associated with 𝐸2 occurs. The other possible outcomes have zero probability

of occurring and can be associated with either final decision. Essentially, this reduces

the problem to that of distinguishing between two pure states with 𝑑 = 2.

The coordinates of the QMOC in terms of the angle 𝜃 are

𝑃𝑓 = Tr(𝐸1𝜌0) = 𝑎0 cos
2

(︂
𝜃

2

)︂
+ 𝑎1 sin

2

(︂
𝜃

2

)︂
(4.22a)

𝑃𝑑 = Tr(𝐸1𝜌1) = 𝑏0 cos
2

(︂
𝜃 − 𝛽

2

)︂
+ 𝑏1 sin

2

(︂
𝜃 − 𝛽

2

)︂
. (4.22b)

Assuming for the moment that this is the parametric equation of a rotated ellipse

centered at (1/2, 1/2), we can center the ellipse at the origin and use trigonometric

identities to derive equations for the centered coordinates,

𝑃𝑓 −
1

2
=
𝑎0 − 𝑎1

2
cos 𝜃 (4.23a)

𝑃𝑓 −
1

2
=
𝑏0 − 𝑏1

2
cos(𝜃 − 𝛽). (4.23b)
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For ease of notation we now make the substitutions

𝑥 = 𝑃𝑓 −
1

2
, 𝑦 = 𝑃𝑑 −

1

2
, 𝑎 =

𝑎0 − 𝑎1
2

, 𝑏 =
𝑏0 − 𝑏1

2
, (4.24)

and introduce the functions 𝑓𝑥(·) and 𝑓𝑦(·), so that the centered coordinates become

𝑥 = 𝑓𝑥(𝜃) = 𝑎 cos 𝜃 (4.25a)

𝑦 = 𝑓𝑦(𝜃) = 𝑏 cos(𝜃 − 𝛽). (4.25b)

(Note that the 𝑥 and 𝑦 above should not be confused with the {|𝑥𝑖⟩} and {|𝑦𝑖⟩}
in Equations (4.12).) The objective now is to show that 𝑥 = 𝑓𝑥(𝜃) and 𝑦 = 𝑓𝑦(𝜃)

represent a rotated ellipse centered at the origin. That is, the objective is to show

that they can be written in the form

𝑥 = 𝑔𝑥(𝑡) = 𝑞 cos𝜑 cos 𝑡− 𝑟 sin𝜑 sin 𝑡 (4.26a)

𝑦 = 𝑔𝑦(𝑡) = 𝑞 sin𝜑 cos 𝑡+ 𝑟 cos𝜑 sin 𝑡 (4.26b)

for some angle of rotation 𝜑 from the horizontal, semi-major axis 𝑞, semi-minor axis

𝑟, and parameter 𝑡 (which will prove inconsequential for our purposes). The functions

𝑔𝑥(·) and 𝑔𝑦(·) have been introduced for convenience. We can solve for the parameters

𝑞, 𝑟, 𝜑 in terms of the known values of 𝑎, 𝑏, 𝛽 by using Equations (4.25) and (4.26) to

find the points on each ellipse with maximum 𝑥- and 𝑦-values and then setting their

coordinates equal to one another. Taking the derivative of 𝑓𝑥(𝜃) and setting it to zero,

we find that the point with maximum 𝑥-value occurs at 𝜃𝑥 = 0 and has coordinates

(𝑓𝑥(0), 𝑓𝑦(0)) = (𝑎, 𝑏). The point with maximum 𝑦-value occurs at 𝜃𝑦 = 𝛽 and has

coordinates (𝑓𝑥(𝛽), 𝑓𝑦(𝛽)) = (𝑎 cos 𝛽, 𝑏). Similarly, the point on the ellipse described

by Equations (4.26) with maximum 𝑥-value occurs at 𝑡𝑥 = tan−1(−(𝑟/𝑞) tan𝜑) and
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has coordinates

𝑔𝑥(𝑡𝑥) =

√︁
𝑞2 cos2 𝜑+ 𝑟2 sin2 𝜑 (4.27a)

𝑔𝑦(𝑡𝑥) =
𝑞2 − 𝑟2√︀

𝑞2/ sin2 𝜑+ 𝑟2/ cos2 𝜑
. (4.27b)

The point with maximum 𝑦-value occurs at 𝑡𝑦 = tan−1(𝑟/(𝑞 tan𝜑)) and has coordi-

nates

𝑔𝑥(𝑡𝑦) =
𝑞2 − 𝑟2√︀

𝑞2/ cos2 𝜑+ 𝑟2/ sin2 𝜑
(4.28a)

𝑔𝑦(𝑡𝑦) =

√︁
𝑞2 sin2 𝜑+ 𝑟2 cos2 𝜑. (4.28b)

Setting 𝑓𝑥(0) = 𝑔𝑥(𝑡𝑥), 𝑓𝑦(0) = 𝑔𝑦(𝑡𝑥), 𝑓𝑥(𝛽) = 𝑔𝑥(𝑡𝑦), and 𝑓𝑦(𝛽) = 𝑔𝑦(𝑡𝑦) and solving

for 𝑞, 𝑟, and 𝜑 in terms of 𝑎, 𝑏, and 𝛽 yields

𝜑 =
1

2
tan−1

(︂
2𝑎𝑏 cos 𝛽

𝑎2 − 𝑏2

)︂
(4.29a)

𝑞 =

[︂
1

2

(︂
𝑎2 + 𝑏2 +

𝑎2 − 𝑏2

cos(2𝜑)

)︂]︂1/2
(4.29b)

𝑟 =

[︂
1

2

(︂
𝑎2 + 𝑏2 − 𝑎2 − 𝑏2

cos(2𝜑)

)︂]︂1/2
. (4.29c)

It can be verified through straightforward algebra that when 𝜑, 𝑞, and 𝑟 are given

by Equations (4.29), the coordinates 𝑥 = 𝑓𝑥(𝜃), 𝑦 = 𝑓𝑦(𝜃) in Equation (4.25) satisfy

the equation that defines an ellipse: 𝐴𝑥2 +𝐵𝑥𝑦 + 𝐶𝑦2 +𝐷 = 0 with 𝐵2 − 4𝐴𝐶 < 0,
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where

𝐴 = 𝑞2 sin2 𝜑+ 𝑟2 cos2 𝜑 (4.30a)

𝐵 = 2(𝑞2 − 𝑟2) sin𝜑 cos𝜑 (4.30b)

𝐶 = 𝑞2 cos2 𝜑+ 𝑟2 sin2 𝜑 (4.30c)

𝐷 = −𝑞2𝑟2. (4.30d)

This verifies our initial assumption that 𝑥 = 𝑓𝑥(𝜃) and 𝑦 = 𝑓𝑦(𝜃) are the coordinates

of an ellipse that is centered at the origin, rotated by an angle 𝜑 from the horizontal,

and has semi-major axis 𝑞 and semi-minor axis 𝑟. The original QMOC is the same

ellipse centered at the point (1/2, 1/2).
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Chapter 5

An Operator Space View of Quantum

Binary State Discrimination

The main objective of Chapter 5 is to utilize the mathematical methodology developed

in Chapter 3 to interpret the process of quantum measurement and the problem of

quantum binary state discrimination as described in Chapter 4. In Section 5.1 we

apply the concepts of operator spaces outlined in Section 3.4 to a quantum mechanical

setting. This includes a brief discussion of Naimark’s Theorem as it is typically stated

in the quantum mechanics literature and a comparison to the version of the theorem

given in Section 3.2. We emphasize that there are many alternative formulations of

the connection between quantum measurements and classical frame theory [8, 25, 26,

6, 11, 62]. Informationally complete and overcomplete POVMs are formally defined

in Section 5.2. POVMs corresponding to qubit measurements, which we refer to as

qubit POVMs for brevity, are of particular interest throughout Chapters 5 and 6.

In Section 5.3 we define a class of qubit POVMs referred to as equal trace rank one

or Etro POVMs. The representation of a qubit Etro POVM through 𝑀 points on

what we refer to as an Etro sphere is exactly analogous to the representation of a

pure state qubit density operator through a point on the Bloch sphere. Simulations

regarding the use of Etro POVMs constructed using Platonic solids for qubit binary

state discrimination are presented in Section 5.4. In Chapter 6 we generalize this to

POVMs specified by other sets of points on an Etro sphere.
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5.1 Operator Spaces in Quantum Mechanics

Throughout Chapter 5, ℋ will always represent the 𝑑-dimensional state space of a

QMS and 𝒱 will denote the 𝑑2-dimensional operator space of all Hermitian operators

acting on ℋ. 𝜌 will denote an arbitrary density operator on ℋ and {𝐸𝑘, 1 ≤ 𝑘 ≤
𝑀} will denote an arbitrary POVM on ℋ. 𝜌 and the {𝐸𝑘} are all elements of 𝒱
by definition and they are also all positive semidefinite. We have Tr(𝜌) = 1 and

Tr(𝐸𝑘) ≥ 0 for all 1 ≤ 𝑘 ≤𝑀 . In terms of the operator-valued inner product defined

in Equation (3.49), the measurement outcome probabilities {𝑝(𝑘)} can be expressed

as

𝑝(𝑘) = Tr(𝐸𝑘 𝜌) = ⟨⟨𝐸𝑘|𝜌⟩⟩, 1 ≤ 𝑘 ≤𝑀. (5.1)

When the {𝐸𝑘} form a frame for 𝒱 , the {𝑝(𝑘)} are equal to the frame coefficients of

𝜌 with respect to the {𝐸𝑘}. In Section 5.2 we review an important result that states

the {𝐸𝑘} form a frame for 𝒱 if and only if {𝐸𝑘} is an IC POVM.

When ℋ represents the state space of a qubit, decomposing 𝜌 into the sum of

its orthogonal projections onto 𝒰 and 𝒰⊥ naturally leads to the definition of the

commonly used Bloch ball. Decomposing each of the {𝐸𝑘} in the same way will lead

to the definition of what we refer to as an Etro sphere whose radius depends on 𝑀 .

Since these decompositions do not inherently rely on ℋ having dimension 𝑑 = 2,

we state them as generally as possible before specifying that 𝑑 = 2 in Section 5.3.

According to Equation (3.46), we have

|𝜌⟩⟩ = 1√
𝑑

|𝐼⟩⟩√
𝑑
+ 𝒫𝒰 |𝜌⟩⟩ (5.2a)

|𝐸𝑘⟩⟩ =
Tr(𝐸𝑘)√

𝑑

|𝐼⟩⟩√
𝑑
+ 𝒫𝒰 |𝐸𝑘⟩⟩, 1 ≤ 𝑘 ≤𝑀. (5.2b)

The requirement that
∑︀

𝑘 𝐸𝑘 = 𝐼 can be interpreted in terms of Equation (5.2b).

Specifically, summing both sides of Equation (5.2b) over all values of 𝑘 yields

|𝐼⟩⟩ = 1

𝑑

(︃
𝑀∑︁

𝑘=1

Tr(𝐸𝑘)

)︃
|𝐼⟩⟩+

(︃
𝑀∑︁

𝑘=1

𝒫𝒰 |𝐸𝑘⟩⟩
)︃
. (5.3)
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Equation (5.3) implies that
∑︀

𝑘 Tr(𝐸𝑘) = 𝑑 and, since |𝐼⟩⟩ is orthogonal to all elements

of 𝒰 , that the sum of the {𝒫𝒰 |𝐸𝑘⟩⟩} must be equal to zero. In Section 5.3 we apply

these concepts as well as those described in Section 3.4.3 specifically to POVMs of a

qubit, leading to the definition of an Etro sphere.

5.1.1 Naimark’s Theorem

We briefly review a version of Naimark’s Theorem as it frequently appears in the

quantum mechanics literature. In contrast to the variation given in Chapter 3 which

was stated in terms of vectors in a Hilbert space, the variation discussed here is stated

in terms of Hermitian operators on a given Hilbert space.

Recall that a standard quantum measurement is one whose associated measure-

ment operators {𝐴𝑘} form a complete set of orthogonal projectors on the state space

ℋ of the measured system. The POVM associated with a standard measurement is

{𝐸𝑘 = 𝐴†
𝑘𝐴𝑘 = 𝐴𝑘}. Its elements also form a complete set of orthogonal projectors on

ℋ. It is straightforward to show that if the elements of a POVM have this property,

then any corresponding quantum measurement must be a standard measurement. A

non-standard measurement is of course one whose associated POVM does not have

this property. Roughly, Naimark’s Theorem as it is typically invoked in quantum

mechanics refers to the fact that a non-standard measurement can always be imple-

mented by coupling the QMS that we wish to measure with an ancilla system, possibly

performing a unitary operation on the joint system, and then performing a standard

measurement on the joint system. Mathematically this boils down to expanding the

Hilbert system of the original QMS using a tensor product with the Hilbert system of

the ancilla, then choosing an orthonormal basis for the larger space that reproduces

the desired outcome probabilities. One reason this is important is that typically only

standard measurements are performed in a laboratory, so imposing a mathematical

constraint of only using standard measurements has practical consequences concern-

ing implementation. For more details we refer the interested reader to the fascinating

references [...] [52, 53, 59, 68] What follows in the remainder of Section 5.1.1 is by no

means a full summary of the issues surrounding this topic.
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According to the postulates of quantum mechanics, when two QMSs are consid-

ered as a joint system the state space of the joint system is the tensor product of

the individual state spaces (see Chapter 2 of [49]). Furthermore, the state of one

component of a larger joint system can be found by taking the partial trace of state

of the joint system. For simplicity in Section 5.1.1 we will only consider pure states

and we will only consider quantum measurements whose POVM elements all have

rank-one. In addition it will be simplest to use the state vector formalism for quan-

tum states rather than the density operator formalism that we have found preferable

in the rest of thesis. The results can be generalized using linearity and the fact that

an arbitrary POVM element can be decomposed in many ways as a a sum of rank-

one Hermitian elements. Consider a QMS with state vector |𝜓⟩ in state space ℋ𝐴

of dimension 𝑑, The objective is to perform a quantum measurement with measure-

ment operators {𝐴𝑘, 1 ≤ 𝑘 ≤ 𝑀} and corresponding POVM {𝐸𝑘 = 𝐴†
𝑘𝐴𝑘}. We

assume that 𝑀 > 𝑑 implying that the measurement is non-standard. Since the {𝐸𝑘}
are rank-one by assumption we have {𝐸𝑘 = 𝐴𝑘 = |𝑓𝑘⟩ ⟨𝑓𝑘|} for some vectors {|𝑓𝑘⟩}
in ℋ𝐴. The {|𝑓𝑘⟩} form a Parseval frame for ℋ𝐴 because of the requirement that
∑︀

𝑘 𝐸𝑘 = 𝐼𝐴, where 𝐼𝐴 is the identity operator on ℋ𝐴. The measurement outcome

probabilities are {𝑝(𝑘) = | ⟨𝑓𝑘|𝜓⟩ |2 = Tr(𝐸𝑘 |𝜓⟩ ⟨𝜓|)} and the post-measurement

states are {|𝜓𝑘⟩ = 𝐴𝑘 |𝜓⟩} up to normalization.

When the original QMS is coupled with an ancilla system with state space ℋ𝐵,

the state space of the joint system is ℋ𝐽 = ℋ𝐴 ⊗ ℋ𝐵 where the subscript 𝐽 stands

for joint. We assume that the ancilla system starts in an arbitrary pure state |𝜑⟩,
implying that the joint system starts in the state |𝜓⟩ ⊗ |𝜑⟩. We may wish to perform

a unitary operation on the joint system, resulting in the state 𝑈(|𝜓⟩⊗ |𝜑⟩). Consider

performing a standard measurement with rank-one measurement operators {𝐶𝑘} and

corresponding POVM elements {𝐷𝑘 = 𝐶𝑘 = |𝑢𝑘⟩ ⟨𝑢𝑘|} on the joint system in state

𝑈(|𝜓⟩⊗ |𝜑⟩). Note that the {𝐶𝑘} and {𝐷𝑘} are operators on ℋ𝐽 and the {|𝑢𝑘⟩} form

an orthonormal basis for ℋ𝐽 . The measurement outcome probabilities are {𝑝𝐽(𝑘) =
| ⟨𝑢𝑘|𝑈(|𝜓⟩ ⊗ |𝜑⟩)⟩ |2} and the post-measurement states of the joint system are {|𝛼𝑘⟩ =
𝐶𝑘𝑈(|𝜓⟩ ⊗ |𝜑⟩)}. The post-measurement states {|𝛽𝑘⟩} of the original system can be
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obtained by taking the partial trace over ℋ𝐵 of the {|𝛼𝑘⟩}, {|𝛽𝑘⟩ = Tr𝐵(|𝛼𝑘⟩ ⟨𝛼𝑘|)}.
We are interested in one direction of Naimark’s theorem as it is typically invoked

in the quantum setting, which states that the {𝐶𝑘} can always be chosen so that

{𝑝(𝑘) = 𝑝𝐽(𝑘)} and {|𝜓𝑘⟩ = |𝛽𝑘⟩}. (A similar statement in the opposite direction can

also be made, but that is not included here.) The following examples illustrate in a

somewhat preliminary way the concepts that make this statement true. Note that

the matching of the post-measurement states are not always of interest, sometimes it

is satisfactory to only have {𝑝(𝑘) = 𝑝𝐽(𝑘)}.

The version of Naimark’s Theorem stated in Section 3.3.2 states that there exists

an orthonormal basis {|𝑤𝑘⟩} of some 𝑀 -dimensional space ℋ𝒲 such that 𝒫ℋ𝐴
|𝑤𝑘⟩ =

|𝑓𝑘⟩ for all 1 ≤ 𝑘 ≤ 𝑀 , where 𝒫ℋ𝐴
is the orthogonal projection operator from ℋ𝒲

onto ℋ𝐴. If the {|𝑓𝑘⟩} are written in column-vector form as |𝑓𝑘⟩ = [𝑓𝑘1 . . . 𝑓𝑘𝑑]
𝑇 with

respect to an arbitrary orthonormal basis for ℋ𝐴, the proof in matrix form essentially

boils down to showing that the rows of the matrix

𝐺 =

⎡
⎢⎣
𝑓11 . . . . . . 𝑓𝑀1

...
...

...
...

𝑓1𝑑 . . . . . . 𝑓𝑀𝑑

⎤
⎥⎦ (5.4)

are orthogonal. Then Gram-Schmidt can be used to find (𝑀 − 𝑑) more orthogonal

rows, and the columns of the augmented square matrix 𝐺′, where

𝐺′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓11 . . . . . . 𝑓𝑀1

...
...

...
...

𝑓1𝑑 . . . . . . 𝑓𝑀𝑑

𝑏1,𝑑+1 . . . . . . 𝑏𝑀,𝑑+1

...
...

...
...

𝑏1𝑀 . . . . . . 𝑏𝑀𝑀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5)

represent the coefficients of the {|𝑤𝑘⟩} in some arbitrary orthonormal basis for ℋ𝒲 .

Because of Naimark’s identity, the {|𝑤𝑘⟩} satisfy | ⟨𝑤𝑘|𝜓⟩ |2 = | ⟨𝑓𝑘|𝜓⟩ |2 = 𝑝(𝑘) for

all 1 ≤ 𝑘 ≤ 𝑀 . But this is not enough to specify a suitable set of measurement

operators {𝐶𝑘} on the larger space, because unless 𝑀 is a multiple of 𝑑, ℋ𝒲 can-
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not necessarily be expressed as a tensor product of ℋ𝐴 with another Hilbert space.

And this is the crucial difference between the classical and quantum settings. The

larger space acted on by 𝐺′ can be thought of as a direct sum of ℋ𝐴 with a second,

(𝑀 − 𝑑)-dimensional Hilbert space. But in the quantum setting we need to embed

the coefficients {𝑏𝑘,𝑑+1, . . . , 𝑏𝑘,𝑀} for 1 ≤ 𝑘 ≤ 𝑀 in a tensor product space whose

dimension will by definition be a multiple of 𝑑. Examples 5.1 and 5.2 below illustrate

two ways of doing so. We assume 𝑑 = 2, so ℋ𝐴 ≃ R
2, and 𝑀 = 3 for the sake of

concreteness and our goal is to specify a suitable set of {|𝑢𝑘⟩} using the elements of

the matrix 𝐺′.

Example 5.1. This technique was described in [Naimark’s Theorem and Quantum

Inseparability]. Starting from the vectors |𝑓𝑘⟩ = [𝑓𝑘1, 𝑓𝑘2]
𝑇 for 1 ≤ 𝑘 ≤ 3, we let

ℋ𝐵 ≃ R2 and

|𝑢𝑘⟩ =
[︃
𝑓𝑘1

𝑓𝑘2

]︃
⊗
[︃
1

0

]︃
+ 𝑏3𝑘

[︃
0

1

]︃
⊗
[︃
1

0

]︃
=

⎡
⎢⎢⎢⎣

𝑓𝑘1

𝑓𝑘2

𝑏𝑘3

0

⎤
⎥⎥⎥⎦ , 1 ≤ 𝑘 ≤ 3 (5.6a)

|𝑢4⟩ =
[︃
0

1

]︃
⊗
[︃
0

1

]︃
⊗ =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ . (5.6b)

The tensor product space ℋ𝐽 = ℋ𝐴⊗ℋ𝐵 has dimension 𝑑× (𝑀 −𝑑+1) = 2×2 = 4.

Essentially the idea is to embed each extra coefficient {𝑏𝑘,𝑑+1, . . . , 𝑏𝑘𝑀} into its own 𝑑-

dimensional subspace. Coefficients corresponding to the same value of 𝑘 are “placed”

in the same subspace. Because of Naimark’s identity the outcome probabilities satisfy

{𝑝𝐽(𝑘) = 𝑝(𝑘)}. The post-measurement states, however, do not satisfy {|𝜓𝑘⟩ = |𝛽𝑘⟩}.

Example 5.2. This technique was described in [49]. Again starting from the vectors

|𝑓𝑘⟩ = [𝑓𝑘1, 𝑓𝑘2]
𝑇 for 1 ≤ 𝑘 ≤ 3, we let ℋ𝐵 ≃ R3 and set the initial state of the ancilla

to |𝜑⟩ = [1, 0, 0]𝑇 . If |𝜓⟩ = [𝜓1, 𝜓2]
𝑇 is the initial state of the original system then the
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initial state of the joint system is

|𝜓⟩ ⊗ |𝜑⟩ =
[︃
𝜓1

𝜓2

]︃
⊗

⎡
⎢⎣
1

0

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓1

𝜓2

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.7)

Let the desired post-measurement states be {|𝜓𝑘⟩ = 𝐴𝑘 |𝜓⟩ = [𝛾𝑘1, 𝛾𝑘2]
𝑇} up to nor-

malization. We next perform a unitary operation 𝑈 on the joint system in such a way

that the state of the joint system is transformed to

𝑈 (|𝜓⟩ ⊗ |𝜑⟩) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾11

𝛾12

𝛾21

𝛾22

𝛾31

𝛾32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.8)

Such a transformation always exists due to the properties of the {𝐴𝑘}. We now

define the {|𝑢𝑘⟩} by summing pairs of orthonormal basis vectors for ℋ𝐽 rather than
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as orthonormal basis vectors directly,

|𝑢1⟩ =
[︃
1

0

]︃
⊗

⎡
⎢⎣
1

0

0

⎤
⎥⎦+

[︃
0

1

]︃
⊗

⎡
⎢⎣
1

0

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9a)

|𝑢2⟩ =
[︃
1

0

]︃
⊗

⎡
⎢⎣
0

1

0

⎤
⎥⎦+

[︃
0

1

]︃
⊗

⎡
⎢⎣
0

1

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9b)

|𝑢3⟩ =
[︃
1

0

]︃
⊗

⎡
⎢⎣
0

0

1

⎤
⎥⎦+

[︃
0

1

]︃
⊗

⎡
⎢⎣
0

0

1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9c)

It can be verified that this scheme achieves {𝑝𝐽(𝑘) = | ⟨𝑢𝑘|𝑈(|𝜓⟩ ⊗ |𝜑⟩)⟩ |2 = 𝛾2𝑘1 +

𝛾2𝑘2 = | ⟨𝑓𝑘|𝜓⟩ |2} as desired. This follows from the fact that for 1 ≤ 𝑘 ≤ 𝑀 we

have 𝐴𝑘 = |𝑓𝑘⟩ ⟨𝑓𝑘| /||𝑓𝑘||, so |𝜓𝑘⟩ = 𝐴𝑘 |𝜓⟩ = ⟨𝑓𝑘|𝜓⟩ |𝑓𝑘⟩ /||𝑓𝑘|| and thus 𝛾2𝑘1 + 𝛾2𝑘2 =

| ⟨𝑓𝑘|𝜓⟩ |2. The desired post-measurement states are also achieved. To see why this

is true, assume that the measurement outcome corresponding to 𝑘 = 2 is observed.

Then the post-measurement state of the joint system is

|𝛼2⟩ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

𝛾21

𝛾22

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)
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The post-measurement state of the original system can be found by taking the partial

trace over ℋ𝐵, which corresponds to taking all of the 𝑑 × 1 blocks from |𝛼2⟩ and

summing them together, i.e., summing together the 1st, 3rd, and 5th elements of

|𝛼2⟩ and summing together the 2nd, 4th, and 6th elements. This leads to |𝛽2⟩ =

[0 + 𝛾21 + 0, 0 + 𝛾22 + 0]𝑇 = [𝛾21, 𝛾22]
𝑇 , as desired. And of course the same holds true

for the other possible measurement outcomes.

Our goal has been to present two methods of extending the original Hilbert space

into a larger, tensor product space in such a way that an orthonormal basis of the

larger space reproduces the correct measurement outcome probabilities. There are

many others and plenty of interesting research in this area. In the context of this

thesis it is interesting to note that the partial trace can also be viewed according to its

action in operator space. Specifically, it is known that the partial trace operator, over

ℋ𝐵 for instance, is the adjoint of the linear mapping that takes any density operator

𝜌 acting on ℋ𝐴 to the joint density operator 𝜌⊗ 𝐼𝐵 acting on ℋ𝐽 = ℋ𝐴 ⊗ℋ𝐵, where

𝐼𝐵 is the identity operator on ℋ𝐵. This suggests that Naimark’s Theorem could also

be phrased using the linear algebra of operator spaces.

5.2 Informationally Complete and Overcomplete

POVMs

The definition of an informationally complete or IC POVM as a POVM that maps

each possible density operator to a unique sequence of probabilities does not employ

any notation or terminology associated with frame representations. This is why we

chose to introduce IC POVMs in Section 4.2 following the statement of the quantum

measurement postulate. However, a particularly useful way of thinking about and

analyzing IC POVMs relies on the following fundamental result: Given an arbitrary

set of operators {𝑈𝑘, 1 ≤ 𝑘 ≤ 𝑀} in 𝒱 , {𝑈𝑘} is an IC POVM if and only if {𝑈𝑘} is

both a POVM and a frame for 𝒱 [8, 23, 67]. It will be convenient moving forward to

summarize this statement in two parts using the labels (i), (ii), and (iii) to refer to
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the relevant properties of the {𝑈𝑘},

(i) {𝑈𝑘} is a POVM (i) {𝑈𝑘} is a POVM

(ii) {𝑈𝑘} maps every density operator 𝜌 ∈ 𝒱 to a =⇒ (iii) {𝑈𝑘} span 𝒱 (5.11a)

unique sequence of coefficients {⟨⟨𝑈𝑘|𝜌⟩⟩}

(i) {𝑈𝑘} is a POVM (i) {𝑈𝑘} is a POVM

(ii) {𝑈𝑘} maps every density operator 𝜌 ∈ 𝒱 to a ⇐= (iii) {𝑈𝑘} span 𝒱 . (5.11b)

unique sequence of coefficients {⟨⟨𝑈𝑘|𝜌⟩⟩}

Note that since 𝒱 is finite-dimensional, the {𝑈𝑘} span 𝒱 if and only if they form

a frame for 𝒱 . The terms “minimal IC POVM” and “informationally overcomplete

(IOC) POVM” are sometimes used to differentiate between those IC POVMs whose

elements are linearly indpendent and thus form a basis for 𝒱 and those whose elements

are linearly dependent, respectively [2, 18, 29, 67, 81, 82]. Equations (5.11) can

be generalized to include the case where 𝒱 is infinite-dimensional and to include

generalized operator-valued frames [67], but for simplicity we do not consider those

scenarios in this thesis.

To derive Equation (5.11b), assume that a set of operators {𝑈𝑘} in 𝒱 satisfies the

definition of a POVM and spans 𝒱 . Then as stated above {𝑈𝑘} must be a frame for

𝒱 . Its analysis map A0 can always be written as A0 =
∑︀𝑀

𝑘=1 |𝑊𝑘⟩⟩⟨⟨𝑈𝑘|. To show

that {𝑈𝑘} is IC, it is sufficient to show that if two density operators have the same

probability sequences with respect to this POVM, then they must be identical. This

follows from the fact that since the {𝑈𝑘} span 𝒱 , no 𝑉 ∈ 𝒱 is orthogonal to all of

them. Therefore, if A0 |𝑉 ⟩⟩ = 0 for some 𝑉 ∈ 𝒱 then we must have 𝑉 = 0. Consider
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the action of A0 on two arbitrary density operators 𝜌1, 𝜌2 ∈ 𝒱 . We have

A0 |𝜌1⟩⟩ =
𝑀∑︁

𝑘=1

|𝑊𝑘⟩⟩⟨⟨𝑈𝑘|𝜌1⟩⟩ =
𝑀∑︁

𝑘=1

𝑝1(𝑘) |𝑊𝑘⟩⟩, (5.12a)

A0 |𝜌2⟩⟩ =
𝑀∑︁

𝑘=1

|𝑊𝑘⟩⟩⟨⟨𝑈𝑘|𝜌2⟩⟩ =
∑︁

𝑘∈𝒦

𝑝2(𝑘) |𝑊𝑘⟩⟩, (5.12b)

where 𝑝𝑖(𝑘) = ⟨⟨𝑈𝑘|𝜌𝑖⟩⟩ for 𝑖 = 1, 2 is defined as in Equation (5.1). If 𝑝1(𝑘) = 𝑝2(𝑘)

for 1 ≤ 𝑘 ≤𝑀 , then A0 |𝜌1 − 𝜌2⟩⟩ = 0 implying that |𝜌1 − 𝜌2⟩⟩ = 0, i.e., 𝜌1 = 𝜌2.

Equation (5.11a) is more subtle as demonstrated through its comparison with

the following related statement. Given an arbitrary set of operators {𝑈𝑘} in 𝒱 , it

is straightforward to show by contradiction that if the {𝑈𝑘} map every 𝑉 ∈ 𝒱 to a

unique sequence of coefficients {⟨⟨𝑈𝑘|𝑉 ⟩⟩}, then the {𝑈𝑘} must span 𝒱 . If instead

the {𝑈𝑘} are only required to map every density operator in 𝒱 to a unique sequence

of coefficients, i.e., only condition (ii) is satisfied in Equation (5.11a), then they must

span 𝒰 but they do not necessarily span all of 𝒱 . This follows from the fact that an all

density operators have constant trace and thus a constant orthogonal projection onto

𝒰⊥, so they are only distinguished by their orthogonal projections onto 𝒰 . Assume

now that the {𝑈𝑘} satisfy both conditions (i) and (ii) on the left-hand side of Equation

(5.11a). Then the {𝑈𝑘} must span 𝒰 and they must also satisfy
∑︀

𝑘 𝑈𝑘 = 𝐼. Since 𝐼

spans 𝒰⊥ by definition, this implies that the {𝑈𝑘} also span 𝒰⊥ and therefore they

span all of 𝒱 . This line of reasoning also leads to the conclusion that if the {𝑈𝑘} form

a POVM, then for the {𝑈𝑘} to span 𝒱 it is sufficient for their orthogonal projections

onto 𝒰 to span 𝒰 . This statement is applied to a class a POVMs that we refer to as

Etro POVMs in Section 5.3.

IC POVMs are commonly studied in the context of quantum state estimation

[1, 18, 62, 67, 61, 81, 82], in which the objective is to reconstruct an unknown density

operator from its probability values stemming from a given POVM. Obviously, the

ability to recover an arbitrary density operator using only the probability values

requires the POVM to be IC. But even if an IC POVM is employed, exact recovery

of the probability values can only be achieved if we are able to measure an infinitely
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large ensemble of systems, all prepared in the unknown state we wish to estimate.

This is in general not possible in practice, and one motivation for using IOC POVMs

is to mitigate the error caused by finite sample size estimations of the probabilities.

This topic is also a motivation for the simulations presented in Section 5.4.

Another important issue in the use of IC POVMs to estimate unknown quantum

states is that the reconstruction procedure implicitly requires computation of the dual

frame of the POVM elements. This is in general a difficult task because it requires

the inversion of a linear operator on 𝒱 , which is itself a “superoperator” [67]. Thus, IC

POVMs whose duals are more easily computed are of great interest to the quantum

physics community. Tight IC POVMs were introduced by Scott in [67] and are some

of the most extensively studied.

5.2.1 Tight Informationally Complete POVMs

A tight IC POVM could be naturally defined as an IC POVM whose elements form a

tight frame for 𝒱 . However, the definition is in fact slightly more nuanced as it takes

into account the fact that all density operators lie within a hyperplane of 𝒱 . Briefly,

the underlying logic is that when the hyperplane containing all density operators is

shifted to the origin, it is identical to the subspace 𝒰 of 𝒱 . The elements of a POVM

may always be scaled and shifted to lie in 𝒰 , and when the scaled and shifted versions

of the POVM elements form what is referred to as a tight frame for 𝒰 with respect

to the trace measure, the POVM is referred to as a tight IC POVM.

Given a density operator 𝜌 and a POVM {𝐸𝑘}, the operators (𝜌 − 𝐼/𝑑) and

{𝑆𝑘 = 𝐸𝑘/Tr(𝐸𝑘)− 𝐼/𝑑} are all elements of 𝒰 . In [67] a tight IC POVM was defined

as a POVM for which the {𝑆𝑘} satisfy

𝑀∑︁

𝑘=1

Tr(𝐸𝑘) |⟨⟨𝑆𝑘|𝑉 ⟩⟩|2 = 𝐶 ||𝑉 ||2 for all 𝑉 ∈ 𝒰 , (5.13)

for some constant 𝐶 > 0. Comparing Equation (5.13) to the definition of an operator-

valued frame in Equation (3.50) for the case where 𝐶 = 𝐷, it is clear that the only

difference (aside from the substitution of 𝒰 for 𝒱) is the extra factor of Tr(𝐸𝑘) in
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each term of the sum. This factor is the reason that in the terminology of [67], any

set of operators {𝑆𝑘} satisfying Equation (5.13) are said to form a tight frame for 𝒰
with respect to the trace measure. All POVM elements must have non-negative trace,

and thus Equation (5.13) may be re-written using the operators {𝑄𝑘 =
√︀

Tr(𝐸𝑘)𝑆𝑘},
resulting in the equivalent form

𝑀∑︁

𝑘=1

|⟨⟨𝑄𝑘|𝑉 ⟩⟩|2 = 𝐶 ||𝑉 ||2 for all 𝑉 ∈ 𝒰 . (5.14)

Therefore, in our terminology a tight IC POVM is a POVM for which the operators

{𝑄𝑘 = 𝐸𝑘/
√︀
Tr(𝐸𝑘)−

√︀
Tr(𝐸𝑘) 𝐼/𝑑} form a tight frame for 𝒰 .

5.3 The Bloch Sphere and The Etro Spheres

We now apply the discussion given in Section 3.4.3 to the case where ℋ represents

the state of a qubit. We have 𝑑 = 2 implying that 𝒱 has dimension 𝑑2 = 4. As stated

in Section 3.4.3, the operators {𝜎1/
√
2, 𝜎2/

√
2, 𝜎3/

√
2} form an orthonormal basis for

𝒰 . Therefore, Equations (5.2) can be rewritten as

𝜌 =
1√
2

|𝐼⟩⟩√
2
+ 𝑟1

|𝜎1⟩⟩√
2

+ 𝑟2
|𝜎2⟩⟩√

2
+ 𝑟3

|𝜎3⟩⟩√
2
, (5.15a)

𝐸𝑘 =
Tr(𝐸𝑘)√

2

|𝐼⟩⟩√
2
+ 𝑐𝑘1

|𝜎1⟩⟩√
2

+ 𝑐𝑘2
|𝜎2⟩⟩√

2
+ 𝑐𝑘3

|𝜎3⟩⟩√
2
, 1 ≤ 𝑘 ≤𝑀, (5.15b)

where 𝑟𝑖 = ⟨⟨𝜎𝑖|𝜌⟩⟩/
√
2 for 1 ≤ 𝑖 ≤ 3 and 𝑐𝑘𝑖 = ⟨⟨𝜎𝑖|𝐸𝑘⟩⟩/

√
2 for 1 ≤ 𝑘 ≤ 𝑀 and

1 ≤ 𝑖 ≤ 3. Since 𝜌 is positive semidefinite, it has an associated closed ball in R3

with radius 1/
√
2. The column vector r = [𝑟1, 𝑟2, 𝑟3]

𝑇 always lies within the ball or

on the sphere corresponding to the surface of the ball. It lies on the sphere when 𝜌

has rank 1 and thus represents a pure state. The ball and sphere correspond within

a constant factor to the very commonly used Bloch ball and Bloch sphere, which are

typically assumed to have unit radius [49]. The column vector r is proportional to

the Bloch vector of 𝜌. All of the {𝐸𝑘} are also positive semidefinite and therefore

they also each have an associated closed ball in R3 whose surface is of course a sphere
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in R3. The ball associated with 𝐸𝑘 has radius Tr(𝐸𝑘)/
√
2 and the column vector

c𝑘 = [𝑐𝑘1, 𝑐𝑘2, 𝑐𝑘3]
𝑇 always lies within that ball or on the sphere corresponding to its

surface. It lies on the sphere when 𝐸𝑘 has rank one. We will refer to c𝑘 as an Etro

vector. Note that Equation (5.3) implies that the {ck} must always sum to zero.

The probabilities in Equation (5.1) can also be written in terms of r and the {ck}.
Substituting Equations (5.15) into Equation (5.1) yields

𝑝(𝑘) =
Tr(𝐸𝑘)

2
+ ck · r =

1

𝑀
+ ck · r, (5.16)

where · denotes the standard dot product in R3.

Of particular interest in this thesis are qubit POVMs that we will refer to as equal

trace rank one or Etro POVMs. Unsurprisingly, an Etro POVM is one for which

Tr(𝐸𝑘) = 2/𝑀 for 1 ≤ 𝑘 ≤𝑀 and for which each of the {𝐸𝑘} has rank one, implying

that
√︀
𝑐2𝑘1 + 𝑐2𝑘2 + 𝑐2𝑘3 = Tr(𝐸𝑘)/

√
2 =

√
2/𝑀 for 1 ≤ 𝑘 ≤𝑀 . When this is the case,

all of the {𝐸𝑘} have the same associated ball in R3 with radius
√
2/𝑀 . The {c𝑘} all

lie on a sphere of radius
√
2/𝑀 that we refer to as an Etro sphere. Explicitly, an Etro

sphere is one of a class of spheres in R3, each with radius
√
2/𝑀 for some integer

𝑀 . An 𝑀 -element Etro POVM can be fully specified by 𝑀 vectors {c𝑘} lying on

the Etro sphere of radius
√
2/𝑀 . It can equivalently be specified by 𝑀 points on the

Etro sphere of radius
√
2/𝑀 with each point corresponding to the endpoint of one of

the {c𝑘}. It follows from Section 5.2 that a qubit Etro POVM is IC if and only if the

{ck}, which represent the orthogonal projections of the {𝐸𝑘} onto 𝒰 , span R3 [29].

While the definition of an Etro POVM could clearly be applied to higher dimensions,

in this thesis we use the term Etro POVM to refer specifically to those corresponding

to qubit measurements.

An Etro POVM satisfies the definition of a a tight IC POVM when its Etro vectors

{ck} form a tight frame for R3. Specifically, substituting the definition of the {𝑄𝑘}
from Section 5.2.1 into Equation (5.15b) and utilizing the fact that Tr(𝐸𝑘) = 2/𝑀
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for 1 ≤ 𝑘 ≤𝑀 yields

𝑄𝑘 =
1√︀

Tr(𝐸𝑘)

(︂
𝑐𝑘1

|𝜎1⟩⟩√
2

+ 𝑐𝑘2
|𝜎2⟩⟩√

2
+ 𝑐𝑘3

|𝜎3⟩⟩√
2

)︂
(5.17a)

=

√︂
𝑀

2

(︂
𝑐𝑘1

|𝜎1⟩⟩√
2

+ 𝑐𝑘2
|𝜎2⟩⟩√

2
+ 𝑐𝑘3

|𝜎3⟩⟩√
2

)︂
, 1 ≤ 𝑘 ≤𝑀. (5.17b)

According to Equation (5.17), the {𝑄𝑘} form a tight frame for 𝒰 when the vectors

{
√︀
𝑀/2ck}, or equivalently the vectors {ck}, form a tight frame for R3.

Example 5.3. POVMs constructed using Platonic solids are used often in the litera-

ture [81, 82, 21, 70]. In the terminology of this thesis, a POVM constructed using the

Platonic solid with 𝑀 vertices for 𝑀 ∈ {4, 6, 8, 12, 20} is an 𝑀 -element Etro POVM

whose Etro vectors {c𝑘} correspond to the vertices of that Platonic solid inscribed in

the corresponding Etro sphere. When the Platonic solid is an octahedron (𝑀 = 6),

the POVM is typically described as having been constructed from three mutually un-

biased bases (MUBs) for the state space of the qubit. All POVMs constructed from

the Platonic solids are tight IC POVMs.

Example 5.4. Consider a qubit POVM {𝐸1, 𝐸2} whose elements form a complete set

of orthogonal projectors onto ℋ. As stated in Section 4.2, this type of POVM always

corresponds to a standard quantum measurement. It is straightforward to verify that

{𝐸1, 𝐸2} is an Etro POVM whose corresponding Etro sphere has radius 1/
√
2 and is

thus identical to the Bloch sphere. The Etro vectors {c1, c2} must satisfy c1+c2 = 0,

implying that they point in opposite directions on the Etro sphere. Helstrom’s optimal

POVM for distinguishing between two fixed qubit density operators is one example

of this type of POVM.

5.4 Qubit State Discrimination using Platonic Solids

Starting in Section 5.4 and continuing on through Chapter 6, we return to the problem

stated in Chapter 4 in which an 𝑀 -element POVM is used to distinguish between the

possibilities that 𝐿 QMSs all have density operator 𝜌0 or all have density operator 𝜌1.
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In Chapter 4 we assumed that 𝐿 = 1, but we now begin to explore what happens as 𝐿

is increased. As stated in Section 4.3, we will denote the score variable by S as opposed

to 𝑆 to emphasize that it is a vector-valued random variable as opposed to a scalar

random variable. A particular realization s will be denoted by the column vector

s = [𝑛1/𝐿, . . . , 𝑛𝑀/𝐿]
𝑇 where 𝑛𝑘 is the number of occurrences of the 𝑘th measurement

outcome and
∑︀

𝑘 𝑛𝑘 = 𝐿. The conditional distributions 𝑓𝑖(S) for 𝑖 ∈ {0, 1} are

multinomial distributions. We also assumed in Chapter 4 that the decision region of

the binary decision rule could be any subset of the possible relative frequency vectors.

Throughout the rest of the thesis we assume that only decision regions corresponding

to an LRT with threshold 𝜂 = 𝑞0/𝑞1 for some prior probabilities are used.

In Example 5.5 below, we utilize POVMs constructed using Platonic solids, which

were defined in Example 5.3. These very preliminary simulations set the stage for

Chapter 6 where we consider POVMs constructed from other arrangements of points

on an Etro sphere. POVMs constructed using Platonic solids are of significant inter-

est in the context of qubit state estimation [1, 18, 62, 67, 61, 81, 82, 83] but have

been utilized less often for binary hypothesis testing. We present evidence through

simulation that there is a tradeoff in discrimination performance between the number

𝐿 of identically-prepared QMSs and the number 𝑀 of POVM elements. Note that as

stated in Example 5.3, all POVMs constructed using Platonic solids are Etro POVMs.

Example 5.5. In this example we arbitrarily set the Bloch vectors of 𝜌0 and 𝜌1 to

r0 = (1/
√
2)[0, 0, 1]𝑇 and r1 = (1/

√
2)[cos𝜑 sin 𝜃, sin𝜑 sin 𝜃, cos 𝜃]𝑇 , where 𝜃 = 2𝜋/3

and 𝜑 = 𝜋/3. Note that as mentioned in Section 5.3, there is an extra factor of (1/
√
2)

in comparison to Bloch vectors as they are typically defined in the literature. The

LRT QDOCs corresponding to POVMs constructed using a tetrahedron (𝑀 = 4) and

an octahedron (𝑀 = 6) inscribed in the Etro sphere and to 𝐿 = 5, 10, 20 are shown

in Figure 5-1. The plots reflect a tradeoff in discrimination performance between 𝑀

and 𝐿. For a fixed value of 𝐿, increasing the value of 𝑀 leads to better detection as

reflected by the superior QDOC. On the other hand, for a fixed value of 𝑀 increasing

the value of 𝐿 also leads to better detection.
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(a) (b) (c)

Figure 5-1: LRT QDOCs for 𝐿 ∈ {5, 10, 20} and IC POVMs constructed from Pla-
tonic solids with 𝑀 = 4 (tetrahedron) and 𝑀 = 6 (octahedron) vertices. The density
operators 𝜌0 and 𝜌1 that were used for this example are specified in Example 5.5.

5.5 Robustness of Informationally Overcomplete

POVMs

As stated in Section 5.2, IOC POVMs have been shown to be of great utility in

the context of quantum state estimation. The problem addressed in Section 5.5

was designed specifically to demonstrate how the discussion in Section 3.5 can be

applied to quantum mechanics. Readers interested only in quantum binary state

discrimination and not quantum state estimation may wish to proceed to Chapter 6.

An important difference between Sections 3.5 and 5.5 is that in Section 3.5 we

assumed that the observed frame coefficients were affected by error values that were

pairwise uncorrelated. By contrast, in Section 5.5 we assume that the error values

stem from estimating probability values using relative frequencies. This implies that

they are correlated with each other since the set of all relative frequencies must of

course add to 1. A whitening transformation can be used to compensate for the

correlations. But it is important to note that, as explained in more detail below,

the identification of such a transformation requires knowledge of the true density

matrix. The optimal solution is thus impractical in the context of quantum state

estimation, where the true density matrix is of course assumed to be unknown. The

optimal solution is perhaps more relevant to the problem of linearly reconstructing a

known density operator using quantized versions of its frame coefficients, where the
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frame coefficients are the probability values derived from the density operator and a

given IC POVM and their quantized counterparts are a corresponding set of relative

frequencies. This is reminiscent of the linear reconstruction of a known bandlimited

signal using quantized versions of its sample values [51].

5.5.1 Quantum State Estimation

We emphasize that the following scenario was designed to be parallel to the one

described in Section 3.5. Let 𝜌 be an unknown density operator and let {𝐸𝑘} be an

arbitrary tight IC POVM. In the following variation of the problem stated in Section

3.5, the unknown vector |𝑣⟩ lying in 𝒱 is replaced by the shifted operator |𝜌− 𝐼/𝑑⟩⟩
lying in the subspace 𝒰 of 𝒱 and the analysis frame {|𝑓𝑘⟩} is replaced by the operators

{𝑄𝑘 = 𝐸𝑘/
√︀

Tr(𝐸𝑘) −
√︀
Tr(𝐸𝑘)𝐼/𝑑}. By definition of a tight IC POVM, the {𝑄𝑘}

form a tight frame for 𝒰 . We will denote the frame bound of the {𝑄𝑘} by 𝐶 and

will additionally assume that they all have norm 𝐵. Thus, in analogy with Equation

(3.61) the {𝑄𝑘} are an ENTF for 𝒰 satisfying

𝑀∑︁

𝑘=1

|⟨⟨𝑄𝑘|𝑉 ⟩⟩|2 = 𝐶 ||𝑉 ||2 for all 𝑉 ∈ 𝒰 , (5.18a)

||𝑄𝑘|| = 𝐵, 1 ≤ 𝑘 ≤𝑀. (5.18b)

Note that in addition to the relation 𝐶𝑁 = 𝑀𝐵2 which is satisfied by any ENTF

including those outside of the context of quantum mechanics, the constants 𝐵 and

𝐶 in Equation (5.18) must also satisfy various other constraints deriving from the

required properties of the POVM elements {𝐸𝑘}. Specifically, the {𝐸𝑘} must by

definition be positive semidefinite and add to the identity. In the absence of any

source of error, the operator |𝜌 − 𝐼/𝑑⟩⟩ can always be reconstructed from its frame

coefficients {𝑎𝑘 = ⟨⟨𝑄𝑘|𝜌− 𝐼/𝑑⟩⟩}. Our objective is to estimate |𝜌− 𝐼/𝑑⟩⟩ given only

a set of observed coefficients {�̂�𝑘}, not necessarily equal to the {𝑎𝑘}, in such a way

that

ℰ = E
[︀
||𝜌𝑒||2

]︀
= E

[︀
||𝜌− 𝜌||2

]︀
= E

[︀
Tr
(︀
(𝜌− 𝜌)2

)︀]︀
(5.19)
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is minimized. In Equation (5.19), the expectation is taken over all possible values of

the {�̂�𝑘}. As in Section 3.5, we assume that the estimated operator |𝜌 − 𝐼/𝑑⟩⟩ has

the form

𝜌− 𝐼

𝑑
=

𝑀∑︁

𝑘=1

�̂�𝑘 �̃�𝑘 (5.20)

where {�̃�𝑘} is any dual frame of {𝑄𝑘}.

Clearly, the optimal dual frame depends on the distribution of the {�̂�𝑘}. In Section

3.5 it was assumed that {�̂�𝑘 = 𝑎𝑘+𝑒𝑘} where the {𝑒𝑘} had zero mean, variance 𝜎2, and

were pairwise uncorrelated. And under these assumptions, the optimal dual frame was

the canonical dual frame of {𝑄𝑘}. In the current discussion, however, we assume that

the {�̂�𝑘} are derived from a relative frequency vector generated using the procedure

described in Section 5.4. Specifically, we assume that there are 𝐿 identically-prepared

QMSs whose states are all described by the density operator 𝜌. Each QMS is measured

using a quantum measurement with corresponding POVM {𝐸𝑘, 1 ≤ 𝑘 ≤ 𝑀}, and

therefore the probabilities of the 𝑀 measurement outcomes are {𝑝(𝑘) = ⟨⟨𝐸𝑘|𝜌⟩⟩}.
The 𝐿 measurement outcomes result in a set of relative frequencies {𝑝(𝑘) = 𝑛𝑘/𝐿}
where 𝑛𝑘 is the number of occurrences of the 𝑘th measurement outcome. Note that

the process of obtaining the {𝑝(𝑘)} from the {𝑝(𝑘)} can be viewed as probabilistic

uniform quantization. The {𝑝(𝑘)} and {𝑝(𝑘)} can be related to the {𝑎𝑘} and the

{�̂�𝑘}, respectively, as follows. Direct substitution using the definition of the {𝑄𝑘}
leads to

𝑎𝑘 = ⟨⟨𝑄𝑘|𝜌− 𝐼/𝑑⟩⟩ = 𝑝(𝑘)√︀
Tr(𝐸𝑘)

−
√︀
Tr(𝐸𝑘)

𝑑
, 1 ≤ 𝑘 ≤𝑀. (5.21)

We then define

�̂�𝑘 =
𝑝(𝑘)√︀
Tr(𝐸𝑘)

−
√︀

Tr(𝐸𝑘)

𝑑
, 1 ≤ 𝑘 ≤𝑀. (5.22)

We have {�̂�𝑘 = 𝑎𝑘 + 𝑒𝑘} where 𝑒𝑘 = (𝑝𝑘 − 𝑝(𝑘))/
√︀

Tr(𝐸𝑘) for 1 ≤ 𝑘 ≤ 𝑀 . As stated

in Section 5.4, the {𝑒𝑘} are distributed according to a multinomial distribution with
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parameters 𝐿 and {𝑝(𝑘)}. It can be shown using straightforward algebra that

E[𝑒𝑘] = 0, 1 ≤ 𝑘 ≤𝑀 (5.23a)

E[𝑒𝑗𝑒𝑘] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑝(𝑘) (1− 𝑝(𝑘))

𝐿 Tr(𝐸𝑘)
if 𝑗 = 𝑘

−𝑝(𝑗) 𝑝(𝑘)
𝐿
√︀

Tr(𝐸𝑗) Tr(𝐸𝑘)
if 𝑗 ̸= 𝑘

, 1 ≤ 𝑗, 𝑘 ≤𝑀. (5.23b)

The optimal synthesis frame {�̃�𝑘} can be found by whitening the {𝑒𝑘} and then

computing the canonical dual of the effective analysis frame. It is important to note,

however, that whitening the {𝑒𝑘} requires knowledge of the {𝑝(𝑘)} and thus of 𝜌 itself.
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Chapter 6

Qubit State Discrimination on the

Etro Spheres

As mentioned briefly in Chapter 5, POVMs constructed from Platonic solids are of

interest in the quantum state estimation literature because they are tight IC POVMs,

implying that they are self-dual up to a constant. This makes reconstruction of an

unknown state from estimates of its frame coefficients in the form of the relative

frequencies particularly straightforward. In the context of quantum state discrimina-

tion, however, it is not necessary to reconstruct the state from the relative frequency

vector. This suggests that it might be interesting to explore constructing POVMs

from other arrangements of points on an Etro sphere.

Just as a pure state qubit density operator can be specified by a single point on the

Bloch sphere, as shown in Chapter 5 each element of an Etro POVM associated with a

qubit measurement can be specified by a single point on the Etro sphere. Considerable

previous work has focused on POVMs constructed from one of the five Platonic solids

[21, 46, 70, 81, 82]. In our terminology these are Etro POVMs constructed from

sets of points corresponding to the vertices of one of the Platonic solids. A main

motivation of Chapter 6 is to present an exploratory and preliminary investigation into

the utility for quantum binary state discrimination of Etro POVMs constructed from

other distributions of 𝑀 points on an Etro sphere. Our findings are also summarized

in [22].
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As in Section 5.4 we assume that an 𝑀 -element Etro POVM {𝐸𝑘} with corre-

sponding Etro vectors {ck} is used to discriminate between the possibilities that 𝐿

identically-prepared qubits all have density operator 𝜌0 or all have density operator

𝜌1. We continue to denote the prior probabilities by 𝑃 (𝐻𝑖) = 𝑞𝑖 for 𝑖 ∈ {0, 1}. The

{ck} lie on the Etro sphere with radius
√
2/𝑀 and always satisfy

∑︀
𝑘 ck = 0. The

Bloch vectors r0 and r1 of the two pure states are separated by a relative angle 𝛼 and

are known only up to an overall rotation on the Bloch sphere. We may equivalently

assume that r0 and r1 are known exactly but that the overall alignment of the {ck}
relative to the Etro sphere is unknown, i.e., the relative rotational orientation of the

Bloch sphere and the Etro sphere is unknown. The performance of each POVM is

measured according to its minimum and maximum probabilities of error, denoted as

min𝑃𝑒 and max𝑃𝑒, over all possible relative orientations as well as their difference.

A smaller value of (max𝑃𝑒 −min𝑃𝑒) suggests that the corresponding POVM is less

sensitive to changes in the relative orientations of the Bloch and Etro spheres. The

exploratory simulations presented in Chapter 6 leave open the question of what the

optimal POVM is with respect to its sensitivity to changes in the relative orientation

of the Bloch and Etro spheres.

6.1 Optimal Distributions of 𝑀 Points on a Sphere

An Etro POVM {𝐸𝑘} can always be fully specified by its 𝑀 Etro vectors {ck}, or

equivalently by the 𝑀 endpoints of those vectors which all lie on the Etro sphere

of radius
√
2/𝑀 . Intuition suggests that maximally spreading the endpoints on the

sphere will tend to reduce the variation in performance over all possible orientations.

Various approaches to and criteria for evenly distributing 𝑀 points on a sphere

have been reported in the literature [35, 43, 65]. We first consider distributions of

points that correspond to the vertices of a Platonic solid or an Archimedean solid, in

addition to to distributions of points that minimize Riesz 𝑠-energy for a given value

of 𝑀 , subject to the constraint that the {c𝑘} must sum to zero. In three dimensions

140



the Riesz 𝑠-energy of a set of 𝑀 vectors {c𝑘} of equal length is defined as

𝐸(𝑠) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑︁

1≤𝑗<𝑘≤𝑀

log ‖cj − ck‖−1 if 𝑠 = 0

∑︁

1≤𝑗<𝑘≤𝑀

‖cj − ck‖−𝑠 if 𝑠 ≥ 0.

(6.1a)

(6.1b)

In Equation (6.1), ‖c𝑗 − c𝑘‖ often denotes the Euclidean distance between cj and ck

but it could also be defined as the great circle distance between cj and ck. Minimizing

𝐸(0) is equivalent to maximizing the product of distances between points. Minimizing

𝐸(1) is equivalent to minimizing the electric potential energy of a system of point

charges located at the endpoints of the vectors. As 𝑠 → ∞, only the two closest

points contribute to the sum and minimizing 𝐸(𝑠) corresponds to maximizing nearest

neighbor distance.

In the simulations presented in Section 6.2, we also consider distributions of points

that were computed numerically by Sloane et al. [69] to be optimal with respect to the

maximum convex hull volume, maximum nearest neighbor distance, and minimum

covering radius criteria. The latter criteria are defined as

max
c1,...,cM

min
1≤𝑗, 𝑘≤𝑀

||cj − ck|| (max. nearest neighbor distance) (6.2a)

min
c1,...,cM

max
x:||x||=1

min
1≤𝑘≤𝑀

||cj − ck|| (min. covering radius) (6.2b)

It is important to note, however, that these solutions were computed without the

constraint that the{c𝑘} sum to zero. Many of the optimal solutions sum to a vector

whose norm is very close to zero. Consequently for our exploratory purposes we

chose to compensate by appending an extra vector 𝜖 = −∑︀𝑘 ck to the {c𝑘} with

corresponding POVM element 𝐸0. Intuitively this would not be expected to affect any

broad trends observed in the results, since for all simulations presented we required

||𝜖|| ≤ 10−8.
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6.2 Results and Simulations

A sampling of our results for various combinations of the parameter values 𝑀 , 0 ≤
𝛼 ≤ 𝜋, and 0 ≤ 𝑞1 ≤ 1 is shown in Tables 6.1 to 6.3 for 𝐿 = 5. Extended results

for 𝐿 = 1 and 𝐿 = 5 are given in Appendix A. The rotational orientation of a

specific set of 𝑀 points on an Etro sphere, was varied by first choosing an arbitrary

point as the north pole and then incrementing the azimuth and elevation angles of

that point over their full ranges using a step size of 𝜋/50. The trends we describe

next were not consistent over all sets of parameter values. For fixed 𝛼 and 𝑞1, we

observed that larger values of 𝑀 typically correspond to lower max𝑃𝑒 but higher

min𝑃𝑒 over all possible orientations (see Table 6.1 and Figure 6-1). Apparently,

the optimal sets of 𝑀 = 6 points with respect to all of the criteria considered here

look very much like the vertices of an octahedron. This is reflected in Table 6.1

by the identical performance of all criteria for 𝑀 = 6. Note that the QMOCs in

Figure 6-1 become more concentrated around a central region for larger values of 𝑀 ,

indicating less sensitivity to changes in the rotational orientation of the Etro sphere.

Furthermore for a fixed value of 𝑀 ∈ {4, 6, 8, 12}, the Platonic solid with 𝑀 vertices

is not necessarily the best arrangement of points in terms of its sensitivity to rotation.

This can be seen, for example, in Table 6.1 for the case where 𝑀 = 6. For fixed 𝑞1,

the decrease in sensitivity with 𝑀 is more pronounced for smaller values of 𝛼 (see

Table 6.2), which makes intuitive sense since smaller values of 𝛼 correspond to Bloch

vectors states that are more collinear and thus more sensitive to small changes in the

relative orientation of the Bloch and Etro spheres. For fixed 𝑀 , larger values of 𝛼

and values of 𝑞1 that are further from 1/2 generally lead to lower min𝑃𝑒 and max𝑃𝑒

(see Table 6.3 and Figure 6-2). In Figure 6-2 each row corresponds to a specific value

of 𝑀 and each column corresponds to a specific value of 𝛼. The MOCs become more

concentrated around a central region as 𝑀 increases down each column. The increase

in concentration is more pronounced for columns corresponding to smaller values of

𝛼.

Our exploratory investigation suggests that various arrangements of points that
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Figure 6-1: QMOCs generated using 𝛼 = 𝜋/4, 𝑞1 = 1/2, and Etro POVMs con-
structed from 𝑀 points on an Etro sphere with minimum covering radius. Each
operating point represents the 𝑃𝑓 and 𝑃𝑑 values obtained by a specific rotational
orientation of the 𝑀 points and an LRT with threshold 𝜂 = 𝑞0/𝑞1. (a) 𝑀 = 4 (b)
𝑀 = 6 (c) 𝑀 = 8.

are well-spread with respect to the chosen metrics perform well with respect to their

sensitivity to changes in the relative rotational orientation of the Bloch and Etro

spheres. We focused on metrics that promote evenly spread distributions of points

since we assumed that all relative orientations of the Bloch and Etro spheres were

equally likely. If this were not the case, it would be intuitively expected that distribu-

tions of points with higher concentrations in certain regions of an Etro sphere would

be more desirable. This might be the case if, for example, in a particular application

the two hypotheses corresponded to the 𝐿 qubits being prepared in a density oper-

ator 𝜌 drawn from one of two distributions over all possible density operators, each

localized around a particular region of the Bloch sphere.
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Table 6.1: Minimum and maximum probabilities of error for different distributions of
𝑀 points on a sphere. The values below were generated using 𝛼 = 𝜋/2 and 𝑞1 = 1/2.

𝑀 Description Min 𝑃𝑒 Max 𝑃𝑒 Difference

4

Tetrahedron 0.076 0.214 0.138

Max Convex Hull Vol 0.076 0.213 0.137

Max N.N. Dist 0.076 0.214 0.138

Min Covering Radius 0.077 0.211 0.135

Min Riesz 0-energy 0.076 0.213 0.137

5

(No Platonic Solid) N/A N/A N/A

Max Convex Hull Vol 0.097 0.224 0.126

Max N.N. Dist 0.101 0.221 0.120

Min Covering Radius 0.092 0.223 0.131

Min Riesz 0-energy 0.091 0.198 0.107

6

Octahedron 0.111 0.174 0.063

Max Convex Hull Vol 0.111 0.174 0.063

Max N.N. Dist 0.111 0.174 0.063

Min Covering Radius 0.111 0.174 0.063

Min Riesz 0-energy 0.111 0.174 0.063

7

(No Platonic Solid) N/A N/A N/A

Max Convex Hull Vol 0.121 0.199 0.079

Max N.N. Dist N/A N/A N/A

Min Covering Radius 0.120 0.196 0.076

Min Riesz 0-energy 0.112 0.199 0.087

8

Cube 0.122 0.170 0.048

Max Convex Hull Vol 0.118 0.168 0.050

Max N.N. Dist 0.113 0.173 0.060

Min Covering Radius 0.116 0.160 0.044

Min Riesz 0-energy 0.124 0.160 0.036
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Table 6.2: Minimum and maximum probabilities of error for the 𝑀 points on a sphere
that minimize Riesz 0-energy with the Euclidean distance metric. The values below
were generated using 𝑞1 = 1/2.

𝛼 𝑀 Min 𝑃𝑒 Max 𝑃𝑒 Difference

𝜋/4

4 0.223 0.343 0.119

5 0.235 0.332 0.097

6 0.255 0.316 0.061

7 0.252 0.332 0.080

8 0.261 0.305 0.043

9 0.271 0.300 0.029

10 0.268 0.296 0.028

𝜋/2

4 0.076 0.213 0.137

5 0.091 0.198 0.107

6 0.111 0.174 0.063

7 0.112 0.199 0.087

8 0.124 0.160 0.036

9 0.129 0.156 0.027

10 0.132 0.151 0.019

3𝜋/4

4 0.029 0.121 0.092

5 0.044 0.116 0.072

6 0.063 0.092 0.029

7 0.059 0.118 0.060

8 0.066 0.091 0.025

9 0.068 0.085 0.016

10 0.070 0.086 0.015
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Table 6.3: Minimum and maximum probabilities of error for the 𝑀 = 6 points on
the sphere that minimize covering radius.

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.095 0.123 0.028

𝜋/2 0.046 0.086 0.040

3𝜋/4 0.023 0.052 0.029

1/4

𝜋/4 0.177 0.224 0.047

𝜋/2 0.081 0.133 0.051

3𝜋/4 0.042 0.075 0.033

3/8

𝜋/4 0.234 0.286 0.053

𝜋/2 0.103 0.155 0.052

3𝜋/4 0.055 0.086 0.031

1/2

𝜋/4 0.255 0.317 0.061

𝜋/2 0.111 0.174 0.063

3𝜋/4 0.063 0.092 0.029
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Figure 6-2: QMOCs generated using 𝑞1 = 3/8, and Etro POVMs constructed from 𝑀
points on an Etro sphere with maximum nearest neighbor distance. Each operating
point represents the 𝑃𝑓 and 𝑃𝑑 values obtained by a specific rotational orientation
of the 𝑀 points and an LRT with threshold 𝜂 = 𝑞0/𝑞1. (a) 𝑀 = 4, 𝛼 = 𝜋/4 (b)
𝑀 = 4, 𝛼 = 𝜋/2 (c) 𝑀 = 4, 𝛼 = 3𝜋/4 (d) 𝑀 = 5, 𝛼 = 𝜋/4 (e) 𝑀 = 5, 𝛼 = 𝜋/2 (f)
𝑀 = 5, 𝛼 = 3𝜋/4 (g) 𝑀 = 8, 𝛼 = 𝜋/4 (h) 𝑀 = 8, 𝛼 = 𝜋/2 (i) 𝑀 = 8, 𝛼 = 3𝜋/4.
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Chapter 7

Concluding Remarks and Future

Work

In this thesis we explored a variety of issues surrounding binary hypothesis testing

problems. The first major issue related to an optimality condition for ROCs gener-

ated using SVTs in addition to a constructive procedure for obtaining the optimal

ROC when the condition is not met. The second set of issues related to interpret-

ing the problem of quantum binary state discrimination using the language of linear

algebra applied to operator spaces. Inspired in large part by the use of redundancy

in classical frame theory for designing robust signal processing systems, we explored

how overcompleteness could be exploited in the context of quantum binary state

discrimination. We used decision and measurement operating characteristics as a

way of evaluating and comparing different binary hypothesis testing systems. Along

the way we defined a counterpart to the Bloch sphere for the class of Etro POVMs

and demonstrated how it might be useful to design qubit Etro POVMs by drawing

inspiration from other fields where distributing points on a sphere is an important

problem. Sections 7.1 to 7.3 below summarize the main points and describe a variety

of possibilities for future work.
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7.1 Optimal ROCs from Sub-Optimal ROCs

A principal result of Chapter 2 stated that an ROC that was generated using SVTs

applied to a scalar score variable is guaranteed to be the Neyman-Pearson optimal

ROC for that score variable if it is concave. A procedure was given for constructing

the optimal ROC from a non-concave SVT ROC. One of the most interesting aspects

of these results is the fact that they make use of the information inherently contained

in an ROC, independent of the score variable used to generate it. For the purposes of

identifying and obtaining the optimal ROC for a given score variable, they allow an

SVT ROC to be detached from any and all analytical models and real-world data. We

chose to focus on ROCs generated using SVTs, but an opportunity for future work

would be to ask similar questions of ROCs generated using other types of decision

regions. We also chose to focus on identifying and obtaining the optimal ROC (or

DOC in our terminology), but we did not ask the question of what the optimal

MOC is nor did we investigate possible answers to that question that already exist

in the literature. It would be interesting to find out if there is a parallel situation

for MOCs, i.e., the optimal MOC is known and accepted but often not explicitly

generated. Finally, all of our results pertain to scalar score variables. A possible area

of future study might extend these ideas to vector-valued score variables.

7.2 Frame Theory and Quantization for Quantum

Binary State Discrimination

In Chapters 4 through 6 the same basic structure of a pre-decision operator followed

by a binary decision rule is applied to exploring operating characteristics for quantum

binary hypothesis testing. However the nature of the pre-decision operator and cor-

responding score vector are fundamentally different than in the classical case. This

is a direct consequence of the fact that the physics of quantum mechanics is fun-

damentally different than the physics of classical mechanics and that measurement

outcomes on quantum systems are inherently probabilistic. While there are a number
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of ways in which quantum systems and quantum states can be described mathemat-

ically, we have chosen the representation in terms of the density operator and the

representation of the pre-decision operator in terms of a POVM which consists of an

indexed set of 𝑀 Hermitian, positive semidefinite operators that sum to the identity.

In Chapter 4 we summarize the key postulates from quantum mechanics that govern

the formulation and development of the quantum binary hypothesis testing problem

that is considered in this thesis. One specific way of viewing the underlying problem

as we formulate it is to imagine two possible physical environments corresponding

to 𝐻0 and 𝐻1 that we would like to distinguish between. And that any quantum

system prepared by or associated with each would have associated with it one of two

known density operators. The hypothesis testing system to be designed and evalu-

ated through its operating characteristics is based on knowledge of each of the two

density operators. The pre-decision operator is then a specified or previously designed

POVM. We assume that 𝐿 independent quantum mechanical systems or QMSs pre-

pared by only one of the environments are available for measurement and that we are

able to determine the index of the outcome after each measurement. The pre-decision

operator generates an 𝑀 -element vector of relative frequencies corresponding to the

number of occurrences of each of the 𝑀 possible measurement outcomes. This vector

is used as our score variable. The classic paper by Helstrom specifies the two-element

POVM and the decision boundary for minimum probability of error or equivalently

the decision boundary on the two-element probability vector based on the POVM.

Helstrom also noted that a 𝑑-element POVM with each element corresponding to

the outer product of the eigenvectors of the density operator associated with 𝐻0 can

equivalently be used. Here 𝑑 is the dimension of the Hilbert space that the density

operator acts on.

As in the earlier discussion of classical hypothesis testing, we separate the dis-

cussion of operating characteristics into QDOCs and QMOCs. The first assumes the

pre-decision operator, i.e., the POVM, has been specified and the operating char-

acteristics correspond to the LRT decision rule applied to the score variable vector

resulting from the POVM. QMOCs correspond to keeping fixed the decision region
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for the decision operator and varying the pre-decision operator or POVM. Our pre-

sentation of QMOCs is primarily intended to introduce the concept and to illustrate

it with a simple example.

Chapters 4 through 6 were directed at design of the pre-decision operator, i.e. the

POVM used to generate the score variable vector of relative frequencies where 𝑀

can in general be larger than the dimensionality of the two density operators to be

distinguished. This in effect corresponds to utilizing an overcomplete or redundant

characterization and measurement process. It is well-understood that overcomplete

representations of elements in a vector space through the use of a larger set than nec-

essary of linearly dependent vectors often has the advantage of providing robustness

to errors in the coefficients. A powerful and often used vector space methodology

for overcomplete representation of vector spaces is that of frames and that is the

methodology that we exploit in designing overcomplete POVMs. Consequently be-

fore utilizing frame representations of vector spaces, we summarize in Chapter 3 our

perspective and the notation and key properties that we exploit in Chapters 5 and

6. This includes the basics of frame theory. In effect, frames correspond to sets of

linearly dependent vectors that span the space, i.e. every vector in the space can be

constructed as a linear combination of the frame vectors. A basis set of vectors is

of course a valid frame but more generally, with linearly dependent frame vectors,

the set of coefficients representing any vector is not unique, and the representation is

overcomplete which offers redundancy and an opportunity for robustness. The spe-

cific viewpoint that we take is that the space 𝒱 being represented is a subspace of

some larger space 𝒲 . And that the overcomplete frame representation of a vector in

𝒱 can also be associated with a unique vector in the larger space 𝒲 . We introduced

the notion of analysis and synthesis maps which are closely connected to the more

traditional analysis and synthesis operators. Section 3.4 then extends this discussion

of frame representations to vector spaces in which the vectors are operators. The

notation and perspective associated with operator spaces as developed in Chapter 3

forms the basis for the discussion of the quantum binary state discrimination problem

stated in Chapter 4 and expanded upon in Chapters 5 and 6.
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Viewing quantum binary state discrimination through the lens of linear algebra

applied to operator spaces was a central component of this thesis. We found this

perspective to be intriguing in part because it naturally directed us towards the iden-

tification of a variety of signal processing methodologies that could be applied to

this problem. As just one example, the signal processing literature on issues stem-

ming from quantization error is rich and highly sophisticated (see [32] and references

therein). Techniques such as sigma-delta quantization and noise shaping more gener-

ally have been studied extensively (see, for example, [12]) and might have potential

for use in quantum binary state discrimination. The reason is that as mentioned in

Chapter 2, a vector of relative frequencies can be viewed as the output of a proba-

bilistic uniform quantizer applied to the corresponding vector of true probabilities.

We briefly explored how first order sigma-delta could be applied to quantum state

estimation as a way of more accurately representing an unknown density operator

in terms of a set of “quantization levels” corresponding to possible relative frequency

values. The hope was that we could formulate a problem and solution analogous to

the problem of accurately reconstructing a bandlimited continuous time signal using

quantized versions of its sample values. The issue we ran into is that in the latter

scenario, the error values stemming from the effect of the quantizer are assumed to

be known. In both an estimation setting and a discrimination setting the effect of the

“quantizer” is not known, so to adapt the technique the error itself would also need

to be estimated. This would be a very interesting possibility for future study.

Another example is the notion of generalized sampling [54], which roughly corre-

sponds to gathering information about an unknown vector by taking its inner prod-

ucts with other known vectors in the same space. In this sense measuring a QMS can

be considered as “sampling” its density operator since the probabilities of the mea-

surement outcomes are the inner products of the density operator with the POVM

elements of the measurement. It would be interesting to investigate how other sam-

pling paradigms that have been studied for signal processing applications could be

applied in this setting. This is already an active area of research in some cases. Com-

pressive sensing has been studied in the context of classical signal detection [36, 37]
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and also quantum state estimation and detection [33, 44]. The question of what it

means to obtain nonuniform samples of a quantum state may also be interesting to

consider.

7.3 Geometric Design of Qubit POVMs

Chapter 5 applies the methodology in Chapter 3 to density operators, POVM elements

and in particular utilizing frame theory to characterize informationally overcomplete

(IOC) POVMs. We specifically address the characterization of the density operators

and POVM elements in operator space associated with qubits. In this case, density

operators in this operator space are characterized by the well established Bloch ball

and Bloch sphere. As we develop in Chapter 5, when we restrict the POVM elements

to all be equal trace rank one operators in addition to being Hermitian and positive

semi-definite, they each can also be characterized by a point on the surface of a ball,

i.e., on a sphere. We refer to these as the Etro ball and Etro sphere which, for an

𝑀 -element POVM have radius
√
2/𝑀 . In other words, with the restrictions above,

an 𝑀 -element POVM can be specified by 𝑀 points on an Etro sphere.

Our discussion of POVM design in Chapter 6 is specifically based on selecting

the 𝑀 points on the Etro sphere from which the POVM is constructed. While a

frame in operator space by definition spans the space and provides a valid complete

or overcomplete representation of any operator in the space, it will not necessarily

correspond to a valid POVM since for completeness POVMs have the additional

constraint that all the elements must sum to the identity operator. Consequently

in designing an IOC POVM it is necessary to ensure that it is both a frame for the

operator space and a valid POVM. A commonly referenced class of IOC POVMs are

those constructed using Platonic solids with 𝑀 vertices where 𝑀 ∈ {4, 6, 8, 12, 20}.
In this case, the points on the Etro sphere are the 𝑀 vertices of the corresponding

Platonic solid. Example 5.5 in Section 5.4 utilized Platonic solids with 𝑀 = 4 and

𝑀 = 6 vertices and with 𝐿 = 5, 10 and 20 to illustrate, in a very preliminary way, the

effect of increasing either 𝐿 or 𝑀 for the QDOC for two somewhat arbitrarily chosen
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density operators. As is clear in the example increasing either 𝐿 or 𝑀 improves the

discrimination, a totally anticipated result. A strong candidate for future work is a

much more detailed exploration of how 𝐿 and 𝑀 individually affect the discrimination

with a broader set of examples. Also it would clearly be of interest to understand

the tradeoff between 𝐿 and 𝑀 . Increasing 𝐿 of course involves increasing the number

of identically prepared QMSs, whereas increasing 𝑀 involves increasing the number

of POVM elements at the measurement stage. Essentially 1/𝐿 can be interpreted as

a quantization step size for the relative frequencies, which suggests that an analysis

involving quantization as it is typically viewed in signal processing might be of use.

The inspiration for Chapter 6 comes from the role of Platonic solids in quantum

measurement and their potential use as illustrated in Example 5.5 for quantum state

discrimination. As stated in Section 5.3 the vertices of each Platonic solid can be

inscribed in an Etro sphere and define valid POVMs. In Chapter 6 we consider, in

a somewhat preliminary and exploratory way, other possible distributions of points

on the Etro sphere as the basis for POVMs to be used for qubit state discrimination.

The problem considered is again discriminating between two qubits with a known

orientation on the Bloch sphere with respect to each other but unknown orienta-

tion with respect to the Bloch sphere itself. Phrased differently, this corresponds to

the rotational orientation of the Etro sphere with respect to the Bloch sphere being

unknown. The simulations in Chapter 6 consider the minimum and maximum proba-

bilities of error in discrimination over all possible rotations of the two spheres relative

to each other and for a variety of choices for the POVMs resulting from distributing

𝑀 points on the Etro sphere. While there are no strong conclusions to be drawn

from these very preliminary simulations, Chapter 6 offers an initial approach to the

design of IOC POVMs. The underlying ideas could be extended both analytically

and through further simulations in many different ways. As an example, the problem

could be formally considered as a nonlinear optimization problem in which the goal is

to minimize the quantity (max𝑃𝑒−min𝑃𝑒), as defined in Chapter 6, over all possible

POVMs. The cost function could also be based on Bayes’ cost rather than probability

of error, or on a different of discrimination performance.
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Furthermore, in Chapter 6 we arbitrarily assumed that all relative orientations

of the Bloch and Etro spheres were equally likely. It would be interesting to know

what distributions of orientations are actually achievable using a specific physical

implementation of a qubit. For instance, assume that 𝐻0 and 𝐻1 correspond to two

specified laboratory procedures that prepare 𝐿 qubits in state 𝜌0 or 𝜌1. But assume

as well that the procedure can only prepare the qubits in that state to within some

error, corresponding for example to a small region on the surface of the Bloch sphere

concentrated around the desired state. That distribution of states could then be

factored into the design of the ideal POVM for discrimination. Other geometric tech-

niques besides finding distributions of points that are maximally spread would likely

come into play, and would need to be combined with the mathematical constraints

stemming from the postulates of quantum mechanics. Another possible area of study

concerns the fact that we only considered local, non-adaptive measurement schemes.

In other words, we assumed that each QMS was measured individually and that the

measurements performed were not dependent on any previous outcomes. We did not

consider how collective and adaptive measurement schemes could be interpreted or

exploited in the framework of operator spaces. Finally, we focused on Etro POVMs

for simplicity and did not consider the question of how to choose the traces of the

POVM elements to optimize discrimination performance. We also did not explicitly

consider the generalization of Etro POVMs to dimensions larger than 2.
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Appendix A

Chapter 6 Extended Results

Tables A.1 to A.34 below contain the minimum and maximum probabilities of error

(min𝑃𝑒 and max𝑃𝑒) corresponding to a wide range of possible rotational orientations

of various sets of 𝑀 points on the corresponding Etro sphere. More specifically, for a

given set of 𝑀 points on an Etro sphere, the orientation was varied by choosing an

arbitrary point as the north pole and then incrementing the azimuth and elevation

angles of that point over their full ranges using a step size of 𝜋/50.
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Table A.1: min𝑃𝑒 and max𝑃𝑒 for a tetrahedron (𝑀 = 4).

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.115 0.125 0.010 0.083 0.125 0.042
𝜋/2 0.092 0.125 0.033 0.027 0.105 0.078
3𝜋/4 0.071 0.125 0.054 0.008 0.067 0.060

1/4

𝜋/4 0.225 0.250 0.025 0.155 0.239 0.084
𝜋/2 0.177 0.250 0.2073 0.047 0.166 0.119
3𝜋/4 0.139 0.250 0.111 0.015 0.098 0.083

3/8

𝜋/4 0.326 0.375 0.049 0.202 0.318 0.115
𝜋/2 0.255 0.375 0.120 0.063 0.198 0.135
3𝜋/4 0.205 0.332 0.127 0.023 0.109 0.087

1/2

𝜋/4 0.390 0.422 0.032 0.224 0.344 0.121
𝜋/2 0.296 0.356 0.060 0.076 0.214 0.138
3𝜋/4 0.233 0.311 0.078 0.029 0.123 0.094

Table A.2: min𝑃𝑒 and max𝑃𝑒 for an octahedron (𝑀 = 6).

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.118 0.125 0.007 0.095 0.123 0.028
𝜋/2 0.103 0.125 0.022 0.046 0.087 0.041
3𝜋/4 0.089 0.125 0.036 0.023 0.052 0.029

1/4

𝜋/4 0.233 0.250 0.017 0.177 0.224 0.048
𝜋/2 0.202 0.250 0.048 0.081 0.135 0.053
3𝜋/4 0.176 0.229 0.053 0.042 0.075 0.033

3/8

𝜋/4 0.342 0.371 0.029 0.233 0.287 0.053
𝜋/2 0.287 0.309 0.023 0.103 0.156 0.053
3𝜋/4 0.232 0.272 0.040 0.055 0.086 0.031

1/2

𝜋/4 0.390 0.436 0.047 0.255 0.317 0.061
𝜋/2 0.296 0.382 0.086 0.111 0.174 0.063
3𝜋/4 0.233 0.346 0.113 0.063 0.094 0.031
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Table A.3: min𝑃𝑒 and max𝑃𝑒 for a cube (𝑀 = 8).

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.101 0.123 0.022
𝜋/2 0.108 0.125 0.017 0.055 0.086 0.031
3𝜋/4 0.098 0.125 0.027 0.031 0.052 0.021

1/4

𝜋/4 0.238 0.250 0.012 0.185 0.223 0.038
𝜋/2 0.214 0.250 0.036 0.091 0.133 0.042
3𝜋/4 0.182 0.228 0.046 0.051 0.073 0.022

3/8

𝜋/4 0.346 0.371 0.025 0.240 0.288 0.048
𝜋/2 0.289 0.315 0.026 0.116 0.154 0.039
3𝜋/4 0.232 0.272 0.040 0.063 0.084 0.021

1/2

𝜋/4 0.390 0.422 0.032 0.258 0.312 0.053
𝜋/2 0.296 0.356 0.060 0.122 0.170 0.048
3𝜋/4 0.233 0.311 0.078 0.068 0.093 0.025

Table A.4: min𝑃𝑒 and max𝑃𝑒 for an icosahedron (𝑀 = 12).

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.122 0.125 0.003 0.107 0.120 0.012
𝜋/2 0.114 0.125 0.011 0.065 0.076 0.011
3𝜋/4 0.107 0.120 0.014 0.038 0.046 0.008

1/4

𝜋/4 0.242 0.250 0.008 0.196 0.213 0.017
𝜋/2 0.218 0.228 0.010 0.105 0.116 0.011
3𝜋/4 0.188 0.214 0.026 0.059 0.066 0.008

3/8

𝜋/4 0.349 0.359 0.010 0.253 0.270 0.017
𝜋/2 0.291 0.305 0.014 0.128 0.138 0.009
3𝜋/4 0.245 0.256 0.011 0.070 0.077 0.007

1/2

𝜋/4 0.397 0.412 0.015 0.274 0.290 0.016
𝜋/2 0.309 0.338 0.028 0.137 0.145 0.008
3𝜋/4 0.251 0.288 0.037 0.074 0.081 0.007
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Table A.5: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 4 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.115 0.125 0.010 0.082 0.125 0.043
𝜋/2 0.092 0.125 0.033 0.027 0.105 0.077
3𝜋/4 0.071 0.125 0.054 0.008 0.068 0.060

1/4

𝜋/4 0.225 0.250 0.025 0.155 0.239 0.084
𝜋/2 0.177 0.250 0.073 0.047 0.167 0.119
3𝜋/4 0.139 0.250 0.111 0.015 0.098 0.082

3/8

𝜋/4 0.326 0.375 0.049 0.203 0.318 0.115
𝜋/2 0.255 0.375 0.120 0.063 0.198 0.135
3𝜋/4 0.205 0.332 0.127 0.022 0.110 0.088

1/2

𝜋/4 0.390 0.422 0.032 0.223 0.343 0.119
𝜋/2 0.296 0.355 0.059 0.076 0.213 0.137
3𝜋/4 0.233 0.311 0.077 0.029 0.121 0.092

Table A.6: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 5 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.117 0.125 0.008 0.089 0.125 0.036
𝜋/2 0.098 0.125 0.027 0.038 0.101 0.064
3𝜋/4 0.082 0.125 0.043 0.015 0.066 0.051

1/4

𝜋/4 0.230 0.250 0.020 0.165 0.236 0.071
𝜋/2 0.192 0.250 0.058 0.066 0.157 0.091
3𝜋/4 0.161 0.250 0.089 0.028 0.091 0.063

3/8

𝜋/4 0.336 0.375 0.039 0.216 0.307 0.091
𝜋/2 0.269 0.339 0.070 0.084 0.183 0.010
3𝜋/4 0.212 0.300 0.088 0.037 0.105 0.068

1/2

𝜋/4 0.392 0.433 0.042 0.235 0.332 0.097
𝜋/2 0.300 0.377 0.077 0.091 0.198 0.107
3𝜋/4 0.239 0.339 0.100 0.044 0.116 0.072
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Table A.7: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 6 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.118 0.125 0.007 0.095 0.123 0.028
𝜋/2 0.103 0.125 0.022 0.045 0.086 0.041
3𝜋/4 0.089 0.125 0.036 0.023 0.052 0.029

1/4

𝜋/4 0.233 0.250 0.017 0.177 0.224 0.048
𝜋/2 0.202 0.250 0.048 0.082 0.132 0.050
3𝜋/4 0.176 0.229 0.053 0.042 0.074 0.032

3/8

𝜋/4 0.342 0.371 0.029 0.234 0.287 0.053
𝜋/2 0.287 0.310 0.023 0.103 0.155 0.052
3𝜋/4 0.232 0.273 0.041 0.055 0.085 0.030

1/2

𝜋/4 0.390 0.436 0.047 0.255 0.316 0.061
𝜋/2 0.296 0.392 0.086 0.111 0.174 0.063
3𝜋/4 0.239 0.339 0.100 0.063 0.092 0.029

Table A.8: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 7 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.119 0.125 0.006 0.097 0.123 0.026
𝜋/2 0.106 0.125 0.019 0.050 0.092 0.042
3𝜋/4 0.094 0.125 0.031 0.027 0.055 0.028

1/4

𝜋/4 0.236 0.250 0.014 0.178 0.228 0.050
𝜋/2 0.209 0.250 0.041 0.083 0.143 0.060
3𝜋/4 0.175 0.219 0.045 0.045 0.080 0.036

3/8

𝜋/4 0.343 0.364 0.021 0.232 0.297 0.065
𝜋/2 0.278 0.316 0.038 0.103 0.169 0.066
3𝜋/4 0.230 0.285 0.056 0.054 0.094 0.040

1/2

𝜋/4 0.396 0.445 0.049 0.252 0.332 0.080
𝜋/2 0.308 0.398 0.090 0.112 0.199 0.087
3𝜋/4 0.249 0.367 0.118 0.059 0.118 0.060
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Table A.9: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 8 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.101 0.123 0.022
𝜋/2 0.108 0.125 0.017 0.056 0.087 0.031
3𝜋/4 0.098 0.125 0.027 0.031 0.055 0.024

1/4

𝜋/4 0.238 0.250 0.012 0.186 0.224 0.038
𝜋/2 0.214 0.250 0.036 0.092 0.131 0.038
3𝜋/4 0.183 0.234 0.050 0.051 0.076 0.025

3/8

𝜋/4 0.347 0.374 0.027 0.242 0.285 0.043
𝜋/2 0.281 0.317 0.037 0.115 0.155 0.040
3𝜋/4 0.228 0.291 0.062 0.062 0.089 0.027

1/2

𝜋/4 0.392 0.414 0.022 0.261 0.305 0.043
𝜋/2 0.300 0.341 0.041 0.124 0.160 0.036
3𝜋/4 0.239 0.293 0.054 0.066 0.091 0.025

Table A.10: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 9 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.103 0.122 0.019
𝜋/2 0.110 0.125 0.015 0.059 0.083 0.025
3𝜋/4 0.101 0.125 0.024 0.034 0.050 0.016

1/4

𝜋/4 0.239 0.250 0.011 0.189 0.221 0.032
𝜋/2 0.216 0.238 0.022 0.098 0.127 0.028
3𝜋/4 0.184 0.216 0.032 0.053 0.071 0.018

3/8

𝜋/4 0.348 0.361 0.013 0.247 0.280 0.033
𝜋/2 0.279 0.322 0.043 0.121 0.149 0.028
3𝜋/4 0.230 0.283 0.054 0.065 0.082 0.017

1/2

𝜋/4 0.397 0.413 0.016 0.271 0.300 0.029
𝜋/2 0.310 0.339 0.029 0.129 0.156 0.027
3𝜋/4 0.251 0.289 0.038 0.068 0.085 0.016
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Table A.11: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 10 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.121 0.125 0.004 0.105 0.121 0.017
𝜋/2 0.112 0.125 0.013 0.061 0.080 0.019
3𝜋/4 0.103 0.125 0.022 0.035 0.049 0.014

1/4

𝜋/4 0.240 0.250 0.010 0.192 0.217 0.025
𝜋/2 0.217 0.232 0.015 0.100 0.121 0.021
3𝜋/4 0.188 0.212 0.024 0.055 0.070 0.015

3/8

𝜋/4 0.350 0.359 0.009 0.249 0.276 0.028
𝜋/2 0.285 0.316 0.031 0.123 0.144 0.020
3𝜋/4 0.233 0.278 0.046 0.066 0.081 0.015

1/2

𝜋/4 0.397 0.415 0.018 0.268 0.296 0.028
𝜋/2 0.310 0.344 0.033 0.132 0.151 0.019
3𝜋/4 0.252 0.296 0.043 0.070 0.086 0.015

Table A.12: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 11 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.121 0.125 0.004 0.106 0.121 0.016
𝜋/2 0.113 0.125 0.012 0.063 0.082 0.019
3𝜋/4 0.105 0.125 0.020 0.035 0.050 0.015

1/4

𝜋/4 0.241 0.250 0.009 0.192 0.218 0.026
𝜋/2 0.215 0.236 0.020 0.101 0.124 0.022
3𝜋/4 0.185 0.217 0.033 0.054 0.071 0.017

3/8

𝜋/4 0.348 0.362 0.014 0.248 0.278 0.029
𝜋/2 0.285 0.315 0.030 0.124 0.145 0.021
3𝜋/4 0.236 0.275 0.039 0.065 0.082 0.017

1/2

𝜋/4 0.397 0.419 0.022 0.268 0.297 0.029
𝜋/2 0.310 0.350 0.040 0.131 0.151 0.020
3𝜋/4 0.251 0.304 0.053 0.070 0.086 0.016
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Table A.13: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 12 points on a sphere with minimum
Riesz 0-energy.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.122 0.125 0.003 0.107 0.120 0.012
𝜋/2 0.114 0.125 0.011 0.065 0.076 0.011
3𝜋/4 0.107 0.120 0.014 0.038 0.046 0.008

1/4

𝜋/4 0.242 0.250 0.008 0.196 0.212 0.017
𝜋/2 0.218 0.228 0.010 0.105 0.116 0.011
3𝜋/4 0.188 0.214 0.026 0.059 0.066 0.007

3/8

𝜋/4 0.349 0.359 0.010 0.253 0.270 0.016
𝜋/2 0.291 0.305 0.014 0.128 0.137 0.009
3𝜋/4 0.245 0.256 0.011 0.070 0.077 0.007

1/2

𝜋/4 0.397 0.412 0.015 0.274 0.290 0.016
𝜋/2 0.309 0.338 0.028 0.137 0.144 0.007
3𝜋/4 0.251 0.288 0.037 0.074 0.081 0.007

Table A.14: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 4 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.115 0.125 0.010 0.082 0.125 0.043
𝜋/2 0.092 0.125 0.033 0.027 0.105 0.078
3𝜋/4 0.071 0.125 0.054 0.008 0.068 0.060

1/4

𝜋/4 0.225 0.250 0.025 0.155 0.239 0.084
𝜋/2 0.177 0.250 0.073 0.047 0.167 0.119
3𝜋/4 0.139 0.250 0.111 0.015 0.098 0.083

3/8

𝜋/4 0.326 0.375 0.049 0.203 0.318 0.115
𝜋/2 0.255 0.375 0.120 0.063 0.198 0.135
3𝜋/4 0.205 0.332 0.126 0.022 0.110 0.088

1/2

𝜋/4 0.390 0.422 0.032 0.223 0.343 0.120
𝜋/2 0.296 0.356 0.060 0.076 0.213 0.137
3𝜋/4 0.233 0.311 0.078 0.029 0.122 0.092
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Table A.15: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 5 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.117 0.125 0.008 0.090 0.125 0.035
𝜋/2 0.098 0.125 0.027 0.038 0.107 0.068
3𝜋/4 0.082 0.125 0.043 0.015 0.071 0.056

1/4

𝜋/4 0.230 0.250 0.020 0.168 0.239 0.071
𝜋/2 0.192 0.250 0.058 0.068 0.171 0.104
3𝜋/4 0.161 0.250 0.089 0.028 0.103 0.075

3/8

𝜋/4 0.336 0.375 0.039 0.223 0.320 0.097
𝜋/2 0.269 0.339 0.071 0.087 0.204 0.116
3𝜋/4 0.212 0.301 0.088 0.037 0.118 0.081

1/2

𝜋/4 0.392 0.434 0.042 0.246 0.350 0.104
𝜋/2 0.300 0.377 0.077 0.097 0.224 0.126
3𝜋/4 0.239 0.340 0.101 0.043 0.134 0.091

Table A.16: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 6 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.118 0.125 0.007 0.095 0.123 0.028
𝜋/2 0.103 0.125 0.022 0.046 0.087 0.041
3𝜋/4 0.089 0.125 0.036 0.023 0.052 0.029

1/4

𝜋/4 0.233 0.250 0.017 0.177 0.224 0.048
𝜋/2 0.202 0.250 0.048 0.081 0.133 0.052
3𝜋/4 0.176 0.229 0.053 0.042 0.075 0.033

3/8

𝜋/4 0.342 0.371 0.029 0.234 0.287 0.053
𝜋/2 0.2387 0.310 0.023 0.103 0.156 0.052
3𝜋/4 0.232 0.273 0.041 0.055 0.086 0.031

1/2

𝜋/4 0.390 0.436 0.047 0.255 0.317 0.061
𝜋/2 0.296 0.382 0.086 0.111 0.174 0.063
3𝜋/4 0.233 0.346 0.113 0.063 0.092 0.029
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Table A.17: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 7 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.119 0.125 0.006 0.098 0.123 0.025
𝜋/2 0.106 0.125 0.019 0.051 0.092 0.041
3𝜋/4 0.094 0.125 0.031 0.026 0.055 0.029

1/4

𝜋/4 0.236 0.250 0.014 0.181 0.228 0.047
𝜋/2 0.208 0.250 0.042 0.088 0.143 0.056
3𝜋/4 0.175 0.219 0.045 0.045 0.080 0.035

3/8

𝜋/4 0.343 0.364 0.021 0.239 0.297 0.058
𝜋/2 0.278 0.316 0.038 0.112 0.169 0.057
3𝜋/4 0.230 0.285 0.055 0.056 0.094 0.038

1/2

𝜋/4 0.396 0.445 0.049 0.262 0.332 0.070
𝜋/2 0.308 0.399 0.091 0.121 0.199 0.079
3𝜋/4 0.249 0.368 0.119 0.061 0.119 0.058

Table A.18: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 8 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.100 0.123 0.023
𝜋/2 0.108 0.125 0.017 0.053 0.087 0.034
3𝜋/4 0.098 0.125 0.027 0.029 0.053 0.024

1/4

𝜋/4 0.238 0.250 0.012 0.184 0.224 0.041
𝜋/2 0.213 0.245 0.032 0.088 0.133 0.045
3𝜋/4 0.181 0.218 0.037 0.045 0.075 0.030

3/8

𝜋/4 0.346 0.363 0.017 0.238 0.288 0.050
𝜋/2 0.275 0.318 0.043 0.110 0.157 0.047
3𝜋/4 0.222 0.289 0.067 0.055 0.087 0.032

1/2

𝜋/4 0.396 0.426 0.030 0.257 0.310 0.054
𝜋/2 0.308 0.364 0.056 0.118 0.168 0.050
3𝜋/4 0.249 0.322 0.073 0.059 0.090 0.031
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Table A.19: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 9 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.103 0.122 0.019
𝜋/2 0.110 0.125 0.015 0.058 0.084 0.026
3𝜋/4 0.101 0.125 0.024 0.033 0.053 0.020

1/4

𝜋/4 0.239 0.250 0.011 0.188 0.220 0.032
𝜋/2 0.216 0.238 0.022 0.096 0.128 0.032
3𝜋/4 0.186 0.213 0.027 0.051 0.076 0.025

3/8

𝜋/4 0.348 0.360 0.012 0.245 0.281 0.036
𝜋/2 0.280 0.323 0.043 0.117 0.151 0.033
3𝜋/4 0.231 0.287 0.056 0.062 0.089 0.026

1/2

𝜋/4 0.395 0.413 0.018 0.266 0.301 0.036
𝜋/2 0.306 0.340 0.033 0.126 0.157 0.032
3𝜋/4 0.247 0.290 0.043 0.066 0.092 0.026

Table A.20: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 12 points on a sphere with maximum
convex hull.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.122 0.125 0.003 0.107 0.120 0.012
𝜋/2 0.114 0.125 0.011 0.065 0.076 0.011
3𝜋/4 0.107 0.120 0.014 0.038 0.046 0.008

1/4

𝜋/4 0.242 0.250 0.008 0.196 0.213 0.017
𝜋/2 0.218 0.228 0.010 0.105 0.116 0.011
3𝜋/4 0.188 0.214 0.026 0.059 0.066 0.008

3/8

𝜋/4 0.349 0.359 0.010 0.253 0.270 0.017
𝜋/2 0.291 0.305 0.014 0.128 0.138 0.009
3𝜋/4 0.245 0.256 0.011 0.070 0.077 0.007

1/2

𝜋/4 0.397 0.412 0.015 0.274 0.290 0.016
𝜋/2 0.309 0.338 0.028 0.137 0.144 0.008
3𝜋/4 0.251 0.288 0.037 0.074 0.081 0.007
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Table A.21: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 4 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.115 0.125 0.010 0.083 0.125 0.042
𝜋/2 0.092 0.125 0.033 0.027 0.105 0.078
3𝜋/4 0.071 0.125 0.054 0.008 0.067 0.060

1/4

𝜋/4 0.225 0.250 0.025 0.155 0.239 0.084
𝜋/2 0.177 0.250 0.073 0.047 0.166 0.119
3𝜋/4 0.139 0.250 0.111 0.015 0.098 0.083

3/8

𝜋/4 0.326 0.375 0.049 0.202 0.318 0.115
𝜋/2 0.255 0.375 0.120 0.063 0.198 0.135
3𝜋/4 0.205 0.332 0.127 0.023 0.109 0.087

1/2

𝜋/4 0.390 0.422 0.032 0.224 0.344 0.121
𝜋/2 0.296 0.356 0.060 0.076 0.214 0.138
3𝜋/4 0.233 0.311 0.078 0.029 0.123 0.094

Table A.22: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 5 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.117 0.125 0.008 0.090 0.125 0.035
𝜋/2 0.098 0.125 0.027 0.038 0.106 0.068
3𝜋/4 0.082 0.125 0.043 0.015 0.071 0.056

1/4

𝜋/4 0.230 0.250 0.020 0.168 0.239 0.071
𝜋/2 0.192 0.250 0.058 0.068 0.171 0.103
3𝜋/4 0.161 0.250 0.089 0.028 0.103 0.075

3/8

𝜋/4 0.336 0.375 0.039 0.224 0.319 0.095
𝜋/2 0.269 0.339 0.071 0.089 0.204 0.115
3𝜋/4 0.212 0.301 0.089 0.037 0.118 0.080

1/2

𝜋/4 0.392 0.433 0.042 0.240 0.348 0.098
𝜋/2 0.300 0.377 0.077 0.101 0.221 0.120
3𝜋/4 0.239 0.339 0.101 0.044 0.132 0.088
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Table A.23: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 6 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.118 0.125 0.007 0.095 0.123 0.028
𝜋/2 0.103 0.125 0.022 0.046 0.087 0.041
3𝜋/4 0.089 0.125 0.036 0.023 0.052 0.029

1/4

𝜋/4 0.233 0.250 0.017 0.177 0.224 0.048
𝜋/2 0.202 0.250 0.048 0.081 0.135 0.053
3𝜋/4 0.176 0.229 0.053 0.042 0.075 0.033

3/8

𝜋/4 0.342 0.371 0.029 0.233 0.287 0.053
𝜋/2 0.287 0.309 0.023 0.103 0.156 0.053
3𝜋/4 0.232 0.272 0.040 0.055 0.086 0.031

1/2

𝜋/4 0.390 0.436 0.047 0.255 0.317 0.061
𝜋/2 0.296 0.382 0.086 0.111 0.174 0.063
3𝜋/4 0.233 0.346 0.113 0.063 0.094 0.031

Table A.24: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 8 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.100 0.124 0.024
𝜋/2 0.108 0.125 0.017 0.053 0.096 0.043
3𝜋/4 0.098 0.125 0.027 0.029 0.068 0.039

1/4

𝜋/4 0.238 0.250 0.012 0.183 0.230 0.047
𝜋/2 0.214 0.250 0.036 0.086 0.145 0.059
3𝜋/4 0.185 0.249 0.064 0.044 0.097 0.052

3/8

𝜋/4 0.349 0.375 0.026 0.236 0.292 0.056
𝜋/2 0.274 0.319 0.045 0.106 0.167 0.061
3𝜋/4 0.221 0.290 0.069 0.053 0.113 0.059

1/2

𝜋/4 0.393 0.417 0.025 0.255 0.311 0.056
𝜋/2 0.302 0.347 0.046 0.113 0.173 0.060
3𝜋/4 0.241 0.301 0.060 0.057 0.116 0.059
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Table A.25: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 9 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.102 0.123 0.020
𝜋/2 0.110 0.125 0.015 0.057 0.085 0.028
3𝜋/4 0.101 0.125 0.024 0.031 0.054 0.023

1/4

𝜋/4 0.239 0.250 0.011 0.186 0.221 0.035
𝜋/2 0.218 0.245 0.028 0.090 0.127 0.037
3𝜋/4 0.182 0.223 0.041 0.048 0.076 0.028

3/8

𝜋/4 0.347 0.365 0.018 0.241 0.279 0.038
𝜋/2 0.277 0.322 0.045 0.108 0.147 0.040
3𝜋/4 0.228 0.279 0.051 0.058 0.088 0.029

1/2

𝜋/4 0.396 0.414 0.018 0.263 0.296 0.033
𝜋/2 0.308 0.341 0.034 0.116 0.152 0.036
3𝜋/4 0.249 0.293 0.044 0.063 0.090 0.027

Table A.26: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 12 points on a sphere with maximum
nearest neighbor distance.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.122 0.125 0.003 0.107 0.120 0.012
𝜋/2 0.114 0.125 0.011 0.065 0.076 0.011
3𝜋/4 0.107 0.120 0.014 0.038 0.046 0.008

1/4

𝜋/4 0.242 0.250 0.008 0.196 0.213 0.017
𝜋/2 0.218 0.228 0.010 0.105 0.116 0.011
3𝜋/4 0.188 0.214 0.026 0.059 0.066 0.008

3/8

𝜋/4 0.349 0.359 0.010 0.253 0.270 0.017
𝜋/2 0.291 0.305 0.014 0.128 0.138 0.009
3𝜋/4 0.245 0.256 0.011 0.070 0.077 0.007

1/2

𝜋/4 0.397 0.412 0.015 0.274 0.290 0.016
𝜋/2 0.309 0.338 0.028 0.137 0.145 0.008
3𝜋/4 0.251 0.288 0.037 0.074 0.081 0.007
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Table A.27: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 4 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.115 0.125 0.010 0.083 0.125 0.042
𝜋/2 0.092 0.125 0.033 0.027 0.105 0.078
3𝜋/4 0.071 0.125 0.054 0.008 0.067 0.059

1/4

𝜋/4 0.225 0.250 0.025 0.155 0.239 0.084
𝜋/2 0.177 0.250 0.073 0.048 0.167 0.119
3𝜋/4 0.139 0.250 0.111 0.015 0.098 0.082

3/8

𝜋/4 0.326 0.375 0.049 0.203 0.318 0.115
𝜋/2 0.255 0.375 0.120 0.064 0.198 0.135
3𝜋/4 0.205 0.332 0.127 0.023 0.110 0.087

1/2

𝜋/4 0.390 0.422 0.032 0.224 0.342 0.118
𝜋/2 0.296 0.355 0.059 0.077 0.211 0.135
3𝜋/4 0.233 0.311 0.078 0.029 0.120 0.091

Table A.28: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 5 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.117 0.125 0.008 0.090 0.125 0.035
𝜋/2 0.098 0.125 0.027 0.038 0.107 0.068
3𝜋/4 0.082 0.125 0.043 0.015 0.071 0.056

1/4

𝜋/4 0.230 0.250 0.020 0.167 0.239 0.071
𝜋/2 0.192 0.250 0.058 0.067 0.171 0.104
3𝜋/4 0.161 0.250 0.089 0.028 0.103 0.076

3/8

𝜋/4 0.336 0.375 0.039 0.221 0.320 0.098
𝜋/2 0.269 0.340 0.071 0.086 0.204 0.118
3𝜋/4 0.212 0.301 0.089 0.036 0.118 0.082

1/2

𝜋/4 0.392 0.433 0.042 0.240 0.350 0.109
𝜋/2 0.300 0.377 0.077 0.092 0.223 0.131
3𝜋/4 0.239 0.340 0.101 0.043 0.134 0.091
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Table A.29: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 6 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.118 0.125 0.007 0.095 0.123 0.028
𝜋/2 0.103 0.125 0.022 0.046 0.086 0.040
3𝜋/4 0.089 0.125 0.036 0.023 0.052 0.029

1/4

𝜋/4 0.233 0.250 0.017 0.177 0.224 0.047
𝜋/2 0.202 0.250 0.048 0.081 0.133 0.051
3𝜋/4 0.176 0.229 0.053 0.042 0.075 0.033

3/8

𝜋/4 0.342 0.371 0.029 0.234 0.286 0.053
𝜋/2 0.287 0.310 0.023 0.103 0.155 0.052
3𝜋/4 0.232 0.273 0.041 0.055 0.086 0.031

1/2

𝜋/4 0.390 0.436 0.047 0.255 0.317 0.061
𝜋/2 0.296 0.382 0.086 0.111 0.174 0.063
3𝜋/4 0.233 0.346 0.113 0.063 0.092 0.029

Table A.30: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 7 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.119 0.125 0.006 0.098 0.124 0.025
𝜋/2 0.106 0.125 0.019 0.052 0.092 0.040
3𝜋/4 0.094 0.125 0.031 0.026 0.055 0.029

1/4

𝜋/4 0.236 0.250 0.014 0.183 0.229 0.045
𝜋/2 0.208 0.250 0.042 0.089 0.144 0.055
3𝜋/4 0.175 0.219 0.045 0.045 0.080 0.034

3/8

𝜋/4 0.343 0.364 0.021 0.240 0.298 0.057
𝜋/2 0.278 0.316 0.038 0.110 0.169 0.059
3𝜋/4 0.230 0.285 0.055 0.057 0.094 0.038

1/2

𝜋/4 0.396 0.444 0.048 0.262 0.330 0.068
𝜋/2 0.308 0.396 0.088 0.120 0.196 0.076
3𝜋/4 0.249 0.365 0.116 0.062 0.116 0.055
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Table A.31: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 8 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.100 0.122 0.022
𝜋/2 0.108 0.125 0.017 0.054 0.084 0.030
3𝜋/4 0.098 0.125 0.027 0.030 0.052 0.022

1/4

𝜋/4 0.238 0.250 0.012 0.183 0.222 0.038
𝜋/2 0.205 0.242 0.037 0.089 0.128 0.039
3𝜋/4 0.173 0.216 0.044 0.050 0.075 0.025

3/8

𝜋/4 0.342 0.362 0.021 0.238 0.284 0.046
𝜋/2 0.281 0.318 0.037 0.107 0.151 0.044
3𝜋/4 0.232 0.286 0.054 0.061 0.089 0.028

1/2

𝜋/4 0.392 0.423 0.032 0.259 0.307 0.049
𝜋/2 0.300 0.358 0.058 0.116 0.160 0.044
3𝜋/4 0.238 0.315 0.076 0.064 0.091 0.027

Table A.32: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 9 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.120 0.125 0.005 0.103 0.122 0.019
𝜋/2 0.110 0.125 0.015 0.059 0.083 0.024
3𝜋/4 0.101 0.125 0.024 0.033 0.050 0.017

1/4

𝜋/4 0.239 0.250 0.011 0.188 0.219 0.031
𝜋/2 0.216 0.237 0.021 0.097 0.126 0.030
3𝜋/4 0.185 0.215 0.030 0.052 0.072 0.020

3/8

𝜋/4 0.349 0.361 0.012 0.245 0.280 0.035
𝜋/2 0.279 0.322 0.043 0.119 0.149 0.030
3𝜋/4 0.230 0.285 0.054 0.063 0.084 0.021

1/2

𝜋/4 0.396 0.413 0.017 0.265 0.300 0.034
𝜋/2 0.309 0.340 0.031 0.128 0.155 0.028
3𝜋/4 0.250 0.290 0.042 0.067 0.088 0.021
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Table A.33: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 10 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.121 0.125 0.004 0.105 0.121 0.017
𝜋/2 0.112 0.125 0.013 0.061 0.080 0.018
3𝜋/4 0.103 0.125 0.022 0.035 0.048 0.013

1/4

𝜋/4 0.240 0.250 0.010 0.192 0.217 0.025
𝜋/2 0.217 0.232 0.015 0.101 0.121 0.020
3𝜋/4 0.189 0.213 0.024 0.055 0.069 0.014

3/8

𝜋/4 0.350 0.359 0.009 0.249 0.276 0.027
𝜋/2 0.285 0.315 0.030 0.124 0.143 0.019
3𝜋/4 0.232 0.278 0.046 0.067 0.080 0.013

1/2

𝜋/4 0.398 0.416 0.017 0.269 0.296 0.028
𝜋/2 0.312 0.344 0.032 0.132 0.150 0.018
3𝜋/4 0.255 0.296 0.042 0.072 0.085 0.013

Table A.34: min𝑃𝑒 and max𝑃𝑒 for a set of 𝑀 = 12 points on a sphere with minimum
covering radius.

𝐿 = 1 𝐿 = 5

𝑞1 𝛼 Min 𝑃𝑒 Max 𝑃𝑒 Difference Min 𝑃𝑒 Max 𝑃𝑒 Difference

1/8

𝜋/4 0.122 0.125 0.003 0.107 0.120 0.012
𝜋/2 0.114 0.125 0.011 0.065 0.076 0.011
3𝜋/4 0.107 0.120 0.014 0.038 0.046 0.008

1/4

𝜋/4 0.242 0.250 0.008 0.196 0.213 0.017
𝜋/2 0.218 0.228 0.010 0.105 0.116 0.011
3𝜋/4 0.188 0.214 0.026 0.059 0.066 0.008

3/8

𝜋/4 0.349 0.359 0.010 0.253 0.270 0.017
𝜋/2 0.291 0.305 0.014 0.128 0.138 0.009
3𝜋/4 0.245 0.256 0.011 0.070 0.077 0.007

1/2

𝜋/4 0.397 0.412 0.015 0.274 0.290 0.016
𝜋/2 0.309 0.338 0.028 0.137 0.145 0.008
3𝜋/4 0.251 0.288 0.037 0.074 0.081 0.007
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Epilogue

The starting point that led me to this moment of completing my thesis took place at

the beginning of the fall semester in 2015. I had enjoyed two signal processing classes

in previous semesters and was eager to take their sequel, 6.341 – with the Professor

Alan Oppenheim!! I was so excited that I remember being scared to even open the

textbook, because in my mind that would mark the start of the class and the start

of the possibility that I might screw up in a subject I loved so much. At some point

during the semester an opportunity was offered to the students to participate in a

project involving signal processing education and online courses. I was eager to be

involved in any project involving signal processing, but was unsure if I should hold out

and apply for UROP positions instead. After much deliberation, I decided to write

an email to Professor Oppenheim asking for his advice. It was multiple paragraphs,

written and rewritten over several iterations. He responded, “Catherine, I’d be glad

to chat about all this if you’d like. -Al Oppenheim” I was floored.

It was pure luck that Al (he told me to call him Al!) had an opening for a UROP

student regarding a project in collaboration with Professor Randall Davis. This led

to a summer internship at Digital Cognition Technologies, Inc. in Waltham in the

summer of 2016. In terms of my thesis, one of the most important things to come out

of that internship was a growing familiarity with and curiousity about ROC curves.

Al pointed out numerous times over the summer and going into the fall that it was

interesting and peculiar how multiple ROCs are so often compared using the areas

underneath them, i.e., their AUCs. Over coffee and bagels at the Au Bon Pain in

Kendall Square, we talked about what the AUC really meant and did some research

into the debate behind it. Eventually this question became both my introduction to
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Al’s style of research (solutions in search of problems) and my Masters of Engineering

thesis.

I also started attending the DSPG meetings that took place every Thursday from

5-6:30 PM in the Jackson Room. They were originally the group meetings of DSPG,

but as I would come to learn they had morphed into free-wheeling discussions between

Al, a selection of graduate students from the department, and three to five of Al’s

former students who lived in the area. For over a year I was much too scared to at-

tempt to contribute anything or even ask questions. Eventually I let my guard down

and was able to enjoy the discussions to their fullest extent. The spirit of the dis-

cussions hinged on complete trust and respect between all participants. “Ridiculous”

ideas and free associations were not just accepted but openly encouraged. Sometimes

they wouldn’t lead anywhere, but more often than not they would result in important

connections or “threads” to tug on in a students’ thesis. The people I got to know

there – Dr. Petros Boufounos, Dr. Sefa Demirtas, Dr. Dan Dudgeon, Dr. James

Ward – became role models for me and not just because of their impressive technical

knowledge. Rather, I saw firsthand how genuine and kindhearted they were as people,

how easily they all laughed at themselves when they made mistakes, and how eager

they were to mentor younger students like me.

When it came time to start thinking about a topic for my doctoral thesis, I knew

two things – that I loved linear algebra and I loved physics. The former had been

further fueled by Petros Boufounos’ class on Advanced Topics in Signal Processing.

I thoroughly enjoyed the physics classes I took during my undergraduate years and

wanted a reason to go back and study some of the topics more carefully. Unfortu-

nately, I didn’t know which ones, so Al advised me to look back at several previous

DSPG theses that involved physics. These included Professor Yonina Eldar’s thesis

titled Quantum Signal Processing and Professor Andrew Singer’s thesis titled Signal

Processing and Communication with Solitons. Eventually we circled back to talking

about hypothesis testing and how the quantum binary state discrimination prob-

lem was typically formulated. A key paper was Receiver Operation Characteristics of

Quantum State Discrimination by Bodor and Koniorczyk, who we eventually reached
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out to and had very pleasant and collegial email exchanges with. Classically we were

used to thinking about the problem as starting from the conditional distributions

of the score variable and ending with the design of the decision region. Quantum

mechanically much of the discussion was about the design of the measurement oper-

ators. Since it was usually assumed that there were only two possible measurement

outcomes, the decision region was essentially trivial with each outcome corresponding

to a different final decision. It took quite a while for us to be able to square these

two paradigms with each other. We eventually realized that each design problem was

actually related to two separate stages of a general binary hypothesis testing prob-

lem. We decided to call these the pre-decision operator and the binary decision rule.

Essentially our viewpoint became that the design of a quantum measurement was

tantamount to designing the shape of the conditional distributions, and once those

were fixed classical decision theory could take over to specify an optimal decision

region.

At around the same time, we were writing a paper for ICASSP 2019 that sum-

marized the main results of my M.Eng. thesis. The topic was ROCs and classical

binary hypothesis testing. Dr. Jim Ward was among those who graciously read our

drafts and gave us feedback. And it was in a meeting with him that the question of

whether or not a concave SVT ROC was guaranteed to be identical to the LRT ROC

of the same score variable. The moment I realized that the answer was yes, which

became a main result of this thesis, came in the middle of a lecture for the Quantum

Computation course that Al and I were taking together as listeners. It was the first

time that I realized that an important technical results might reveal itself at a time

when my mind was relaxed and thinking about something completely unrelated.

The Quantum Computation course was also significant because it gave me a more

solid foundation in topics surrounding quantum engineering and because of the final

project I completed with the guidance of Al and Professor Ike Chuang, who at this

point was officially on my committee along with Dr. James Ward. The project topic

was the quantum Fourier transform or QFT. Al, Ike, and I discussed how the quantum

circuit diagram typically associated with the QFT corresponded directly to the fast
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Fourier transform in signal processing, or FFT. The FFT and associated butterfly

flow graph is one way of computing the discrete Fourier transform of a signal, but

there are many others. Our objective was to explore other quantum circuits that

corresponded to other signal flow graphs. We ultimately focused on the Singleton

algorithm, and the resulting study was an excellent opportunity for me to practice

manipulating basic quantum circuit elements and comparing them to concepts I was

already familiar with in signal processing.

The following year in the spring of 2019, Al and I went to ICASSP in Brighton in

the UK. It was my first conference and an absolutely wonderful experience. Thomas

and I flew to England together and spent a few days in London before the conference

started. We then met up with Al in Brighton. Al and I attended a workshop together

and afterwards discussed our reactions to the style of the presentation and whether,

if we were hypothetically giving a similar presentation, we would want the slides to

be standalone with a lot of information or more sparse and intended to be viewed

only with the talk. Over the course of the conference we also talked about the

different keynote speakers and how they each grabbed the audience and kept our

attention using different techniques. Some of the happiest parts of the conference

were when I met several DSPG alumni whose names I had heard many times –

Professor John Buck and Professor Andrew Singer among them. They assured me

that I was always welcome to reach out to them for advice, which I have. I gave my

first poster presentation and John Buck, who I had only met the night before, came

by for the sole purpose of slipping me a bottle of water.

The next important milestone for me happened later that year, when I attended

the 2019 Allerton conference in Monticello, Illinois. Our paper was about quantum

binary hypothesis testing and specifically about two different types of operating char-

acteristics which we referred to as QDOCs and QMOCs. The Allerton conference

was completely different than ICASSP in both scope and style. Whereas ICASSP

had thousands of attendees, tens of booths dedicated to various organizations, and

numerous lecture halls, Allerton was held in a remote location with closer to two hun-

dred attendees who all spent the day in a single medium sized building with about
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five attached seminar rooms. I met and made friends with fellow graduate students,

felt secretly proud but also self-conscious when I recognized some of my professors,

and gave my first oral presentation at a conference.

In the time period after the Allerton conference, we came across an important

paper that would end up being the source of a large part of our viewpoint about

quantum binary state discrimination and informationally complete and overcomplete

POVMs. This was Scott’s paper titled Tight Informationally Complete POVMs. It

took several weeks to “decode” the elegant mathematical analysis laid out by Scott.

It was well worth it. Doing this gave me an understanding of frames for operator

spaces and the importance of decomposing the operator space 𝒱 into the span of the

identity and its orthogonal complement. It also helped me understand how IC and

IOC POVMs are used in quantum state estimation including how the dual frame of

an operator-valued frame might be difficult to compute. Finally, it introduced me to

generalizations of the Bloch sphere in higher dimensions.

Al and I spent many hours at the whiteboard gaining a common understanding

of the postulates of quantum mechanics, the word “state”, frames, operator spaces,

frames of operator spaces, the word “measurement”, projections, POVMs, etc. Every

single bit of intellectual content in this thesis was the result of these conversations, in

addition to valuable discussions with many other collaborators. These discussions are

something I’m really going to miss. We became very close as a result of spending so

many hours together, challenging each other without any ego involved, and celebrating

our most intriguing insights. Sometimes I was the teacher, sometimes Al was the

teacher, and sometimes we were both equally confused.

Once we had more or less settled on a viewpoint for informationally complete and

overcomplete POVMs, we set about coming up with ideas about how to demonstrate

that overcompleteness could potentially benefit the performance of quantum binary

state discrimination system. This lead us to an exploration of POVMs constructed

using Platonic solids. We produced simulations showing that a scenario could be

constructed where increasing𝑀 could lead to superior ROCs. At this point Al pointed

out that Platonic solids with more vertices (higher 𝑀) were closer approximations

187



of a sphere than those with fewer vertices. He then asked what might happen if we

looked at POVMs constructed from geodesic domes. Would that allow us to observe

the trend for a larger range of 𝑀 or lead to other new insights? This led to a series

of very interesting discussions between the two of us along with Andy Ding, a new

student and friend who officially joined DSPG in the spring of 2021, although we had

known him for much longer. It was eventually Andy who did some initial research into

the optimal way of evenly distributing 𝑀 points on a sphere. Among other insights,

he pointed out that to us that the Riesz 𝑠-energy was a commonly used criterion.

Another topic we worked on for a short time was the application of first-order noise

shaping techniques as described by Boufounos and Oppenheim in Quantization Noise

Shaping on Arbitrary Frame Expansions to quantum binary state discrimination.

This paper helped me understand first-order sigma-delta quantization, which I had

originally been exposed to in 6.341, in a completely new light that was rooted in linear

algebra. We realized that the methodologies explained in that paper could be applied

to the problem of expressing a density operator as accurately as possible as a linear

combination of Hermitian operators, with the constraint that the coefficients had to

be of the form 𝑛/𝐿 for some integer 0 ≤ 𝑛 ≤ 𝐿. More specifically, the probabilities

that represented the true coefficients had to be replaced by a series of quantized

counterparts. The problem that Al pointed out is that the sigma-delta technique

requires knowledge of the true coefficients (the probabilities) in order to compute the

error introduced by quantization. And in quantum binary state discrimination and

quantum state, these are of course not available. If I had more time or could write

another thesis, I would love to work on this area more.

Up until a few months ago Al and I had never talked about POVMs whose elements

all had equal trace and were all rank one, and we certainly would have been confused

at the idea of a sphere other than the Bloch sphere. This was even the case while

much of the work that Andy was involved in with optimal arrangements of points

on a sphere was being done. Al had told me several times over the course of my

studies that key insights often came at the end of a student’s program, frequently

after they were well into the writing of the thesis. So it wasn’t surprising when just
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a few months ago, during a discussion where we were trying to find a clear way to

describe how POVMs were built from points on the Bloch sphere, that Al pointed out

that in fact, we weren’t talking about the Bloch sphere at all. This obviously ended

up becoming an important concept in the thesis. Funnily enough, it took us many

tries to come up with a name to call the “other” spheres that we were talking about.

One of the last major pieces of my graduate career that was fundamental to the

development of my thesis is the monograph that Al and I wrote together for Founda-

tions and Trends in Signal Processing. This opportunity was graciously presented to

us in the early months of 2019 by Professor Yonina Eldar. At the time, we were only

just starting to delve into issues of quantum binary state discrimination and the intent

was for the article to mainly be a tutorial on operating characteristics for classical

binary hypothesis testing. We also planned on including some non-tutorial results

such as the optimality criterion for SVT ROCs presented in Chapter 2 of this thesis.

As it turned out, we would work on the Foundations and Trends monograph for over

two years and it would become an extremely useful way for me to metabolize and

deeply understand many concepts related to this thesis. It also provided motivation

at crucial points in time where I might otherwise have lost momentum. Al pointed out

that it is more typical for a student to write the thesis first before moving on to the

corresponding major publication or report containing the main results. By chance,

it happened for this thesis in the opposite order. Retrospectively I’m extremely glad

that this was the case because it made writing the thesis less daunting. This was a

result of the fact that Al and I had had many debates about how to frame or present

most if not all of the main topics.

I always assumed that finishing my thesis would feel like tying a big shiny bow on

top of a present – joyful, gratifying, and complete. The first two of these turned out to

be true. I feel joyful because writing the thesis and especially this epilogue reminded

me of all the reasons I loved this subject material to begin with. And it’s gratifying to

remember how complicated the journey was to get to the final picture. But writing the

thesis also reminded me of all of the exciting little pet projects that I never had time

to finish, and all of the ideas on the shelf that have come up at one point or another
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over the years and that we thought we might look into. As frustrating as it is, I’m

happy and somewhat relieved that the research this thesis represents is not a “dead

end”, at least not with regards to my own personal interests. I see now that I could

happily continue this work for several more years. The picture that comes to mind is

as follows: If the scope of this thesis were a vector space, then each individual sub-

topic would represent a basis vector. The overlapping perspectives, viewpoints, and

interpretations given to these topics would be linear combinations of those vectors.

And all together the whole picture would not be complete, but overcomplete. These

layers of redundancy add depth and enrichment, primarily for my own education if

nothing else. With this in mind the six words that summarize my thesis experience

are: A finished thesis is always overcomplete.
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