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Abstract—A qubit pure state can be specified by a point on
the Bloch sphere, and similarly certain quantum measurements
can be specified by M points on a sphere which we refer to
as an Etro sphere. A key objective of this paper is to compare
the performance for discriminating between two qubit pure states
using POVM designs based on the distribution of M points on the
Etro sphere. We specifically address the case where the alignment
of the M points relative to the coordinates of the sphere is
unknown. Of particular interest is the insensitivity of the POVM
designs as measured by the difference between the maximum and
minimum probabilities of error over all alignments. We consider
distributions of the M points corresponding to Platonic solids
as well as optimal distributions with respect to several criteria
including, for example, maximum nearest neighbor distance
and minimum Riesz s-energy. We provide evidence through
simulation of various performance tradeoffs such as the tradeoff
between stability and best case performance.

Index Terms—Quantum state discrimination, POVM design,
quantum measurement, Platonic solids, Bloch sphere, Bloch
vectors, qubit

I. INTRODUCTION

We consider measurement design for discriminating be-
tween one of two possible quantum states of a qubit as arises
for example in quantum optical communications [1]–[3] and
in scenarios of quantum device testing. We consider that an
ensemble of L qubits has been prepared in one of two pure
states by one of two apparatuses. Our focus relates to deciding
which of the two apparatuses was used. Each pure state of a
qubit can be represented by a three-dimensional unit vector or
equivalently by a point on the Bloch sphere [4]. We consider
the case where the relative angle between the two states is
known, but their alignment relative to the coordinates of the
Bloch sphere is not. It is desirable to choose a quantum
measurement whose discrimination performance is stable over
all possible rotations of the Bloch sphere coordinates relative
to the possible qubit states.

A quantum measurement can be described through an
associated positive operator-valued measure (POVM). The
POVMs that we consider can be fully specified by a set of
M three-dimensional vectors of equal norm

√
2/M , with each

POVM element corresponding to a unique point on a sphere
of radius

√
2/M , defined in Section III as an Etro sphere.

Considerable work by others has focused on POVM design
based on inscribing within an Etro sphere one of the five
Platonic solids [5]–[9]. In this paper we propose and compare
the performance of alternative POVM designs based on several

different strategies for arranging M points on an Etro sphere.
This and related work is also discussed in [11], [12].

II. QUANTUM MECHANICS PRELIMINARIES

The postulates of quantum mechanics give rise to such
problems where the system operate fundamentally differently
than a classical system. The two key postulates in [4] which
are essential to the formulation of our POVM design strategy
are briefly paraphrased below.

A. Quantum State Postulate

The state of an isolated quantum system can be represented
by a positive semi-definite unit trace Hermitian operator, the
density operator, denoted by ρ, that acts on a complex Hilbert
space H of dimension N . ρ can be written in terms of its
eigenbases as

ρ =

N−1∑
i=0

pi |ψi⟩ ⟨ψi| (1)

where {pi} sum to 1 and {|ψi⟩} are orthonormal. The density
operator generally describes a mixed state, i.e. an ensemble of
pure states. In this paper, we specifically deal only with pure
states in which case the density operator has the form

ρ = |ψ⟩ ⟨ψ| . (2)

The vector |ψ⟩ is often referred to as a pure state vector. In
this paper, we restrict the dimension of the Hilbert space H
to be N = 2.

B. Quantum Measurement Postulate

A quantum measurement with M possible outcomes is rep-
resented by a collection of M operators {Ak, k = 1, 2, ...,M},
with each value of the index k corresponding to a possible
measurement outcome. The probability that the kth measure-
ment outcome occurs is

p(k) = Tr(A†
kAkρ) (3)

where † denotes Hermitian adjoint and Tr denotes the trace
operator.

Defining Ek = A†
kAk, it follows from the postulates of

quantum mechanics that the collection of operators {Ek}
satisfy the properties required of a POVM, i.e. Ek is a
positive semi-definite operator such that

∑M
k=1Ek = I and

p(m) = ⟨ψ|Em |ψ⟩. These constraints on the set of operators
{Ek} are sufficient to determine the probabilities of different



Fig. 1: Framework for qubit state discrimination.

measurement outcomes. The set {Ek} is called a POVM and
each Ek is referred to as a POVM element.

III. QUANTUM BINARY STATE DISCRIMINATION

In this section, we first present the basic framework and
notation for the qubit state discrimination problem, and then
summarize the Bloch sphere and Etro spheres, which are
geometric representations of density operators and POVM
operators.

A. Discrimination Strategy

The two stages of the discrimination process are shown in
Fig. 1. The input to the system consists of L identical qubits
all prepared in the same quantum state. The corresponding
density operator ρ is equal to ρ0 or ρ1 with some known prior
probabilities. Our objective is to distinguish between these two
possibilities. To this end the L qubits are first processed by
a pre-decision operator which performs the same M -outcome
quantum measurement on each qubit. The M -element POVM
associated with the measurement will be denoted by {Ek, k =
1, 2, . . . ,M}. The measurement outcomes are assembled into
a relative frequency vector

s⃗ =
[
n1/L n2/L · · · nM/L

]T
, (4)

where nk, k = 1, 2, ...,M denotes the number of occurrences
of the kth measurement outcome. In the second stage of the
strategy, a decision of Ĥ = H0 (indicating that ρ = ρ0) or
Ĥ = H1 (indicating that ρ = ρ1) is made based on the relative
frequency vector obtained. We assume that the objective is to
minimize probability of error, in which case it is well-known
that the optimal decision rule is a likelihood ratio test (LRT)
with a threshold equal to the ratio of the prior probabilities
[10].

The use of an LRT to minimize probability of error is based
on the viewpoint that the observed relative frequency vector
s⃗ can be thought of as one realization of a vector-valued
random variable S⃗. The conditional distributions of S⃗ given
that ρ = ρ0 or ρ1 are multinomial distributions parameterized
by the value of L and by the probabilities given by Equation
(3) with ρ = ρ0 or ρ1. Exact expressions for the conditional
distributions can be found in Appendix A of [11].

B. Bloch Sphere and Etro Spheres

Our focus is on single-qubit systems for which ρ is an opera-
tor on a two-dimensional complex Hilbert space. Typically, the
Bloch sphere is used to geometrically represent the quantum
state of a qubit [4]. The density operator ρ that represents a
pure state can be written as

ρ =
1√
2

I√
2
+ r1

σ1√
2
+ r2

σ2√
2
+ r3

σ3√
2

(5)

where I is the identity matrix and σ1, σ2, σ3 are the Pauli
matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −j
j 0

]
, σ3 =

[
1 0
0 −1

]
. (6)

When ρ represents a pure state, then r21 + r22 + r23 =
1/
√
2 [4]. The normalized identity and Pauli matrices

{I/
√
2, σ1/

√
2, σ2/

√
2, σ3/

√
2} form a common orthonormal

basis for a two-dimensional complex Hilbert space H = C2.
It is thus sufficient to specify the density operator of a

pure state by a three-dimensional vector r⃗ = [r1, r2, r3]
T with

∥r⃗∥ = 1/
√
2. In this way, the density operator of a pure state

always corresponds to a three-dimensional vector from the
origin to a point on a sphere with radius 1/

√
2. r⃗ is referred

to as the Bloch vector of the state.
In our POVM design for state discrimination each POVM

element can be described in the same basis as the density
operators, i.e. each POVM element Ek can be expressed as

Ek =
Tr(Ek)√

2

I√
2
+ck1

σ1√
2
+ck2

σ2√
2
+ck3

σ3√
2
, k = 1, 2, ...,M

(7)
We further restrict all of the M POVM elements to be rank
one and have equal trace 2/M . Furthermore with the POVM
constraints as described in Section III, we have

M∑
k=1

Tr(Ek) = 2 (8a)

0 ≤ Tr(Ek) ≤ 2, k = 1, 2, ...,M (8b)

M∑
k=1

c⃗k = 0⃗ (8c)

With these constraints each element of a specific POVM can
be represented geometrically as a three dimensional vector
c⃗k = [ck1, ck2, ck3]

T with ∥c⃗k∥ = Tr(Ek)/
√
2 =

√
2/M from

the origin to a point on a sphere with radius
√
2/M . The

sphere associated with any specific POVM will be referred to
as an Etro sphere to identify the fact that all POVM elements
represented by points on the sphere are equal trace and rank
one and correspondingly the design of an M element POVM
corresponds to choosing an appropriate set of M points on the
sphere.

IV. PROBLEM STATEMENT

We consider the design of POVMs for discriminating be-
tween two possible pure states given a collection of L qubits
that have all been identically prepared in one of two states.
The Bloch vectors of the two pure states are r⃗i for i ∈ {0, 1}.
The angle α between the {r⃗i}, illustrated in Fig. 2, takes
values between 0 and π. The prior probabilities are denoted
by P (r⃗i) for i ∈ {0, 1}. As described in Section III, we
discriminate between the two hypotheses by performing L
identical measurements, one on each of the L qubits and
all with the same POVM. A final decision is made by
performing an LRT on the vector of relative frequencies of the
measurement outcomes. As identified in Section III, the design



Fig. 2: Bloch vectors of ρ0 and ρ1.

of the POVM can be framed as a problem of appropriately
distributing M points on the POVM Etro sphere. The objective
is to compare the performance of POVMs constructed from
different sets of {c⃗k} and equivalently different distributions
of M points on the POVM Etro sphere, according to their
minimum and maximum probabilities of error (Pe) over all
possible orientations of the {c⃗k}.

In the design of the POVM, we consider as an important
goal the insensitivity of the performance in discrimination
to rotation of the Bloch sphere relative to the qubit Bloch
vectors, which for example could result from some error in
the apparatuses. In particular, the angle α between the {r⃗i}
is assumed known but the overall orientation of {r⃗i} on the
Bloch sphere is unknown. Intuition suggests that designing the
POVM to maximally distribute points on the Etro sphere will
tend to reduce the variation of performance over all possible
orientations.

Various approaches to and criteria for distributing M points
on a sphere have been reported in the literature [13]–[15].
We first consider distributions of points that correspond to
the vertices of a Platonic solid. In addition, we consider the
distribution of the points according to minimizing Riesz s-
energy for a given value of M with the constraint that {c⃗k}
must sum to zero. In three dimensions the s-energy of a set
of M points on the unit sphere is defined as follows. Assume
that {c⃗k} is the set of unit vectors that extend from the origin
to each of the M points and let ∥c⃗j − c⃗k∥ denote the distance
between c⃗j and c⃗k. In this paper Euclidean distance is used.
The s-energy of the points is

E(s) =

{∑
1≤j<k≤M log ∥c⃗j − c⃗k∥−1, if s = 0∑
1≤j<k≤M ∥c⃗j − c⃗k∥−s, if s > 0

(9)

Minimizing E(0) is equivalent to maximizing the product of
distances between points. Minimizing E(1) is equivalent to
minimizing the electric potential energy of a system with point
charges located at points specified by {c⃗k}. As s→ ∞, only
the two closest points contribute to the sum and minimizing
E(s) corresponds to maximizing nearest neighbor distance.

In the simulation results presented in Section V, we also
consider optimal numerical solutions with respect to maximum
nearest neighbor distance, maximum convex hull volume, and
minimum covering radius criteria [13], [16]–[19]. The latter
two criteria are defined, respectively, as

max
c⃗1 ,⃗c2,...,⃗cM

min
1≤j<k≤M

∥c⃗j − c⃗k∥ (10a)

min
c⃗1 ,⃗c2,...,⃗cM

max
x⃗:∥x⃗∥=

√
2/M

min
1≤k≤M

∥x⃗− c⃗k∥ (10b)

Note that the optimal numerical solutions are computed with-
out imposing the constraint that {c⃗k} must sum to zero,
although it is not surprising that many solutions are symmetric
and thus naturally sum to zero or to a vector with a very small
norm. To ensure that the condition of Equation (8c) is met,
we append an extra error vector ϵ⃗ = −

∑
k c⃗k to {c⃗k} with

corresponding POVM element Eϵ. This additional element
does not change the broad trend in our observations as we
require ∥ ϵ⃗ ∥ ≤ 10−8.

V. SIMULATIONS AND OBSERVATIONS

A sampling of preliminary simulation results is shown in
Tables I to III for collection size L = 5. The trends shown
were observed more broadly than in the examples given here,
but notably, there are some important observations that require
further study. Note that table entries marked as “N/A” indicate
that no Platonic solid is available for that value of M or
that the optimal configuration of points do not satisfy the
requirements required of a POVM. For fixed α and P (r⃗1),
larger values of M often correspond to lower maximum Pe but
higher minimum Pe over all possible orientations (see Table
I). This tradeoff had been previously demonstrated using only
point distributions corresponding to Platonic solids in [9]. For
a fixed value of M ∈ {4, 6, 8, 12, 20}, the Platonic solid with
M vertices is not necessarily the best arrangement of points
in terms of its sensitivity to rotation. This can be seen, for
example, in Table I for the case where M = 6. For fixed
P (r⃗1), the increase in stability with M is more pronounced
for smaller values of α (see Table II), which makes intuitive
sense since smaller values of α correspond to Bloch vectors
states that are more collinear and thus more sensitive to small
changes in the orientation of the Bloch sphere. For fixed M ,
larger values of α and values of P (r⃗1) that are further from
1/2 generally lead to lower minimum and maximum Pe (see
Table III).

In addition to considering distributions of points that are
optimal with respect to various criteria, we have also con-
ducted experiments with distributions of points that have a
range of s-energy values for s = 0, including but not limited
to the minimum possible value. We require that each point
distribution form a tight frame for R3 to facilitate more
direct comparison with the Platonic solids, which all have
this property. Our results suggest that for a given value of
M , those distributions of points with lower values of E(0) on
average achieve lower maximum Pe at the cost of expecting a
higher minimum Pe. The monotonic trend between E(0) and
sensitivity to rotation was observed for a large range of values
of both α and P (r⃗1).
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