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ABSTRACT

The Receiver Operating Characteristic (ROC) is a well-
established representation of the tradeoff between detection
and false alarm probabilities in binary hypothesis testing. In
many practical contexts ROC’s are generated by thresholding
a measured score variable — applying score variable threshold
tests (SVT’s). In many cases the resulting curve is different
from the likelihood ratio test (LRT) ROC and is therefore
not Neyman-Pearson optimal. While it is well-understood
that concavity is a necessary condition for an ROC to be
Neyman-Pearson optimal, this paper establishes that it is also
a sufficient condition in the case where the ROC was gener-
ated using SVT’s. It further defines a constructive procedure
by which the LRT ROC can be generated from a non-concave
SVT ROC, without requiring explicit knowledge of the con-
ditional PDF’s of the score variable. If the conditional PDF’s
are known, the procedure implicitly provides a way of re-
designing the test so that it is equivalent to an LRT.

Index Terms— Receiver operating characteristic curve,
Hypothesis testing, Classifier, Decision making

1. INTRODUCTION

Receiver Operating Characteristic (ROC) curves have played
a key role in the signal detection communities for many
decades [1,2]. In those contexts, a family of ROC’s is typi-
cally generated using threshold tests on the likelihood ratio
(LRT’s) of a measured value often called the score variable.
Each curve displays the probability of detection (true positive
rate) vs. probability of false alarm (false positive rate) for a
fixed SNR and is parameterized by the LRT threshold value.
It is well-known that LRT’s are optimal in the Neyman-
Pearson sense, i.e., for any upper bound on the probability of
false alarm, the probability of detection is maximized. In a
typical radar signal detection scenario, the score variable of-
ten used is the sampled signal level at the output of a matched
filter. And in this scenario the conditional PDF’s of the score
variable are typically based on a mathematical model for the
noise with their analytical forms used to perform LRT’s.
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It is widely known that an ROC curve generated using
LRT’s on any pair of conditional PDF’s, assuming it is con-
tinuous, must be strictly concave, i.e., strict concavity is a
necessary condition for the Neyman-Pearson optimality of a
continuous ROC curve. It is also known that if the likeli-
hood ratio is an invertible function of the score variable for
a given set of conditional PDF’s, then threshold tests on the
score variable (SVT’s) and LRT’s will result in identical ROC
curves. Equivalently, in this case, the score variable is a suffi-
cient statistic for the likelihood ratio.

The use of ROC curves has become increasingly preva-
lent in a very broad set of application areas including bio-
statistics and machine learning [3-9]. In contrast to the prob-
lem of signal detection, in these contexts the score variable is
typically a finely-tuned combination of many measurements
and is therefore often less amenable to mathematical analysis
and modeling. In principle, this does not preclude the use of
LRT’s to generate ROC curves, since in the absence of spe-
cific models of the conditional PDF’s of the score variable, the
PDF’s can be estimated from histograms derived from train-
ing data. However, reliable estimation of probability densi-
ties from empirical data is well-known to be a difficult prob-
lem [10,11]. Estimation of the likelihood ratio from empirical
data is even more so because small errors in the estimate of
the denominator of the ratio can lead to large errors in the es-
timate of the ratio itself. SVT’s are simpler to perform and
less sensitive to poor estimates of the probability densities.
Consequently SVT’s are often used instead of LRT’s.

This paper identifies and resolves the issue of when
an ROC curve generated with SVT’s is equivalent to the
Neyman-Pearson optimal curve. Section 2 defines the ter-
minology and notation used throughout the rest of the paper.
Throughout the paper, the word “optimal” is used to mean
“Neyman-Pearson optimal.” Section 4 establishes that in the
case where the ROC curve is generated using SVT’s, con-
cavity is not only a necessary condition but also a sufficient
condition for optimality. Section 4 further establishes a con-
structive procedure for obtaining the optimal ROC curve of
a given score variable from its SVT ROC curve, without re-
quiring knowledge of the underlying conditional PDF’s. If
the conditional PDF’s are known, or equivalently the SVT
threshold value associated with each point on the SVT ROC



curve is known, then the procedure also implicitly defines a
way of redesigning the test so that it is optimal.

2. BACKGROUND

We refer to an arbitrary score variable S whose conditional
PDF’s under the hypotheses Hj (the null hypothesis) and H;
(the positive hypothesis) are fo(-) and f1(-), respectively, us-
ing the notation
S~ fo(), f1()- (1

We assume for simplicity that all score variables are contin-
uous, have continuous support, and have smooth LRT ROC
curves.! Score variables that do not satisfy these assumptions
can be treated using similar methods to those in this paper,
but are not included for the sake of brevity.

Denote by D the set of values of S for which H; is chosen
by a given decision rule. Each point on an ROC curve has
coordinates

H=A%h@ (2a)

Pp :/ ds fi(s). (2b)
D

If the decision rule is an SVT with threshold ~, then D takes
the form

Dsyr(v) = {s: 5>~} (3)
If it is an LRT with threshold n > 0, then D takes the form
Dirr(n) = {s: f1(s)/fo(s) > n}. “4)

Note that while Dsyr(7y) is always a contiguous region of the
real line, in general Dyrr(n) consists of a set of disjoint in-
tervals of s. Obviously, this means that for an arbitrary pair
of conditional PDF’s, the SVT and LRT ROC curves can be
different.

3. OPTIMALITY OF A CONCAVE SVT ROC CURVE

A principal result of this paper is that if an ROC generated
using SVT’s on a score variable S ~ fo(+), f1(+) is concave,
then it is guaranteed to be the optimal ROC curve for that
score variable. To show that this is true, note that the SVT
ROC curve can be written as

PI§VT = / ds fo(s) = /
Dsvr(7) Y

Pyt = [ s = [
Dsvr(7) Y

IThis translates into the properties that the ratio f1(s)/fo(s) takes
on all values in some interval [0, M) for M > 0 and that the set
{s: f1(s)/fo(s) = n} is zero measure for all n > 0. These properties
also ensure that if the SVT ROC curve is concave, then it must be strictly
concave.

o0

ds fo(s) (5a)

o0

ds f1(s). (5b)

where —oo < v < 4o00. Equation (5) can be simplified
using the cumulative distribution functions (CDF’s) Fy(s) =
J° . du fo(u) and Fi(s) = [°__ du fi(u) to obtain

PV = ¢p(y) =1- Fy(v) (6a)
PR =¢p(y)=1-Fi(7) (6b)

where —oco < 7y < +o00 and the functions ¢ () and ¢p(-)
have been introduced for convenience later on. At the point on
the curve corresponding to the SVT threshold ~, the derivative
of the curve is

apPs¥T _ ¢ _ f1(7)
dPI%VT PYT=¢p (v) ¢/F(7) fO(ry)

: (7

It follows that if the derivative of an SVT ROC curve is an
invertible function of P, as is the case for a concave curve
under the current assumptions, and if ¢ (+) is strictly mono-
tonic, as is the case for all score variables under the current
assumptions, then the likelihood ratio is an invertible function
of the score variable. This implies that the SVT ROC curve of
the score variable is identical to its LRT ROC curve, proving
the result.

It is important to point out that this result is different from
the statement in [12], which says that given any concave curve
with endpoints at (0,0) and (1, 1), one can always construct
a pair of conditional PDF’s for which that curve is the opti-
mal ROC curve. In that context, the curve and the PDF’s are
strictly abstract and need not have any connection to an actual
binary hypothesis testing problem. On the other hand, the re-
sult stemming from Equation (7) says that if the given curve
is an ROC curve that was generated using SVT’s on a specific
pair of PDF’s and is strictly concave, then the curve is optimal
for those PDF’s.

4. GENERATION OF THE OPTIMAL ROC CURVE
FROM A NON-CONCAVE SVT ROC CURVE

This section defines a procedure for constructing the opti-
mal ROC curve of a score variable S ~ fo(-), f1(-) directly
from its SVT ROC curve, without requiring knowledge of the
PDF’s fo(-) and f1(-). It is assumed that the SVT ROC curve
is not concave, since otherwise it would already be optimal
according to Section 3. Mathematically, the objective is to be
able to compute the functions

PLERT — / ds fo(s) (8a)
Dirr(n)

PERT — / ds f1(s) (8b)
Drrr(n)

directly from the SVT ROC curve of .S for any 7 > 0, assum-
ing that fo(-) and fi(-) are unknown. This is equivalent to
assuming that the SVT ROC curve as a whole is known, but



the SVT threshold value associated with each individual point
is unknown. Note that under these assumptions, the derivative
dP3YT /dPSYT can be computed as a function of PEYT but not
as a function of the score variable s.

We will show that the following steps accomplish the ob-
jective.

1. Choose a value of n > 0.

2. Identify the segments of the SVT ROC curve where
the slope dPYT/dP3VT is greater than or equal to 7.
Record the changes in Pp¥T and the changes in P3YT
associated with the endpoints of each segment. Denote
these changes by API(,f) and API(DZ ) where i is an index
over segments.

3. Compute PERT and PERT of the optimal curve by sum-
ming the AP}J ) and APJ(DZ ) values,

PET=%" APy (%a)
i
P =3"APY). (9b)

Equivalently, add the segments together end-to-end to
compute the location of the point on the optimal curve.

The underlying logic can be understood through Figure 1.
The top and bottom graphs show the probability of false alarm
P3VT = ¢p(s) and the derivative dP3YT /dPEVT| PeST— g (s)
as functions of s, respectively. From Equation ??, the bottom
graph is equivalent to the likelihood ratio f1(s)/fo(s). Note
that these graphs are caricatures used only for visualization,
since the procedure does not require explicit knowledge of ei-
ther P3VT or dP3YT /dP3VT as functions of s. It does require
knowledge of dP3YT/dPSYT as a function of PEYT.

In the bottom graph, a fixed LRT threshold value n > 0

identifies multiple disjoint regions of s for which fi(s)/ fo(s) >

7, and together these regions comprise Dyrr(n). Each indi-
vidual region ¢ has the form [a;, b;] for a; < b; and corre-
sponds to the segment in the SVT ROC curve with endpoints
(PYT,PST) = (6r(bi) 6p(bs)) and (PRT, PST) =
(¢r(a;), dp(a;)). The integrals of fy(-) and f1(-) over the
region are then simply

b;
/‘@h@zu—%mm—u—%@»

i

= ¢r(a;) — or(bi) (10a)
b;
/‘ ds fi(s) = (1 = Fi(a;)) — (1 — F1(by))
= ¢pla;) — ¢p(b;) (10b)

which are exactly the changes in P3¥T and P3YT between the
endpoints of the segment. Summing these changes over all re-
gions corresponds to summing the integrals of fo(-) and f1(+)
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Fig. 1. Procedure for generating optimal LRT ROC curve
from SVT ROC curve.

over each disjoint portion of Dy rr (7). The resulting optimal
ROC curve made by varying 7 over its entire range is shown
in Figure 2.

Note that this procedure is different than the use of ran-
domization to replace a convex region on an ROC curve by
the straight line connecting its endpoints [1, 13]. In that case,
a biased coin is flipped and the result dictates whether the de-
cision region of the first endpoint is used or that of the second.
It is straightforward to show that the effective probabilities of
false alarm and detection then lie on the straight line between
the endpoints. However, the resulting curve is not optimal.
One way of seeing this is to observe that the LRT ROC curve
of a continuous score variable, even in the absence of the as-
sumptions made in this paper, can never have any linear re-
gions — it must either be continuous and strictly concave or
discontinuous and strictly concave over each of its disjoint
regions.

Consider now the case where the PDF’s f(-) and f1(+)
are known. Equivalently, the SVT threshold v associated
with each point on the SVT ROC curve is known. It may
be desirable to redesign the test on the score variable to be an
LRT instead of an SVT. For an LRT with threshold n > 0,
this requires explicit knowledge of the regions of s for which
f1(s)/ fo(s) > n,i.e., the regions of s that comprise Dygr(n).
One way of obtaining the regions is to solve analytically for
the values of s for which the inequality holds. An alternative
method is provided implicitly by the procedure given above
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Fig. 2. Non-concave SVT ROC and optimal ROC generated
using the procedure given in the text.

and can be seen in the top graph in Figure 1 — Compute the
SVT ROC curve of fo(-) and f1(-), plot the derivative of the
curve as a function of the SVT threshold, then read the re-
gions directly off the graph by checking where the derivative
is greater than or equal to 7. The redesigned test then decides
H, for any value of s that lies within Dygr(n).

5. SUMMARY

In summary, while it is well-understood that concavity is a
necessary condition for an ROC curve to be optimal for the
score variable used to generate it, in this paper we have estab-
lished that it is also a sufficient condition in the case where
the ROC curve was generated using SVT’s. We then defined
a procedure that generates the optimal ROC curve of a given
score variable directly from its SVT ROC curve, without re-
quiring knowledge of the underlying conditional PDF’s. In
the case where the PDF’s are known, the procedure provides
(1) an alternative way of constructing the optimal ROC curve
without directly applying LRT’s — apply SVT’s then use the
procedure to construct the optimal curve — and (2) an alter-
native way of finding the score variable values for which the
likelihood ratio is greater than a threshold > 0, without re-
quiring an analytical form for the ratio of the PDF’s — apply
SVT’s then use the derivative of the SVT ROC curve to read
off the values.
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